CN110387252B - 一种二甲醚催化转化制富含异构烷烃汽油的方法 - Google Patents

一种二甲醚催化转化制富含异构烷烃汽油的方法 Download PDF

Info

Publication number
CN110387252B
CN110387252B CN201810342239.5A CN201810342239A CN110387252B CN 110387252 B CN110387252 B CN 110387252B CN 201810342239 A CN201810342239 A CN 201810342239A CN 110387252 B CN110387252 B CN 110387252B
Authority
CN
China
Prior art keywords
molecular sieve
metal
mesoporous
dimethyl ether
isoparaffin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810342239.5A
Other languages
English (en)
Other versions
CN110387252A (zh
Inventor
葛庆杰
文志勇
李杲
李志敏
孙剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201810342239.5A priority Critical patent/CN110387252B/zh
Publication of CN110387252A publication Critical patent/CN110387252A/zh
Application granted granted Critical
Publication of CN110387252B publication Critical patent/CN110387252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7684TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种二甲醚催化转化制富含异构烷烃汽油的方法,该方法是指在一定条件下含有二甲醚的原料气通过金属纳米簇改性介孔分子筛催化剂转化生成富含异构烷烃汽油的方法。采用该方法生产的汽油馏分烃(碳原子数在5‑11的烃类物质)异构烷烃较多,可满足世界洁净燃料标准对芳烃和烯烃的含量要求,同时本发明能够连续稳定生产富含异构烷烃汽油,为非石油资源生产高品质汽油提供一条新技术路线,极具市场前景。

Description

一种二甲醚催化转化制富含异构烷烃汽油的方法
技术领域
本发明涉及一种二甲醚催化转化制汽油的方法。更确切的说,本发明涉及一种二甲醚催化转化制富含异构烷烃汽油的催化剂及其应用于高品质汽油的生产。
背景技术
富含异构烷烃汽油(碳数为5~11的馏分烃,即C5-11烃)作为潜在的洁净交通燃料,近年来吸引了人们更多的关注,特别是对于非石油资源(煤、天然气和生物质等)经合成气制取富含异构烷烃汽油过程。对于汽油的费托合成路线,由于受Anderson-Schulz-Flory(ASF)烃分布规律和二级裂解反应的限制,烃产品是宽馏分的线性链烷烃,同时包含大量的甲烷。合成气经甲醇/二甲醚制汽油是获得富含异构烷烃汽油的有效方法,甲醇/二甲醚直接生产富含异构烷烃汽油的高效催化剂用于低烯烃、低芳烃且富含异构烷烃的清洁燃料生产,将具有广阔市场前景。
然而,现有甲醇/二甲醚直接合成汽油技术,存在如下不足:芳烃、烯烃含量较高,不符合愈来愈严格的环保要求标准;汽油馏分烃中的异构烷烃含量较低,且单程收率低。
调控烃产品为富含异构烷烃汽油产品仍然是巨大挑战。例如,在分子筛如HZSM-5催化的甲醇/二甲醚制汽油的过程中,烃产物中通常富含芳烃(>60%),过多的芳烃通常需要通过二级加氢或异构化反应转化成异构烷烃。此外,在甲醇/二甲醚制汽油的过程中容易形成积炭,覆盖催化剂的活性中心或堵塞分子筛孔道,这是由于反应过程中有大量的C12+烃生成,值得注意的是这些C12+烃是积炭的前驱体,导致分子筛催化剂的快速失活。因此,甲醇或二甲醚制汽油过程中汽油馏分烃中异构烷烃含量的增加以及催化剂稳定性的改进仍面临着巨大挑战。
甲醇/二甲醚制汽油在HZSM-5分子筛上的催化反应存在双烯烃和芳烃甲基化催化循环,HZSM-5的催化行为(包括反应活性和产品选择性)可通过引入金属纳米粒子调整。如:Ni物种因具有较强的加氢/脱氢能力和裂解性能而可改进二甲醚制汽油过程的烯烃甲基化路线的活性,抑制芳烃甲基化循环。Qi等(ChemCatChem 5(2013)3543)证明了甲醇制汽油过程中Ni改性ZSM-5显示了较高的芳烃加氢活性。最近,Wen等(Catal.Sci.Technol.6(2016)8089)发现ZSM-5分子筛的Ni物种可增加二甲醚转化制汽油的烯烃甲基化过程。HZSM-5分子筛骨架结构上Ni物种的位置,而不是Ni物种的化学状态明显影响HZSM-5的催化性能,然而,对于传统浸渍法合成的Ni纳米粒子改性HZSM-5分子筛(Ni@HZSM-5),金属Ni0粒子在高温(如350℃)和氢气氛下不可避免的存在于分子筛的孔道内,金属Ni0的存在将导致二甲醚制汽油过程有大量的甲烷和CO副产品生成。Ni@HZSM-5的催化稳定性较差(<20小时)。
发明内容
本发明针对上述不足,提供一种高效二甲醚直接制取富含异构烷烃汽油的方法,采用本发明生产的汽油具有异构烷烃含量高,芳烃含量低,烯烃含量极低的特点。本发明可同时获得较高的汽油馏分烃收率,且反应稳定性好。
为解决上述技术问题,本发明二甲醚直接合成富含异构烷烃汽油采用金属纳米簇改性介孔分子筛催化剂,由分子筛负载金属纳米簇制备而成,其组成以催化剂质量为基准,金属纳米簇活性组分含量为0.01wt%-10wt%,优选0.05wt%-5wt%,更优选0.05wt%-3wt%,其余为介孔分子筛。
本发明的金属纳米簇指的是具有烯烃加氢能力或吸附并转移氢能力的金属形成的纳米簇,金属纳米簇可由其前驱体浸渍到介孔分子筛上,其中金属纳米簇前驱体可表示为Mn(SR)m,其中M为金属,SR为含有碳数为1-50,优选为5-25,更优选为6-15的有机硫配体,有机硫配体中含有芳环、烯基和烷基的一种或多种,如SCH2CH2C6H5,SCH=CHCH2CH2C6H5,SCH2(CH=CH)5-CH3;SC6H5CH2CH2C6H5等,n为纳米簇中金属的原子数,一般为1<n<200,优选5<n<100,更优选6<n<30的整数,m为纳米簇中有机配体个数,一般m取值范围为2<m<100,优选3<m<50,更优选为3<m<15的整数。所述金属纳米簇的粒径在0.5~15nm,优化为1~10nm,更优化为1~5nm。
金属纳米簇的金属组分指的是Co、Ni、Fe、Cu、Zn、Mn的一种或二种以上,优选Ni、Zn、Co的一种和二种以上,进一步优选Ni。
介孔分子筛为介孔HZSM-5、介孔HZSM-22、介孔H-Beta、介孔SAPO和介孔HY中的一种或二种以上,优选介孔HZSM-5分子筛。
介孔分子筛的硅铝比在5-1000之间,优选10-600。
介孔分子筛的介孔孔径为2-50nm,优化为5-20nm,介孔占总孔容的30%-95%,其余为微孔,微孔孔径为0.3-1nm。
金属纳米簇改性介孔分子筛的制备方法为等体积浸渍法,具体为,称取金属纳米簇的前驱体Mn(SR)m溶解于二氯甲烷形成金属纳米簇的二氯甲烷溶液,称取介孔分子筛加入到上述溶液中,室温搅拌至上清液变为无色,离心分离,烘干,置于马沸炉中450-600℃焙烧4-20小时得到金属纳米簇改性介孔分子筛。
本发明所述含有二甲醚原料气中二甲醚的体积百分含量为5-90%,原料中还包括含有还原气体的气体,原料与还原气体反应生成富含异构烷烃汽油。所述还原气体是指氢气、CO中的一种或二种,含有还原气体的气体中其它气体为氮气、水蒸汽、二氧化碳、C1-C4烷烃中的一种或二种以上,其中还原气体的体积百分含量为5-100%。
二甲醚与还原气体的摩尔比例为0.05-50,优选0.1-20。
为清楚了解本发明内容,以Ni纳米簇改性介孔HZSM-5分子筛催化二甲醚催化转化制异构烃汽油为例说明,Ni纳米簇的高分散度可提供一个比纳米粒子Ni更容易接近的Ni物种和较高的加氢速率,进而提高Ni改性HZSM-5分子筛的催化稳定性。此外,相对于微孔HZSM-5分子筛,介孔ZSM-5分子筛由于分子筛孔道内原料分子传质过程的改进而可改进催化剂的催化稳定性。这样可通过把超小Ni物种引入介孔分子筛以提高催化剂的稳定性。
值得注意的是利用分子筛和Ni盐的传统浸渍法制备的Ni纳米粒子较大(通常>10nm),直接使用具有准确结构的Ni纳米簇作母体可获得超小Ni纳米粒子。
本发明给出了一个金属纳米簇改性介孔分子筛的方法,该方法通过浸渍法将金属纳米簇浸渍到介孔分子筛上。下面以Ni金属纳米簇改性介孔HZSM-5分子筛为例进一步说明本发明,但不限制本发明。
浸渍Ni6(PET)12(PET:2-苯乙硫醇)于介孔HZSM-5分子筛(Mes-HZSM-5)可得到Ni纳米簇改性介孔分子筛(NiNC@Mes-HZSM-5).有机配体可在空气中550℃焙烧脱除,形成平均粒径大小为1.2-2.7nm的(NiO)n纳米簇。
本发明的金属纳米簇改性介孔分子筛应用于二甲醚加氢催化转化反应,可表现出优异的催化性能,如NiNC@Mes-HZSM-5催化反应原料二甲醚的转化率为100%,生产的汽油馏分中异构烷烃含量为53.5%,连续运行200小时催化性能保持稳定;这要优于常规的纳米金属改性介孔分子筛的催化性能(如Ni@Mes-HZSM-5仅有73%的二甲醚转化率)和未改性介孔分子筛的催化性能(如Mes-HZSM-5汽油馏分烃产物中异构烷烃含量仅为27.5%)。
本发明所述金属纳米簇改性介孔分子筛,干燥温度为50-130℃,干燥时间为3-12小时;焙烧温度为500-800℃,500-600℃为宜;焙烧时间为4-6小时;升温速率至少为0.5℃/min,以3-5℃/min为佳。本发明二甲醚转化制富含异构烷烃汽油催化剂应用过程中,反应温度为250-500℃,280-450℃为佳,反应压力0.1-3.0MPa。
本发明二甲醚直接合成富含异构烷烃汽油的催化剂在应用中,二甲醚原料转化率可达100%,汽油馏分主要为碳数在C5-C11的烃,其中包括正构烷烃、异构烷烃、环烷烃、烯烃和芳烃,其中异构烷烃含量一般在50%以上。本发明的金属纳米簇改性介孔分子筛催化剂具有较高的催化稳定性。
具体实施方式
本发明技术细节由下述实施例加以详尽描述。需要说明的是所举的实施例,其作用只是进一步说明本发明的技术特征,而不是限定本发明。
对比实施例1
将南开大学催化剂厂生产的HZSM-5首先在550℃空气中焙烧处理4小时,然后将10.0g上述处理过的分子筛加入到300ml含有0.2M TBAOH(四丁基羟铵)和0.2M NaOH的混合溶液中,65℃搅拌0.5小时,过滤洗涤,将处理过的分子筛加入到300mL5M NH4NO3溶液中,在60℃水浴中处理1h,洗涤过滤干燥后,在550℃下焙烧4h,得到介孔孔径尺寸为5-10nm,介孔孔容占总孔容45%的介孔HZSM-5分子筛(Mes-HZSM-5,SiO2/Al2O3=100)。压片制成20-40目颗粒,氢气气氛常压还原4小时,用于二甲醚催化转化制汽油反应。
对比实施例2
称取1.5g Ni(NO3)2·6H2O溶于50ml去离子水配成溶液。称取3.0g对比实施例1中制备的Mes-HZSM-5加入5ml上述配制的Ni盐溶液,室温搅拌24小时,60℃干燥8h,550℃焙烧4h,得到传统的Ni纳米粒子改性介孔HZSM-5分子筛(Ni@Mes-HZSM-5),其中Ni金属含量为0.99wt%,Ni纳米粒子平均尺寸为~28nm。压片制成20-40目颗粒,氢气气氛常压还原4小时,用于二甲醚催化转化制汽油反应。
实施例1
将18mg Ni6(PET)12纳米簇溶解于50ml CH2Cl2中形成溶液,称取3g对比实施例1中制备的Mes-HZSM-5加入上述配制的Ni纳米簇溶液中,室温过夜搅拌至上清液变为无色,离心分离后,固体样品放至烘箱内80℃干燥6h,550℃焙烧4h,得到Ni纳米簇改性介孔HZSM-5分子筛(NiNC@Mes-HZSM-5),其中Ni金属活性组分含量为0.1wt%,Ni簇纳米粒子平均尺寸为~2nm。压片制成20-40目颗粒,氢气气氛常压还原4小时,用于二甲醚催化转化制汽油反应。
实施例2
步骤同实施例1,只是将Ni6(PET)12替换为Co2(PET)4,介孔HZSM-5分子筛替换为介孔HZSM-22(SiO2/Al2O3=30),介孔孔径尺寸为3-6nm,介孔孔容约占总孔容的30%,得到Co纳米簇改性介孔HZSM-22(CoNC@HZSM-22),金属Co组分含量为0.5wt%,Co簇纳米粒子平均尺寸为~3nm。
实施例3
步骤同实施例1,只是将Ni6(PET)12替换为Zn20(SCH2CH2C6H5)40,介孔HZSM-5分子筛替换为介孔H-Beta(SiO2/Al2O3=500),介孔孔径尺寸为4-9nm,介孔孔容约占总孔容的30%,得到Zn纳米簇改性介孔H-Beta(ZnNC@H-Beta),金属Zn组分含量为2.5wt%,Co簇纳米粒子平均尺寸为~5nm。
实施例4
步骤同实施例1,只是将18mg Ni6(PET)12改为270mg Ni6(PET)12,得到高含量Ni纳米簇改性介孔HZSM-5分子筛(H-NiNC@HZSM-5),其中Ni金属活性组分含量为1.5wt%,Ni簇纳米粒子平均尺寸为~2.7nm
实施例5
步骤同实施例1,只是将18mg Ni6(PET)12改为0.6mg Ni6(PET)12,得到低含量Ni纳米簇改性介孔HZSM-5分子筛(L-NiNC@HZSM-5),其中Ni金属活性组分含量为0.01wt%,Ni簇纳米粒子平均尺寸为~1.2nm
实施例6
分别在对比实施例1-2、实施例1-5的催化剂上进行二甲醚催化转化试验,催化剂填装量为0.5000g,反应温度为350℃,反应压力为1.5MPa,载气是氢气,反应气流速为25mL/min,氢气与二甲醚的摩尔比为2。反应结果列于表1。
表1金属纳米簇改性介孔分子筛催化二甲醚转化制富含异构烷烃汽油性能
Figure BDA0001630965080000041
Figure BDA0001630965080000051
从表1结果可看出,同未改性介孔分子筛催化剂和常规金属改性介孔分子筛催化剂相比,本发明催化剂显示出几乎100%二甲醚的转化率,产物几乎全部为烃产物。同时汽油馏分烃为主要烃产物,且异构烃含量较高。这是由于本发明介孔分子筛的改性金属纳米簇颗粒尺寸较小(<10nm),容易进入分子筛的孔道尺寸,与分子筛的酸性活性位充分接触,充分发挥了金属纳米簇颗粒的烯烃加氢/脱氢功能并与分子筛酸性位的聚合/异构化等功能的协同作用所致。
实施例7
实施例1所制催化剂NiNC@Mes-HZSM-5和对比实施例1催化剂Mes-HZSM-5在反应温度为350℃,反应压力为1.5MPa,原料气(H2/DME=2)空速为6000mL·h-1·g-1条件下测试了二甲醚催化转化制汽油反应的稳定性,结果列于表2.
表2.二甲醚催化转化制异构烃汽油催化剂的反应稳定性结果
Figure BDA0001630965080000052
从表2可看出,Mes-HZ催化剂展现了较高的初始活性,二甲醚转化率高达98.5%,但随着反应的进行二甲醚转化率逐渐下降,80h后二甲醚转化率下降到90%以下;汽油馏分烃中芳烃和异构烷烃选择性随着反应的进行一直分别波动于40-45%和43-50%。虽然Mes-HZ分子筛的介孔结构提高了催化反应的传质速率,但是较大介孔空间为较大体积分子形成提供了场所,大量高碳多甲基苯(积碳前驱体)形成于介孔孔道,随着反应的进行逐渐转化为积碳导致催化剂失活。
再看NiNC@Mes-HZ催化剂,反应出现诱导期,初期二甲醚转化率较低,但随着反应进行二甲醚转化率逐渐由87.2%升高到94.9%,反应10h后达到稳定;在反应稳定后,反应产物未出现波动,汽油馏分烃中芳烃和异构烷烃一直稳定在33%和52%左右;在200h稳定性评价中没有出现任何失活现象,NiNC@Mes-HZ分子筛展现了良好稳定性和工业化应用前景。催化剂良好的稳定性可能是由于NiO团簇只存在于介孔孔道,一方面是NiO团簇减小了介孔孔道半径和体积,这与BET表征相一致;另一方面抑制了氢转移反应的发生导致芳烃含量大幅降低,减少了积碳的形成,其加氢能力促使高碳烯烃转化为异构烷烃。
实施例8
实施例1催化剂在不同反应条件下测试了其DME催化转化反应性能,反应结果列于表3.表中结果表明在表示条件下,NiNC@Mes-HZSM-5催化剂表现出优异的二甲醚转化性能,二甲醚转化率均为100%,汽油馏分烃产物均以异构烷烃为主要烃产物。
Figure BDA0001630965080000061
采用该方法生产的汽油馏分烃(碳原子数在5-11的烃类物质)异构烷烃较多,可满足世界洁净燃料标准对芳烃和烯烃的含量要求,同时本发明能够连续稳定生产富含异构烷烃汽油,为非石油资源生产高品质汽油提供一条新技术路线,极具市场前景。

Claims (10)

1.一种二甲醚催化转化制富含异构烷烃汽油的方法,其特征在于,该方法采用金属纳米簇改性介孔分子筛催化剂,催化剂是由金属纳米簇活性组分和介孔分子筛组成,其组成以催化剂质量为基准,金属纳米簇活性组分含量为0.01wt%-10wt%,其余为介孔分子筛;
金属纳米簇指的是具有烯烃加氢能力或吸附并转移氢能力的金属形成的纳米簇,金属纳米簇可由其前驱体浸渍到介孔分子筛上焙烧获得,其中金属纳米簇前驱体可表示为Mn(SR)m, 其中M为金属,SR为含有碳数为1-50的有机硫配体,有机硫配体中含有芳环、烯基或烷基中的一种或多种;n为纳米簇中金属的原子数,1<n<200的整数;m为纳米簇中有机配体个数, m取值范围为2<m<100的整数。
2.按照权利要求1所述方法,其特征在于: SR为含有碳数为5-25的有机硫配体,有机硫配体中含有芳环、烯基或烷基中的一种或多种;n为纳米簇中金属的原子数,n为5<n<100;m为纳米簇中有机配体个数, m取值范围为3<m<50。
3.按照权利要求1或2所述方法,其特征在于:所述金属纳米簇的粒径在0.5~15nm。
4.按照权利要求1或2所述方法,其特征在于:金属纳米簇的金属组分指的是Co、Ni、Fe、Cu、Zn、Mn的一种或二种以上。
5.按照权利要求1所述方法,其特征在于:介孔分子筛为介孔HZSM-5、介孔HZSM-22、介孔H-Beta、介孔SAPO和介孔HY中的一种或二种以上。
6.按照权利要求5所述的方法,其特征在于:介孔分子筛的硅铝比在5-1000之间。
7.按照权利要求5所述的方法,其特征在于:介孔分子筛的介孔孔径为2-50nm,介孔孔容占总孔容的30%-95%,其余为微孔,微孔孔径为0.3-1nm。
8.按照权利要求1所述方法,其特征在于:金属纳米簇改性介孔分子筛的制备方法为等体积浸渍法,具体为,称取金属纳米簇的前驱体Mn(SR)m溶解于二氯甲烷形成金属纳米簇的二氯甲烷溶液,称取介孔分子筛加入到上述溶液中,室温搅拌至上清液变为无色,离心分离,烘干,置于马沸炉中450-600oC焙烧4-20小时得到金属纳米簇改性介孔分子筛。
9.按照权利要求1所述的方法,其特征在于:含有二甲醚的原料气中二甲醚的体积百分含量为5-90%,原料气中还包括含有还原气体的气体,二甲醚与还原气体反应生成富含异构烷烃汽油;所述还原气体是指氢气、CO中的一种或二种,含有还原气体的气体中其它气体为氮气、水蒸汽、二氧化碳、C1-C4烷烃中的一种或二种以上,其中还原气体的体积百分含量为5-100%。
10.按照权利要求9所述方法,其特征在于:二甲醚与还原气体的摩尔比例为0.053-50。
CN201810342239.5A 2018-04-17 2018-04-17 一种二甲醚催化转化制富含异构烷烃汽油的方法 Active CN110387252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810342239.5A CN110387252B (zh) 2018-04-17 2018-04-17 一种二甲醚催化转化制富含异构烷烃汽油的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810342239.5A CN110387252B (zh) 2018-04-17 2018-04-17 一种二甲醚催化转化制富含异构烷烃汽油的方法

Publications (2)

Publication Number Publication Date
CN110387252A CN110387252A (zh) 2019-10-29
CN110387252B true CN110387252B (zh) 2021-06-11

Family

ID=68283068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810342239.5A Active CN110387252B (zh) 2018-04-17 2018-04-17 一种二甲醚催化转化制富含异构烷烃汽油的方法

Country Status (1)

Country Link
CN (1) CN110387252B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398675A (zh) * 2002-08-05 2003-02-26 太原理工大学 沸石负载高分子金属簇的制备
CN104178204A (zh) * 2013-05-23 2014-12-03 中国科学院大连化学物理研究所 一种富含异构烷烃汽油的制备方法
CN105618034A (zh) * 2014-11-24 2016-06-01 北京大学 一种负载型钌金属纳米簇基催化剂及其制备与应用
CN106867564A (zh) * 2015-12-13 2017-06-20 中国科学院大连化学物理研究所 一种甲醇和/或二甲醚制富含异构烷烃汽油的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398675A (zh) * 2002-08-05 2003-02-26 太原理工大学 沸石负载高分子金属簇的制备
CN104178204A (zh) * 2013-05-23 2014-12-03 中国科学院大连化学物理研究所 一种富含异构烷烃汽油的制备方法
CN105618034A (zh) * 2014-11-24 2016-06-01 北京大学 一种负载型钌金属纳米簇基催化剂及其制备与应用
CN106867564A (zh) * 2015-12-13 2017-06-20 中国科学院大连化学物理研究所 一种甲醇和/或二甲醚制富含异构烷烃汽油的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Photocatalytic Hydrogen Generation System Using a Nickel-Thiolate Hexameric Cluster;Husain N. Kagalwala等;《Inorganic Chemistry》;20130805;第52卷(第15期);第9094-9101页 *

Also Published As

Publication number Publication date
CN110387252A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
Yang et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons
US10835894B1 (en) Methods for producing mesoporous zeolite multifunctional catalysts for upgrading pyrolysis oil
SA517390644B1 (ar) محفز وطريقة لتحضير الأولفينات الخفيفة مباشرة من غاز التخليق بعملية من خطوة واحدة
CN111375444B (zh) 一种用于合成气直接生产芳烃的核壳铁基催化剂及其制备方法和应用
CN111889132B (zh) 一种金属氧化物-分子筛催化剂及其制备方法和应用
WO2011062773A2 (en) Zeolite supported cobalt hybrid fischer-tropsch catalyst
JP2617291B2 (ja) 低級パラフイン系炭化水素の芳香族炭化水素への変換方法
CN112871200B (zh) 一种从合成气制备轻质芳烃的催化剂体系及其应用
CN108940355B (zh) 一种碱修饰的催化剂及一氧化碳加氢反应制乙烯的方法
Yang et al. Investigation of the deactivation behavior of Co catalysts in Fischer–Tropsch synthesis using encapsulated Co nanoparticles with controlled SiO 2 shell layer thickness
Yang et al. Advanced design and development of catalysts in propane dehydrogenation
AU2009263607B2 (en) Catalyst for Fischer-Tropsch synthesis and method for producing hydrocarbons
Ni et al. Uniformity dispersive, anti-coking core@ double-shell-structured Co@ SiO2@ C: Effect of graphitic carbon modified interior pore-walls on C5+ selectivity in Fischer-Tropsch synthesis
CN110387252B (zh) 一种二甲醚催化转化制富含异构烷烃汽油的方法
JP7007763B2 (ja) 有機アルカリで修飾された複合触媒及び一酸化炭素の水素化によるエチレンの製造方法
WO2020060591A1 (en) Process for preparing c2-c5 hydrocarbons using a hybrid catalyst
CN109304216B (zh) 合成气一步法生产低碳烯烃的催化剂
Song et al. An Fe–Mn–Cu/SiO 2@ silicalite-1 catalyst for CO hydrogenation: the role of the zeolite shell on light-olefin production
Zhu et al. A novel synthesis of highly active and highly stable non-noble-nickel-modified persulfated Al2O3@ ZrO2 core-shell catalysts for n-pentane isomerization
Ali et al. Direct synthesis of liquid fuels and aromatics from syngas over mesoporous FeZrOx catalyst mixed with Mo/ferrierite
CN109647492B (zh) 合成气直接生产低碳烯烃的催化剂
CN109304215B (zh) 合成气一步法制低碳烯烃的催化剂
CN109305870B (zh) 合成气一步法制低碳烯烃的方法
CN106608778B (zh) 含氧化合物制芳烃与丙烯的方法
CN112934215B (zh) 转化甲烷的催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant