CN110379929A - 偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管 - Google Patents

偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管 Download PDF

Info

Publication number
CN110379929A
CN110379929A CN201910597001.1A CN201910597001A CN110379929A CN 110379929 A CN110379929 A CN 110379929A CN 201910597001 A CN201910597001 A CN 201910597001A CN 110379929 A CN110379929 A CN 110379929A
Authority
CN
China
Prior art keywords
spin coating
perovskite nano
layer
emitting
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910597001.1A
Other languages
English (en)
Other versions
CN110379929B (zh
Inventor
朱俊
王健越
邱龙臻
魏雅平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Polytechnic University
Original Assignee
Hefei Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Polytechnic University filed Critical Hefei Polytechnic University
Priority to CN201910597001.1A priority Critical patent/CN110379929B/zh
Publication of CN110379929A publication Critical patent/CN110379929A/zh
Application granted granted Critical
Publication of CN110379929B publication Critical patent/CN110379929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

发明公开了一种偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管,包括ITO导电玻璃阳极、空穴注入层、空穴传输层、钙钛矿纳米线发光层、电子传输层、阴极,其特征在于,钙钛矿纳米线发光层制备步骤为:将合成好的钙钛矿纳米线分散在有机溶剂中,将纳米线分散液滴在远离旋涂中心的基板上旋涂成膜。本发明针对LCD背光源存在的问题,提供了偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管。该结构制作工艺简单,可用于LCD背光源中,提升器件发光效率。

Description

偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管
技术领域
本发明主要涉及偏振LED器件发光和纳米结构制作领域,具体是偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管。
背景技术
目前LCD器件是在液晶层的下面和背光源上面使用一层偏振片来制作偏振光源,而这层偏振片使得通过的光能量减少了近40%。如果使用自身就能够发射偏振光的LED背光源,那么不仅能减少光能的浪费,还能省略这一层偏振片,节约成本。因此需要开发简单低成本的偏振LED背光源材料和制作工艺。钙钛矿发光材料是近年来炙手可热的新型发光材料,有着发光效率高,颜色纯,成本低等优秀特性。近来钙钛矿薄膜发光二极管的最高外量子效率超过20%,最大亮度超过100000 cd/m2,说明其发光性能已经达到了一个很高的水平。纳米线/纳米棒材料因其各向异性的特征,出色的长径比而广泛应用于偏振发光领域,比如CdSe纳米棒,InP纳米线等等。但由于材料本身的成本和制作工艺的原因,这些材料的偏振发光器件的成本一直居高不下。而钙钛矿纳米线结合了钙钛矿材料和纳米线的优势,正好可以用来制作高效低廉的偏振发光器件。而制作钙钛矿纳米线偏振发光器件,关键在于如何使在有机溶剂中分散的钙钛矿纳米线在基底上完成有序排列,这关乎到器件发光的偏振度,并且也好兼顾发光性能。因此,如何使钙钛矿纳米线既能在基底上进行有序排列,又能获得不错的发光性能,这个问题急需解决。
发明内容
针对上述背景技术中存在的问题,本发明提供了一种发射偏振光的钙钛矿纳米线发光二极管。该结构制作工艺简单,可用于LCD背光源中,提升器件发光效率。
为达到上述目的,本发明所采用的技术方案为:
一种使用偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管,包括ITO导电玻璃阳极、空穴注入层、空穴传输层、钙钛矿纳米线发光层、电子传输层、阴极,其中钙钛矿纳米线发光层制备步骤为:将合成好的钙钛矿纳米线分散在有机溶剂中,将纳米线分散液滴在远离旋涂中心的基板上旋涂成膜。
所述钙钛矿纳米线选自CsPbClxBr3-x和CsPbBrxI3-x中的一种或两种,其中x=0~3。
所述空穴注入层为聚(3,4-乙烯二氧噻吩)- 聚苯乙烯磺酸(PEDOT:PSS)。
所述空穴传输层为聚[N,N'-双(4-丁基苯基)-N,N'-双(苯基)联苯胺](Poly-TPD)。
所述电子传输层为(1,3,5-三(2-N-苯基苯并咪唑基-苯)(TPBi)。
所述阴极为LiF和Al的复合电极。
所述的一种使用偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管,其制备方法为:
步骤1,以ITO导电玻璃作为器件的阳极;
步骤2,空穴注入层的制备,将PEDOT:PSS旋涂在阳极层ITO导电玻璃上,并退火处理;
步骤3,空穴传输层的制备,将Poly-TPD旋涂在PEDOT:PSS薄膜上,并退火处理;
步骤4,偏振发光层制备,将分散在有机溶剂中的钙钛矿纳米线滴在远离旋涂中心的Poly-TPD薄膜基板上,并旋涂;
步骤5,电子传输层和阴极的制备,将旋涂过钙钛矿纳米线的基板放入真空腔室中依次蒸镀TPBi、LiF和Al,完成后得到上述的钙钛矿纳米线偏振发光二极管。
步骤2和步骤3的退火温度为140度,时间为15分钟。
本发明的原理是:
将基片贴合在长方形塑料板上,放入旋涂机中旋涂,基片中心位置远离旋涂中心,将钙钛矿纳米线分散液滴在基板上旋涂,旋涂产生的离心力使纳米线沿离心力方向有序排列,将排列好的钙钛矿纳米线膜作为发光层制成LED,从而发射偏振光。
如图1所示,LCD器件是在液晶层的下面和背光源上面使用一层偏振片来制作偏振光源,而这层偏振片使得通过的光能量减少了近40%。如图2所示,使用自身就能够发射偏振光的LED背光源,不仅能减少光能的浪费,还能省略这一层偏振片,节约成本。
与已有技术相比,本发明的有益效果体现在:
本发明使用远离旋涂中心旋涂方法让钙钛矿纳米线有序排列,在ITO基板上制备得到有序排列的钙钛矿纳米线结构,并应用于LED器件中。该结构使得LED器件发射偏振光。相比其他用于偏振LED器件的微纳结构制作过程,该方法工艺简单,成本低,适合大规模生产使用。
附图说明
图1为常规LCD结构图,在液晶层的上下各有一层偏振片,非偏振背光源;
图2为使用偏振背光源的LCD结构图,减少了一层偏振片;
图3为纳米线偏心旋涂装置示意图;
图4为偏振钙钛矿纳米线发光二极管结构图;
图5为偏振LED器件的亮度—电压关系曲线图;
图6为有序排列的钙钛矿纳米线SEM图;
图7 为当偏振片偏振方向垂直或平行钙钛矿纳米线排列方向时的PL光谱图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例以本发明技术方案为基础,给出了详细实施方式和具体操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
参见图4,本发明的一种发射偏振光的钙钛矿纳米线发光二极管,包括导电玻璃阳极ITO、空穴注入层、空穴传输层、钙钛矿纳米线发光层、电子传输层、阴极。以下对各个层进行详细描述。
其中透明阳极层,采用无机材料,氧化铟锡(ITO);
空穴注入层采用聚(3,4-乙烯二氧噻吩)- 聚苯乙烯磺酸(PEDOT:PSS),可以改变ITO的功函数,有利于空穴注入;
空穴传输层采用聚[N,N'-双(4-丁基苯基)-N,N'-双(苯基)联苯胺](Poly-TPD),空穴传输能力很强,有利于空穴传输;
电子传输层采用(1,3,5-三(2-N-苯基苯并咪唑基-苯)(TPBi),更有利于电子传输;
阴极为金属和金属氟化物的复合电极;例如,所述阴极选用金属时,使用Al;选用金属氟化物时,使用LiF。
实施例2:
针对钙钛矿纳米线有序排列的方法,参见图3,将旋涂有PEDOT:PSS和Poly-TPD的基板贴在长方形塑料板上,将贴合好的塑料板中心放在旋涂机真空吸头上并吸住,将合成好的钙钛矿纳米线分散液滴在贴塑料板上的基板上旋涂成膜,转速为1300 rpm,时间为90 s,加速度为100;基板中心距离塑料板中心4cm;
实施例3:
针对偏振发光二极管的制作,参见图4,
1)ITO基板清洗和臭氧处理:用浓度5%的ITO清洗剂和去离子水超声冲洗ITO基板,然后将清洗后的基板用氮气吹干,在烘干后使用紫外臭氧清洗机清洁表面15 min;
2)空穴传输层的制备:
将PEDOT:PSS水溶液滴在清洗过的ITO基板上,放入旋涂机中旋涂,转速为4000 rpm,时间为60 s,加速度为500,旋涂完成后置于热台上140度退火15 min;之后再旋涂一层Poly-TPD氯苯溶液,参数与PEDOT:PSS相同;
3)偏振发光层制备:将2)所得的基板贴在长方形塑料板上,将贴合好的塑料板放在旋涂机真空吸头上并吸住,将合成好的钙钛矿纳米线分散液滴在贴塑料板上的基板上旋涂成膜,转速为1300 rpm,时间为90 s,加速度为100;
4)偏振LED器件制备:将3)所得的基板与掩膜板贴合后,放入真空镀膜机腔室内,在真空环境中依次蒸镀偏振LED器件的有机层TPBi/LiF和电极层Al;
5)封装:将经4)制备的LED器件从真空腔室移至手套箱(手套箱参数为氧含量<0.1ppm,水含量<0.01ppm)中,使用紫外固化胶和环氧树脂盖板对器件进行封装,隔绝外界的水和氧气。
所得偏振发光二极管的偏振LED器件的亮度—电压关系曲线图、有序排列的钙钛矿纳米线SEM图、当偏振片偏振方向垂直或平行钙钛矿纳米线排列方向时的PL光谱图分别为图5、6、7所示。

Claims (8)

1.偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管,包括ITO导电玻璃阳极、空穴注入层、空穴传输层、钙钛矿纳米线发光层、电子传输层、阴极,其特征在于,钙钛矿纳米线发光层制备步骤为:将合成好的钙钛矿纳米线分散在有机溶剂中,将纳米线分散液滴在远离旋涂中心的基板上旋涂成膜。
2.根据权利要求1所述的偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管,其特征在于,所述钙钛矿纳米线选自CsPbClxBr3-x和CsPbBrxI3-x中的一种或两种,其中x=0~3。
3.根据权利要求1所述的偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管,其特征在于,所述空穴注入层为聚(3,4-乙烯二氧噻吩)- 聚苯乙烯磺酸(PEDOT:PSS)。
4.根据权利要求1所述的偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管,其特征在于,所述空穴传输层为聚[N,N'-双(4-丁基苯基)-N,N'-双(苯基)联苯胺](Poly-TPD)。
5.根据权利要求1所述的偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管,其特征在于,所述电子传输层为(1,3,5-三(2-N-苯基苯并咪唑基-苯)(TPBi)。
6.根据权利要求1所述的偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管,其特征在于,所述阴极为LiF和Al的复合电极。
7.权利要求1所述的偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管的制备方法,其特征在于,包括以下步骤:
步骤1,以ITO导电玻璃作为器件的阳极;
步骤2,空穴注入层的制备,将PEDOT:PSS旋涂在阳极层ITO导电玻璃上,并退火处理;
步骤3,空穴传输层的制备,将Poly-TPD旋涂在PEDOT:PSS薄膜上,并退火处理;
步骤4,偏振发光层制备,将分散在有机溶剂中的钙钛矿纳米线滴在远离旋涂中心的Poly-TPD薄膜基板上,并旋涂;
步骤5,电子传输层和阴极的制备,将旋涂过钙钛矿纳米线的基板放入真空腔室中依次蒸镀TPBi、LiF和Al,完成后得到上述的钙钛矿纳米线偏振发光二极管。
8.如权利要求7所述的偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管,其特征在于,步骤2和步骤3的退火温度为140度,时间为15分钟。
CN201910597001.1A 2019-07-04 2019-07-04 偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管 Active CN110379929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910597001.1A CN110379929B (zh) 2019-07-04 2019-07-04 偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910597001.1A CN110379929B (zh) 2019-07-04 2019-07-04 偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管

Publications (2)

Publication Number Publication Date
CN110379929A true CN110379929A (zh) 2019-10-25
CN110379929B CN110379929B (zh) 2022-05-20

Family

ID=68251798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910597001.1A Active CN110379929B (zh) 2019-07-04 2019-07-04 偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管

Country Status (1)

Country Link
CN (1) CN110379929B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111031624A (zh) * 2019-12-27 2020-04-17 华中科技大学 一种稳定混合卤素钙钛矿材料电致发光光谱的方法及应用
CN111724699A (zh) * 2020-06-12 2020-09-29 福州大学 一种nled像素设置及修复方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150123105A1 (en) * 2013-11-01 2015-05-07 The Board Of Trustees Of The Leland Stanford Junior University Off-center spin-coating and spin-coated apparatuses
CN109637970A (zh) * 2018-12-07 2019-04-16 北京理工大学 一种偏心式真空辅助旋涂垂直深孔内壁绝缘层制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150123105A1 (en) * 2013-11-01 2015-05-07 The Board Of Trustees Of The Leland Stanford Junior University Off-center spin-coating and spin-coated apparatuses
CN109637970A (zh) * 2018-12-07 2019-04-16 北京理工大学 一种偏心式真空辅助旋涂垂直深孔内壁绝缘层制作方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDREW BARNABAS WONG ET AL.: "Growth and Anion Exchange Conversion of CH3NH3PbX3 Nanorod Arrays for Light-Emitting Diodes", 《NANO LETTERS》 *
JUAN HE等: "Polarized Emission from Stretch-Aligned Perovskite Nanorods-Polymer Composites with High Stability", 《SID INTERNATIONAL SYMPOSIUM DIGEST OF TECHNOLOGY PAPERS》 *
LU KANG等: "Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating", 《JOURNAL OF APPLIED PHYSICS》 *
YONGBO YUAN等: "Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method", 《NATURE COMMUNICATIONS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111031624A (zh) * 2019-12-27 2020-04-17 华中科技大学 一种稳定混合卤素钙钛矿材料电致发光光谱的方法及应用
CN111031624B (zh) * 2019-12-27 2021-04-20 华中科技大学 一种稳定混合卤素钙钛矿材料电致发光光谱的方法及应用
CN111724699A (zh) * 2020-06-12 2020-09-29 福州大学 一种nled像素设置及修复方法
CN111724699B (zh) * 2020-06-12 2021-07-06 福州大学 一种nled像素设置及修复方法

Also Published As

Publication number Publication date
CN110379929B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
Liu et al. Interfacial engineering for highly efficient quasi-two dimensional organic–inorganic hybrid perovskite light-emitting diodes
CN111048690B (zh) 蓝光钙钛矿膜及蓝光钙钛矿发光二极管
CN109411614B (zh) 一种有机无机复合型钙钛矿发光二极管器件及其制备方法
CN101080121A (zh) 一种有机电致发光器件及其制备方法
CN105261707A (zh) 一种新型量子点发光器件
CN109980095B (zh) 一种有效提升发光器件效率的钙钛矿膜层、器件和制备方法
CN101128074A (zh) 一种有机电致发光器件及其制备方法
CN110148673B (zh) 一种改性pedot:pss、制备方法和石墨烯基钙钛矿量子点发光二极管的制备方法
CN109346616B (zh) 一种白光钙钛矿型电致发光器件以及制备方法
CN110379929A (zh) 偏心旋涂取向的发射偏振光的钙钛矿纳米线发光二极管
CN113421966A (zh) 一种聚环氧乙烷掺杂的准二维钙钛矿薄膜及其制备方法与发光器件
Takada et al. Inverted organic light-emitting diodes with an electrochemically deposited zinc oxide electron injection layer
CN102157659A (zh) 一种全湿法制备的聚合物pled器件及其制备方法
CN109742254A (zh) 一种高效率的oled微显示器件及制造方法
Liu et al. Effect of chloride Ion concentrations on luminescence peak blue shift of light-emitting diode using anti-solvent extraction of quasi-two-dimensional perovskite
JP4286507B2 (ja) 配向した発光性ポリマーブレンド、フィルム及びデバイス
CN105374952A (zh) 一种oled器件的制造方法及oled器件和应用
CN112968137B (zh) 一种钙钛矿发光二极管及其制备方法
JP2013089501A (ja) 有機エレクトロルミネッセンス素子
CN109545914B (zh) 一种可通过调节纳米叠层比例来调节波长的多层膜led及其制备方法
CN113013367A (zh) 钙钛矿发光二极管及其pedot:pss层的修饰方法
Qiu et al. Flexible organic light-emitting diodes with poly-3, 4-ethylenedioxythiophene as transparent anode
WO2021103061A1 (zh) 发光器件的制备方法
CN109860440A (zh) 一种基于摩擦工艺的钙钛矿偏振发光二极管的制备方法
CN113948665A (zh) 膜层的制备方法、发光二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant