CN110386823B - 基于选择性激光烧结陶瓷基复杂结构件的制备方法 - Google Patents

基于选择性激光烧结陶瓷基复杂结构件的制备方法 Download PDF

Info

Publication number
CN110386823B
CN110386823B CN201910628178.3A CN201910628178A CN110386823B CN 110386823 B CN110386823 B CN 110386823B CN 201910628178 A CN201910628178 A CN 201910628178A CN 110386823 B CN110386823 B CN 110386823B
Authority
CN
China
Prior art keywords
ceramic
powder
biscuit
selective laser
ceramic matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910628178.3A
Other languages
English (en)
Other versions
CN110386823A (zh
Inventor
曾涛
余四文
杨帆
许国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shantou University
Harbin University of Science and Technology
Original Assignee
Shantou University
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shantou University, Harbin University of Science and Technology filed Critical Shantou University
Priority to CN201910628178.3A priority Critical patent/CN110386823B/zh
Publication of CN110386823A publication Critical patent/CN110386823A/zh
Application granted granted Critical
Publication of CN110386823B publication Critical patent/CN110386823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种基于选择性激光烧结陶瓷基复杂结构件的制备方法,包括步骤:1)制备素坯;2)装模;3)干压处理;4)烧结。该制备方法采用间接选择性激光烧结技术成型陶瓷基素坯,然后置于模具中,在陶瓷基素坯的内部孔隙和外表面填充低压缩性粉体,限制了陶瓷基素坯在外力作用下发生坍塌的破坏。由于填充的低压缩性粉体的压缩性低于陶瓷基素坯,在机械载荷的作用下,外力通过填充的低压缩性粉体从各方向均匀传递给陶瓷基素坯,使得坯体内颗粒与颗粒之间相互靠近,孔隙率降低,致密度提高,在高温固相或液相烧结过程中,坯体内颗粒与颗粒之间相互粘结形成骨架,晶粒生长,孔隙进一步减小,形成致密的陶瓷基复杂结构复合材料零件。

Description

基于选择性激光烧结陶瓷基复杂结构件的制备方法
技术领域
本发明涉及由粉末制造特殊形状的工件技术领域,特别涉及一种基于选择性激光烧结陶瓷基复杂结构件的制备方法。
背景技术
选择性激光烧结(SLS)技术因其具有成型速率快、可制备复杂形状的零件,成型精度较高等优点,在三维成型复杂结构陶瓷/金属零件中具有良好的应用前景。利用SLS技术直接制备复杂陶瓷/金属零件需要很高的烧结温度,目前主要采用间接SLS技术通过熔融熔点较低的粘结剂来成型复杂结构零件,但得到的素坯及烧结体孔隙率和强度都很低,不能满足实际应用的要求,必须对素坯进行致密化处理以提高其烧结体的物理力学性能。
采用冷等静压致密化处理间接SLS技术成型的零件坯体虽然机械性能有较大提高,但是坯体表面平整度降低,对于内部复杂(具有腔、洞结构)的零件难以处理,且对于小规模生产而言冷等静压成本较高。
发明内容
由于现有技术存在难以以较低成本制备高性能、内部结构复杂的零件的问题,本技术方案旨在提供一种基于选择性激光烧结陶瓷基复杂结构件的制备方法,增设干压处理,使得间接SLS技术能够以较低成本制备高性能、内部结构复杂的零件。
所述基于选择性激光烧结陶瓷基复杂结构件的制备方法,具体按以下步骤实现:
1)制备素坯:采用间接法选择性激光烧结技术成型陶瓷基素坯;
2)装模:将陶瓷基素坯置于干压模具中,然后以低压缩性粉体填充陶瓷基素坯内部空间及包覆陶瓷基素坯外表面;
3)干压处理:采用压力机对干压模具进行干压,然后取出干压后陶瓷基素坯,清除干压后陶瓷基素坯表面及内部填充的低压缩性粉体,得到待烧结陶瓷基素坯;
4)烧结:对待烧结陶瓷基素坯进行排胶烧结,然后进行清洗,得到陶瓷基复杂结构件。
本发明的原理及优点:
一、采用间接选择性激光烧结技术成型陶瓷基素坯,然后置于模具中,在陶瓷基素坯的内部孔隙和外表面填充低压缩性粉体,限制了陶瓷基素坯在外力作用下发生坍塌的破坏。由于填充的低压缩性粉体的压缩性低于陶瓷基素坯,在机械载荷的作用下,外力通过填充的低压缩性粉体从各方向均匀传递给陶瓷基素坯,使得坯体内颗粒与颗粒之间相互靠近,孔隙率降低,致密度提高,在高温固相或液相烧结过程中,坯体内颗粒与颗粒之间相互粘结形成骨架,晶粒生长,孔隙进一步减小,形成致密的陶瓷基复杂结构件。
二、本发明工艺简单,生产效率高,成本低,成型精度为±0.2mm,可制备复杂结构,尤其是内部复杂结构的陶瓷基复合材料。
三、本发明可以制备Al2O3陶瓷点阵等复杂结构,并具备较高的力学性能,而采用冷等静压后处理不能制备这种复杂结构,且不采用致密化处理的陶瓷坯体直接烧结后开裂严重,不能成型。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单说明。显然,所描述的附图只是本发明的一部分实施例,而不是全部实施例,本领域的技术人员在不付出创造性劳动的前提下,还可以根据这些附图获得其他设计方案和附图。
图1是实施例1的步骤1)制得的陶瓷基素坯结构示意图;
图2是实施例1的步骤3)中得到的干压处理示意图,图中1表示碳化硅粉体,2表示氧化铝-碳化硅复合粉体包覆,3表示加载压力。
具体实施方式
具体实施方式一:制备陶瓷基复杂结构件。具体制备方法是按以下步骤完成的:
1)制备素坯:采用间接法选择性激光烧结技术,获得陶瓷基素坯;
2)装模:将陶瓷基素坯置于干压模具中,以低压缩性粉体填充陶瓷基素坯内部空间及包覆陶瓷基素坯外表面;
3)干压处理:采用压力机对干压模具进行干压,然后取出干压后陶瓷基素坯,清除干压后陶瓷基素坯表面及内部填充的低压缩性粉体,得到待烧结陶瓷基素坯;
4)烧结:对待烧结陶瓷基素坯进行排胶烧结,然后进行清洗,得到陶瓷基复杂结构件。
干压致密化处理间接SLS技术成型的素坯,是利用加压设备将力均匀传递给包覆及填充在素坯表面或内部的粉体,通过填充的粉体反作用的坯体上是坯体致密化。这种方法不仅能有效提高其物理力学性能,而且零件表面精度较高,不受零件形状约束,成本大幅度降低。
具体实施方式二:本实施方式与具体实施方式一的不同点是:步骤一中所述间接法选择性激光烧结技术是操作过程如下:根据陶瓷基素坯的收缩率对打印模型的尺寸进行反向补偿,然后通过solid works设计陶瓷基复杂结构件的三维模型,并另存为STL格式文件导入SLS打印设备中;设定SLS打印机的打印参数:扫描速率为1800mm/s,分层厚度为0.1mm,预热温度为45℃;逐层打印陶瓷基复合粉体,直至零件加工完成,将素坯取出并清除未烧结粉体,得到陶瓷基素坯。其他与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式二的不同点是:所述陶瓷基复合粉体为陶瓷复合粉体或陶瓷与金属复合粉体;
所述陶瓷复合粉体由陶瓷基体材料和粘结剂混合而成,所述陶瓷基体材料与粘结剂的质量比为20:1~2,其中陶瓷基体材料由陶瓷粉体和助烧剂组成,所述陶瓷基体材料中助烧剂的质量分数为3%~15%,陶瓷粉体的质量分数为85%~97%;
所述陶瓷与金属复合粉体由陶瓷基体材料和粘结剂混合而成,所述陶瓷基体材料与粘结剂的质量比为20:1~2,其中陶瓷基体材料由陶瓷粉体、金属粉体和助烧剂组成,所述陶瓷基体材料中助烧剂的质量分数为3%~10%,陶瓷粉体的质量分数为36%~58.2%,金属粉体的质量分数为36%~58.2%。
其他与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式三的不同点是:所述陶瓷粉体为Al2O3陶瓷粉体或碳化硅陶瓷粉体;所述粘结剂为环氧树脂;所述助烧剂为氧化铜粉体、氧化钛粉体、氧化铼粉体、氧化镁粉体、氧化钇粉体或氮化铝粉体;所述金属粉体为铝粉、铜粉或铜合金粉体。其他与具体实施方式三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤二中所述的低压缩性粉体的粒径为50μm~100μm,且低压缩性粉体为碳化硅粉体和氧化铝与碳化硅复合粉体,所述氧化铝与碳化硅复合粉体中氧化铝与碳化硅的质量比为2~3:7~8。其他与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式五的不同点是:步骤2)中将陶瓷基素坯置于干压模具中,然后在陶瓷基素坯内部填充碳化硅粉体,在陶瓷基素坯外部采用氧化铝与碳化硅复合粉体包覆,且陶瓷基素坯外部氧化铝与碳化硅复合粉体的包覆厚度大于5mm。其他与具体实施方式五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤3)中采用压力机对干压模具进行干压处理:预紧速率为0.1~1mm/min,加载速率为0.2~1MPa/s,加载压力为40~160MPa,保压时间10~60s。其他与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤4)中将待烧结陶瓷基素坯转移至箱式炉中进行排胶烧结,具体操作过程如下:先以5~10℃/min速率升温至T1,T1为粘结剂起始降解温度,然后以1~2℃/min速率升温至T2,T2为粘结剂完全分解温度,再以5~10℃/min速率升温至T3,T3=(0.5~0.6)×T,T,为陶瓷基体材料的熔点,最后以1~2℃/min速率升温至T4,T4=(0.75~0.85)×T,并在温度T4下保温1~4h,随炉冷却至室温,即完成排胶烧结,得到陶瓷基复杂结构件。其他与具体实施方式一至七相同。
本实施方式根据粘结剂TG曲线,失重率超过5%时认为材料开始热分解,此时的温度即为T1;失重率超过95%时的温度认为材料完全分解,此时的温度即为T2。
本发明内容不仅限于上述各实施方式的内容,其中一个或几个实施例的组合同样也可以实现发明的目的。
采用下述试验验证本发明效果
实施例1:结合图1和2,基于选择性激光烧结陶瓷基复杂结构件的制备方法,具体是按以下步骤完成的:
1)制备素坯:根据陶瓷基素坯的收缩率对打印模型的尺寸进行反向补偿,然后通过solid works设计陶瓷基复杂结构件的三维模型,并另存为STL格式文件导入SLS打印设备中;设定SLS打印机的打印参数:扫描速率为1800mm/s,分层厚度为0.1mm,预热温度为45℃;逐层打印陶瓷基复合粉体,直至零件加工完成,将素坯取出并清除未烧结粉体,得到陶瓷基素坯;
所述陶瓷基复合粉体为陶瓷复合粉体;所述陶瓷复合粉体由陶瓷基体材料和粘结剂混合而成,所述陶瓷基体材料与粘结剂的质量比为20:1,其中陶瓷基体材料由陶瓷粉体和助烧剂组成,所述陶瓷基体材料中助烧剂的质量分数为8%,陶瓷粉体的质量分数为92%;
所述陶瓷粉体为Al2O3陶瓷粉体;所述粘结剂为环氧树脂;所述助烧剂为氧化镁粉体;
2)装模:将陶瓷基素坯置于干压模具中,然后在陶瓷基素坯内部填充碳化硅粉体,在陶瓷基素坯外部采用氧化铝与碳化硅复合粉体包覆,且陶瓷基素坯外部氧化铝与碳化硅复合粉体的包覆厚度大于5mm;
所述的碳化硅粉体的粒径为100μm,所述氧化铝与碳化硅复合粉体的粒径为100μm,且氧化铝与碳化硅复合粉体中氧化铝与碳化硅的质量比为3:7;
3)干压处理:采用压力机对干压模具进行干压处理:预紧速率为1mm/min,加载速率为1MPa/s,加载压力为150MPa,保压时间60s,然后取出干压后陶瓷基素坯,清除干压后陶瓷基素坯表面及内部填充的低压缩性粉体,得到待烧结陶瓷基素坯;
4)烧结:将待烧结陶瓷基素坯转移至箱式炉中进行排胶烧结,具体操作过程如下:先以5℃/min速率升温至300℃,然后以2℃/min速率升温至600℃,再以5℃/min速率升温至1400℃,最后以2℃/min速率升温至1600℃,并在温度为1600℃下保温2h,随炉冷却至室温,即完成排胶烧结,得到陶瓷基复杂结构件。
实施例1得到的陶瓷基复杂结构件的相对密度为92.5%,显气孔率为5.49%,维氏硬度为551.2(HV1),实施例1得到的陶瓷基复杂结构件的三点弯曲试验强度为176MPa。
对比例1:采用与实施例1相同的素坯制备工艺,然后利用冷等静压对陶瓷基素坯进行处理,最后同样经烧结获得陶瓷基复杂结构件。但是在冷等静压的工艺过程中,需要采用乳胶浸渍素坯形成包膜,这个过程需要重复很多次,并且浸渍后干燥也需要很长时间,容易导致素坯——特别是内部带有腔、洞的复杂结构素坯出现包膜包套厚度不均,经等静压后发生变形和零件不匹配。
对比例1得到的陶瓷基复杂结构件的相对密度为93.8%,显气孔率为5.35%,维氏硬度为532.6(HV1),其三点弯曲试验强度为167MPa。
将实施例1与对比例1分别制得的陶瓷基复杂结构件进行比较,其产品参数相近。然而采用本技术方案的实施例1在压制处理时只需要通过装模和干压两个步骤,相较于冷等静压处理要更加简便。并且由于采用干压,所使用的加压设备无需如冷等静压设备般对密封性有严格要求。因此本技术方案的设备成本也远低于传统的冷等静压工艺。

Claims (9)

1.基于选择性激光烧结陶瓷基复杂结构件的制备方法,其特征在于包括以下步骤:
1)制备素坯:采用间接法选择性激光烧结技术成型陶瓷基素坯;
2)装模:将陶瓷基素坯置于干压模具中,然后以低压缩性粉体填充陶瓷基素坯内部空间及包覆陶瓷基素坯外表面;所述的低压缩性粉体的粒径为50~100 μm,且低压缩性粉体为碳化硅粉体、氧化铝-碳化硅复合粉体,所述碳化硅粉体填充陶瓷基素坯内部空间,所述氧化铝-碳化硅复合粉体包覆陶瓷基素坯外表面且包覆厚度大于5 mm;所述氧化铝-碳化硅复合粉体中氧化铝与碳化硅的质量比为2~3:7~8;
3)干压处理:采用压力机对干压模具进行干压,然后取出干压后陶瓷基素坯,清除干压后陶瓷基素坯表面及内部填充的低压缩性粉体,得到待烧结陶瓷基素坯;
4)烧结:对待烧结陶瓷基素坯进行排胶烧结,然后进行清洗,得到陶瓷基复杂结构件。
2.根据权利要求1所述的基于选择性激光烧结陶瓷基复杂结构件的制备方法,其特征在于步骤1)中所述间接法选择性激光烧结技术是操作过程如下:
根据陶瓷基素坯的收缩率对打印模型的尺寸进行反向补偿,然后通过三维作图软件设计陶瓷基复杂结构件的三维模型,并导入SLS打印设备中;设定SLS打印机的打印参数为扫描速率为1800 mm/s、分层厚度为0.1 mm、预热温度为45 ℃;逐层打印陶瓷基复合粉体,直至零件加工完成,然后取出素坯并清除未烧结粉体,得到陶瓷基素坯。
3.根据权利要求2所述的基于选择性激光烧结陶瓷基复杂结构件的制备方法,其特征在于所述陶瓷基复合粉体为陶瓷复合粉体或陶瓷与金属复合粉体。
4.根据权利要求3所述的基于选择性激光烧结陶瓷基复杂结构件的制备方法,其特征在于:所述陶瓷复合粉体由陶瓷基体材料和粘结剂混合而成,所述陶瓷基体材料与粘结剂的质量比为20:1~2,其中陶瓷基体材料由陶瓷粉体和助烧剂组成,所述陶瓷基体材料中助烧剂的质量分数为3~15%,陶瓷粉体的质量分数为85~97%。
5.根据权利要求3所述的基于选择性激光烧结陶瓷基复杂结构件的制备方法,其特征在于:所述陶瓷与金属复合粉体由陶瓷基体材料和粘结剂混合而成,所述陶瓷基体材料与粘结剂的质量比为20:1~2,其中陶瓷基体材料由陶瓷粉体、金属粉体和助烧剂组成,所述陶瓷基体材料中助烧剂的质量分数为3~10%,陶瓷粉体的质量分数为36~58.2%,金属粉体的质量分数为36~58.2%。
6.根据权利要求4或5所述的基于选择性激光烧结陶瓷基复杂结构件的制备方法,其特征在于:所述陶瓷粉体为Al2O3陶瓷粉体或碳化硅陶瓷粉体;所述粘结剂为环氧树脂;所述助烧剂为氧化铜粉体、氧化钛粉体、氧化铼粉体、氧化镁粉体、氧化钇粉体、氮化铝粉体中的至少一种。
7.根据权利要求5所述的基于选择性激光烧结陶瓷基复杂结构件的制备方法,其特征在于:所述金属粉体为铝粉、铜粉、铜合金粉体中的至少一种。
8.根据权利要求1所述的基于选择性激光烧结陶瓷基复杂结构件的制备方法,其特征在于,步骤3)压力机的干压处理参数为:预紧速率0.1~1 mm/min,加载速率0.2~1 MPa/s,加载压力40~160MPa,保压时间10~60 s。
9.根据权利要求1所述的基于选择性激光烧结陶瓷基复杂结构件的制备方法,其特征在于,步骤4)中将待烧结陶瓷基素坯转移至箱式炉中进行排胶烧结,具体操作过程如下:先以5~10 ℃/min速率升温至T1,然后以1~2 ℃/min速率升温至T2,再以5~10 ℃/min速率升温至T3,最后以1~2 ℃/min速率升温至T4,并在温度T4下保温1~4 h,随炉冷却至室温,即完成排胶烧结,得到陶瓷基复杂结构件;
其中,T1为粘结剂起始降解温度,T2为粘结剂完全分解温度,T3=(0.5~0.6)×T,T4=(0.75~0.85)×T,T为陶瓷基体材料的熔点。
CN201910628178.3A 2019-07-12 2019-07-12 基于选择性激光烧结陶瓷基复杂结构件的制备方法 Active CN110386823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910628178.3A CN110386823B (zh) 2019-07-12 2019-07-12 基于选择性激光烧结陶瓷基复杂结构件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910628178.3A CN110386823B (zh) 2019-07-12 2019-07-12 基于选择性激光烧结陶瓷基复杂结构件的制备方法

Publications (2)

Publication Number Publication Date
CN110386823A CN110386823A (zh) 2019-10-29
CN110386823B true CN110386823B (zh) 2022-04-01

Family

ID=68286547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910628178.3A Active CN110386823B (zh) 2019-07-12 2019-07-12 基于选择性激光烧结陶瓷基复杂结构件的制备方法

Country Status (1)

Country Link
CN (1) CN110386823B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402287A (zh) * 2021-07-28 2021-09-17 广东工业大学 一种SiC晶须增韧Si3N4陶瓷气动马达叶片、制备方法及气动马达
CN113501723B (zh) * 2021-08-03 2022-11-25 宁波曙翔新材料股份有限公司 纤维增强陶瓷基复合材料天线罩/窗的制备方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2239071A2 (en) * 2009-04-07 2010-10-13 United Technologies Corporation Ceracon forging of L12 aluminum alloys
CN106316440A (zh) * 2016-08-19 2017-01-11 华中科技大学 一种基于激光选区烧结的复杂结构多孔陶瓷的制备方法
CN108947537A (zh) * 2018-08-02 2018-12-07 西安增材制造国家研究院有限公司 一种SiC陶瓷结构件及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2239071A2 (en) * 2009-04-07 2010-10-13 United Technologies Corporation Ceracon forging of L12 aluminum alloys
CN106316440A (zh) * 2016-08-19 2017-01-11 华中科技大学 一种基于激光选区烧结的复杂结构多孔陶瓷的制备方法
CN108947537A (zh) * 2018-08-02 2018-12-07 西安增材制造国家研究院有限公司 一种SiC陶瓷结构件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
喷射沉积多孔材料陶粒轧制工艺的研究;龚艳丽;《中国优秀硕士学位论文全文数据库•工程科技Ⅰ辑》;20071115(第5期);第B022-233页 *

Also Published As

Publication number Publication date
CN110386823A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
CN108675798B (zh) 一种氮化硅陶瓷及其制备方法
US10751912B2 (en) Aluminum-diamond-based composite and method for producing same
JP6078885B2 (ja) 複合耐火物および複合耐火物の製造方法
EP1561737B1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
CN110386823B (zh) 基于选择性激光烧结陶瓷基复杂结构件的制备方法
CN102774075B (zh) 多孔金属封装陶瓷复合防护板及其制备方法
CN104628393B (zh) 一种高性能陶瓷的制备方法
CN112789128A (zh) 从预制件开始通过加压烧结制造复杂形状的部件的方法
CN111663060B (zh) 大尺寸薄片状金刚石/金属复合材料的制备方法
CN110330345B (zh) 氮化硅陶瓷材料及其制备方法和陶瓷模具
CN110655405B (zh) 一种陶瓷基复合材料结构的制备方法
CN109692943B (zh) 一种真空压力浸渗正压法制备SiC3D/Al复合材料的方法
CN116535220A (zh) 一种氮化硅陶瓷粉末制品的脱脂烧结方法
CN110041081B (zh) 一种3d打印高温结构陶瓷的后处理方法
CN113290245B (zh) 一种二次施压制备金属基陶瓷复合材料的工艺
CN112851354A (zh) 一种多孔结构陶瓷及其制备方法
CN104529442A (zh) 一种功能梯度压电材料无压浸渗制备工艺
JP7216611B2 (ja) SiC焼結部材の製造方法
JP4537669B2 (ja) 炭化ケイ素基接合部品とその製造方法
KR0139551B1 (ko) 다층 적재 핫프레싱법에 의한 세라믹스의 소결방법
CN109848363B (zh) 可溶性陶瓷模具在制备复合材料中的应用
JP4732430B2 (ja) アルミニウム−セラミックス複合体及びその製造方法
JPS62227603A (ja) セラミツクス焼結体の製造方法及び該製造方法に用いるための成形型
CN118005383A (zh) 一种氧化铝纤维增强氧化铝基复合材料的制备方法
CN116573952A (zh) 一种粘结剂喷射打印碳化硅-铝复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant