CN110373632B - 具有纳米晶复合涂层的压铸铝模具及制备方法 - Google Patents

具有纳米晶复合涂层的压铸铝模具及制备方法 Download PDF

Info

Publication number
CN110373632B
CN110373632B CN201910589883.7A CN201910589883A CN110373632B CN 110373632 B CN110373632 B CN 110373632B CN 201910589883 A CN201910589883 A CN 201910589883A CN 110373632 B CN110373632 B CN 110373632B
Authority
CN
China
Prior art keywords
layer
die
resistant
nanometers
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910589883.7A
Other languages
English (en)
Other versions
CN110373632A (zh
Inventor
李建军
范鹏
方天明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikd Co ltd
Original Assignee
Ikd Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikd Co ltd filed Critical Ikd Co ltd
Priority to CN201910589883.7A priority Critical patent/CN110373632B/zh
Publication of CN110373632A publication Critical patent/CN110373632A/zh
Application granted granted Critical
Publication of CN110373632B publication Critical patent/CN110373632B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了具有纳米晶复合涂层的压铸铝模具及制备方法,模具本体和模具表面的涂层,涂层包括由内往外分布的具有硬度梯度的结合层、过渡层、支撑层、增硬层和耐温耐腐蚀层;结合层为纯Cr层,过渡层为CrN层,支撑层为CrN和AlCrSiN的复合涂层,增硬层为AlCrSiN和AlCrSiON的交替层,耐温耐腐蚀层为AlCrSiON和AlCrSiO的交替层;涂层从结构上为多种纳米晶复合氮化物和氧化物涂层材料的组合,成分上具有渐变特点,降低涂层的内应力和提高涂层的韧性,可以较好克服现有压铸铝模具耐磨耐温耐腐蚀不足的缺点,大幅度提高压铸铝模具的使用寿命和适应性。

Description

具有纳米晶复合涂层的压铸铝模具及制备方法
技术领域
本发明涉及模具薄膜涂层的技术领域,尤其涉及纳米晶复合涂层及具有纳米晶复合涂层的压铸铝模具的制备方法。
背景技术
压铸模具是铸造金属零部件的一种重要工具,我国是名符其实的压铸大国。压铸的基本工艺过程是金属液先低速或高速铸造充型进模具的型腔内,模具有活动的型腔面,它随着金属液的冷却过程加压锻造,既消除毛坯的缩孔缩松缺陷,也使毛坯的内部组织达到锻态的破碎晶粒。
压铸生产时,模具反复受激冷激热的作用,成型表面与其内部产生变形,相互牵扯而出现反复循环的热应力,导致组织结构二损伤和丧失韧性,引发微裂纹的出现,并继续扩展。有熔融的金属液挤入,加上反复的机械应力都使裂纹加速扩展。此外在压力的作用下,模具会在最薄弱处萌生裂纹,尤其是模具成型面上的划线痕迹或电加工痕迹未被打磨光,或是成型的清角处均会最先出现细微裂纹。当晶界存在脆性相或晶粒粗大时,即容易断裂。
常用的压铸合金有锌合金、铝合金、镁合金和铜合金,也有纯铝压铸的,Zn、Al、Mg是较活泼的金属元素,它们与模具材料有较好的亲和力,特别是铝易咬模。当模具硬度较高时,则抗蚀性较好,而成型表面若有软点,则对抗冲蚀性能不利。
为了提高模具的寿命,一种方法是改进模具的结构和材料,主要是采用更高级别的钢材和采用更优化的热处理参数,提高模具的硬度和耐温耐腐蚀性能。但由于选择有限,不能大幅度提高模具的使用寿命。第二种方法是在不影响模具基体性能的条件下采用表面处理方法提升表面的性能,具有操作简单,容易实现和性能优异等特点,在实际生产中获得了一定的应用。
氮化、渗金属和熔覆等技术被用于压铸模具的表面强化,有效的提高了模具的寿命。特别是离子氮化工艺获得了一定的应用。离子渗氮作为强化金属表面的一种化学热处理方法,广泛适用于铸铁、碳钢、合金钢、不锈钢及钛合金等。零件经离子渗氮处理后,可显著提高材料表面的硬度,使其具有高的耐磨性、疲劳强度,抗蚀能力及抗烧伤性等。但氮化层硬度低,耐高温性能有限。
渗金属主要包括渗硼和渗钒(T.D法)等,通过渗金属过程可以在模具的表面形成一层高硬度的硼化物层和碳化物层;利用硼化物和碳化物的高硬度和高耐热性提高模具的使用性能。但其制备温度过高,经常达到900℃以上,导致模具变形影响正常使用。
激光熔覆是指以不同的添料方式在被熔覆基体表面上放置被选择的涂层材料经激光辐照使之和基体表面薄层同时熔化,并快速凝固后形成稀释度极低,与基体成冶金结合的表面涂层,显著改善基层表面的耐磨、耐蚀、耐热、抗氧化及电气特性的工艺方法,从而达到表面改性或修复的目的,既满足了对材料表面特定性能的要求,又节约了大量的贵重元素。但激光熔覆不能处理复杂的表面,对小孔内壁处理也存在难以克服的困难,导致其在复杂模具上难以应用。
物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源--固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。
物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。电弧离子镀具有离化率高、附着力强,在刀具涂层中已经获得了广泛的应用。
在压铸模具表面采用PVD涂层技术可以制备超硬涂层,大幅度提高压铸模具表面的硬度和耐高温性能,在模具表面处理中具有广阔的应用前景。将超硬纳米结构涂层材料镀于模具表面,使模具基体保持较高的强度,镀于表面的涂层又能发挥其“超硬、强韧、耐温、耐磨”的效果,赋予模具高硬度、高耐温及低导热等新特性,大幅度提高模具的使用寿命。
发明内容
本发明所要解决的技术问题是提供一种具有耐温耐磨和耐铝水腐蚀的具有纳米晶复合涂层的压铸铝模具及制备方法。
本发明解决上述技术问题所采用的技术方案为:具有纳米晶复合涂层的压铸铝模具,其特征在于模具本体和模具表面的涂层,所述的涂层包括由内往外分布的具有硬度梯度的结合层、过渡层、支撑层、增硬层和耐温耐腐蚀层;所述的结合层为纯Cr层,所述的过渡层为CrN层,所述的支撑层为CrN和AlCrSiN的复合涂层,所述的增硬层为AlCrSiN和AlCrSiON的交替层,所述的耐温耐腐蚀层为AlCrSiON和AlCrSiO的交替层。
本发明进一步的饿优选方案为:所述的结合层、过渡层、支撑层、增硬层和耐温耐腐蚀层的总厚度为0.291-11.44微米。
本发明进一步的优选方案为:所述的过渡层的硬度为14-16GPa,所述的支撑层的硬度为28-32GPa,所述的增硬层的硬度为34-36GPa,所述的耐温耐腐蚀层的硬度为28-32GPa。
本发明进一步的优选方案为:所述的支撑层中CrN层的厚度为4-10纳米,支撑层中的AlCrSiN层的厚度为4-40纳米,支撑层的调制周期为8-50纳米。
本发明进一步的优选方案为:所述的增硬层的厚度为100-2400纳米,所述的增硬层中AlCrSiN层的厚度为50-400纳米,增硬层中的AlCrSiON层的厚度为50-400纳米,增硬层的调制周期为100-800纳米。
本发明进一步的优选方案为:所述的耐温耐腐蚀层的厚度为100-2700纳米,所述的耐温耐腐蚀层中的AlCrSiON层的厚度为50-500纳米,AlCrSiO层的厚度为50-400纳米,耐温耐腐蚀层的调制周期为100-900纳米。
另一主题:具有纳米晶复合涂层的压铸铝模具的制备方法,其特征在于包括如下步骤:1)在450~550℃、氩气和氢气环境中,对压铸铝模具经过等离子刻蚀;2)在0.02~0.4Pa,-800V~-1000V条件下,从Cr靶上将Cr高温蒸发并在高偏压作用下高速运动到模具表面,并沉积在模具的表面,形成1-40纳米厚的纯Cr结合层;3)在0.5~2Pa,-50V~-300V条件下,通入氮气与Cr反应,在模具表面沉积生成40-2000纳米厚的CrN过渡层;4)在2~5Pa,-100~-250V条件下,AlCrSi靶上释放AlCrSi与CrN过渡层反应,在模具表面沉积生成40-2000纳米厚的CrN/AlCrSiN支撑层;5)在3~5Pa,-100~-300V条件下,控制氧气和氮气的通断,在模具表面沉积生成100-2400纳米厚的AlCrSiN/AlCrSiON增硬层;6)在3~5Pa,-50~-200V条件下,控制氧气和氮气的通断,在模具表面沉积生成100-2700纳米厚的AlCrSiON/AlCrSiO耐温耐腐蚀层;7)制备结束后静置冷却,得到具有纳米晶复合涂层的压铸铝模具。
本发明进一步的优选方案为:步骤5)中先仅通入氮气以形成AlCrSiN层,然后再通入氧气与AlCrSiN反应,形成AlCrSiON层,循环上述步骤,则会形成AlCrSiN和AlCrSiON的交替层。
本发明进一步的优选方案为:在步骤6)中,同时通入氮气和氧气时,会形成AlCrSiON层,当只通入氧气时,则会形成AlCrSiO层。
与现有技术相比,本发明的优点是1、本发明采用多种涂层材料反应生成纳米晶复合涂层材料,该涂层从内到外具有硬度梯度,且涂层和基体为冶金结合,具有良好的附着力;2、本发明将高硬度涂层和高耐温涂层结合,使涂层不但具有很好的耐磨性能,同时其耐温耐腐蚀性能大幅度提高,可以提高涂层抗铝水冲蚀的能力;3、与常规电弧离子镀技术相比,本发明采用多层结构技术抑制了柱状晶的生长,提高涂层的致密度,这不但提高了涂层的耐腐蚀性,同时耐磨性也大幅度提高;4、本发明将AlCrSiN涂层中通过加氧改变涂层的成分和结构实现了一种靶材多种涂层结构的制备,在一种复合涂层中实现三种涂层材料的复合;且所制备AlCrSiN基纳米晶多层复合涂层压铸铝模具有良好的结合力和耐磨耐温耐腐蚀性能,可以保证实现压铸铝模具长期稳定工作,加工质量稳定,加工效率提高,降低了厂家的生产成本5、本发明采用电弧离子镀技术与现行涂层设备相近,同时涂层设备结构简单,易于控制,工业应用前景良好。
附图说明
图1为制备纳米晶复合涂层的装置示意图;
图2为纳米晶复合涂层的结构示意图;
图3为纳米晶复合涂层的截面形貌图;
图4为纳米晶复合涂层的表面形貌。
具体实施方式
以下结合具体的实施例对本发明的技术方案作进一步说明:
具有纳米晶复合涂层的压铸铝模具,包括模具本体1和模具表面的涂层,如图2所示,涂层包括由内往外分布的具有硬度梯度的结合层2、过渡层3、支撑层4、增硬层5和耐温耐腐蚀层6;结合层2为纯Cr层,过渡层3为CrN层,支撑层4为CrN和AlCrSiN的复合涂层,增硬层5为AlCrSiN和AlCrSiON的交替层,耐温耐腐蚀层6为AlCrSiON和AlCrSiO的交替层。
过渡层3的硬度为14-16GPa,支撑层4的硬度为28-32GPa,增硬层5的硬度为34-36GPa,耐温耐腐蚀层6的硬度为28-32GPa。
结合层2、过渡层3、支撑层4、增硬层5和耐温耐腐蚀层6的总厚度为0.291-11.44微米。其中,支撑层4中CrN层的厚度为4-10纳米,支撑层中4的AlCrSiN层的厚度为4-40纳米,支撑层4的调制周期为8-50纳米。
增硬层5的厚度为100-2400纳米,增硬层5中AlCrSiN层的厚度为50-400纳米,增硬层5中的AlCrSiON层的厚度为50-400纳米,增硬层5的调制周期为100-800纳米。
耐温耐腐蚀层6的厚度为100-2700纳米,耐温耐腐蚀层6中的AlCrSiON层的厚度为50-500纳米,耐温耐腐蚀层6中的AlCrSiO层的厚度为50-400纳米,耐温耐腐蚀层6的调制周期为100-900纳米。
具有纳米晶复合涂层的压铸铝模具的制备方法,如下各实施例具体展开:
实施例1:1)在450、℃氩气和氢气环境中,对压铸铝模具经过等离子刻蚀;2)然后在0.02Pa,-800V条件下,从Cr靶上将Cr高温蒸发并在高偏压作用下,使其高速运动到模具表面,以在模具表面沉积1纳米厚的过渡金属Cr结合层;
3)在0.5Pa,-50V条件下,通入氮气与Cr反应,在模具表面沉积生成50纳米厚的CrN过渡层;
4)在2Pa,-100V条件下,在AlCrSi靶上释放AlCrSi与CrN过渡层反应,在模具表面沉积生成40纳米CrN/AlCrSiN支撑层;
5)在3Pa,-100V条件下,控制氧气和氮气的通断,以在模具表面沉积生成100纳米厚的AlCrSiN/AlCrSiON增硬层;
6)在3Pa,-50V条件下,控制氧气和氮气的通断,以在模具表面沉积生成100纳米厚的AlCrSiON/AlCrSiO耐温层。
7)制备结束后静置冷却,在压铸铝模具表面得到纳米晶复合涂层,其总厚度控制在0.291微米,纳米晶复合涂层的硬度为30GPa。
实施例2:1)在550、℃氩气和氢气环境中,对压铸铝模具经过等离子刻蚀结束后,2)在0.4Pa,-1000V条件下,从Cr靶上将Cr高温蒸发并在高偏压作用下,使其高速运动到模具表面,以在模具表面沉积生成40纳米厚的过渡金属Cr结合层;
3)在2Pa,-300V条件下,通入氮气与Cr反应,在模具表面沉积生成2000纳米厚的CrN过渡层;
4)在2.5Pa,-250V条件下,在AlCrSi靶上释放AlCrSi与CrN过渡层反应,以在模具表面沉积生成2000纳米厚的CrN/AlCrSiN支撑层;
5)在3Pa,-300V条件下,控制氧气和氮气的通断,以在模具表面沉积生成2400纳米厚的AlCrSiN/AlCrSiON增硬层;
6)在5Pa,-200V条件下,控制氧气和氮气的通断,以在模具表面沉积生成2700纳米厚的AlCrSiON/AlCrSiO耐温层。
7)制备结束后静置冷却,在压铸铝模具表面得到纳米晶复合涂层,其总厚度控制在11.44微米,纳米晶复合涂层的硬度为31GPa。
实施例3:1)在500℃、氩气和氢气环境中,对压铸铝模具经过等离子刻蚀结束后,2)在0.2Pa,-800V条件下,从Cr靶上将Cr高温蒸发并在高偏压作用下,使其高速运动到模具表面,以在模具表面沉积生成20纳米厚的过渡金属Cr结合层;
3)在1Pa,-100V条件下,通入氮气与Cr反应,在模具表面沉积生成1000纳米厚的CrN过渡层;
4)在3Pa,-150V条件下,在AlCrSi靶上释放AlCrSi与CrN过渡层反应,以在模具表面沉积生成1000纳米厚的CrN/AlCrSiN支撑层;
5)在4Pa,-200V条件下,控制氧气和氮气的通断,以在模具表面沉积生成1000纳米厚的AlCrSiN/AlCrSiON增硬层;
6)在4Pa,-100V条件下,控制氧气和氮气的通断,以在模具表面沉积生成1000纳米厚的AlCrSiON/AlCrSiO耐温耐腐蚀层;
7)制备结束后静置冷却,在压铸铝模具表面得到纳米晶复合涂层,其总厚度在控制在4.020微米,纳米晶复合涂层硬度为29GPa。
实施例4:1)在500℃、氩气和氢气环境中,对压铸铝模具经过等离子刻蚀结束后,2)在0.2Pa,-800V条件下,从Cr靶上将Cr高温蒸发并在高偏压作用下,使其高速运动到模具表面,以在模具表面沉积10纳米厚的过渡金属Cr结合层;
3)在0.5Pa,-50V条件下,通入氮气与Cr反应,在模具表面沉积生成500纳米厚的CrN过渡层;
4)在2Pa,-100V条件下,在AlCrSi靶上释放AlCrSi与CrN过渡层反应,以在模具表面沉积生成500纳米厚的CrN/AlCrSiN支撑层;
5)在5Pa,-300V条件下,控制氧气和氮气的通断,以在模具表面沉积生成2400纳米AlCrSiN/AlCrSiON增硬层;
6)在3Pa,-200V条件下,控制氧气和氮气的通断,以在模具表面沉积生成100纳米AlCrSiON/AlCrSiO耐温层;
7)制备结束后静置冷却,在压铸铝模具表面得到纳米晶复合涂层,其总厚度在控制在3.510微米,纳米晶复合涂层硬度为32GPa。
需要说明是,上述各实施例中,可以在步骤5)中先仅通入氮气以形成AlCrSiN层,然后再通入氧气与AlCrSiN反应,形成AlCrSiON层,循环上述步骤,则会形成AlCrSiN和AlCrSiON的交替层。
在步骤6)中,同时通入氮气和氧气时,会形成AlCrSiON层,当只通入氧气时,则会形成AlCrSiO层。重复上述步骤,则会形成AlCrSiON/AlCrSiO的交替层。
制备具有纳米晶复合涂层的压铸铝模具时,用到如图1所述的制备装置,该装置的真空室15由炉壁围成,真空室15尺寸为500x500x500mm。该真空室15上设有抽真空口13,抽真空机组通过抽真空口13对真空室15进行抽真空。真空室15的中心是加热器17,加热功率为10-30千瓦,以提高加热效率。三个电弧靶分三列安装在炉壁上,每个一组,共三组。分别安装Cr靶11、第一AlCrSi靶12和第二AlCrSi靶14,需要加工的压铸铝模具装在工件架16上。该布局使真空室15中等离子体密度大幅度增加,工件完全浸没在等离子体中。使涂层沉积速率、硬度、附着力得到较大的提高。由于对靶结构进行了优化,磁场分布更均匀,使电弧在靶面上均匀燃烧,提高了纳米晶复合涂层的均匀性。
以上对本发明所提供的具有纳米晶复合涂层的压铸铝模具及制备方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明及核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (3)

1.具有纳米晶复合涂层的压铸铝模具,其特征在于模具本体和模具表面的涂层,所述的涂层包括由内往外分布的具有硬度梯度的结合层、过渡层、支撑层、增硬层和耐温耐腐蚀层;所述的结合层为纯Cr层,所述的过渡层为CrN层,所述的支撑层为CrN和AlCrSiN的复合涂层,所述的增硬层为AlCrSiN和AlCrSiON的交替层,所述的耐温耐腐蚀层为AlCrSiON和AlCrSiO的交替层;
所述的结合层、过渡层、支撑层、增硬层和耐温耐腐蚀层的总厚度为0.291-11.44微米;
所述的过渡层的硬度为14-16GPa,所述的支撑层的硬度为28-32GPa,所述的增硬层的硬度为34-36GPa,所述的耐温耐腐蚀层的硬度为28-32GPa;
所述的增硬层的厚度为100-2400纳米,所述的增硬层中AlCrSiN层的厚度为50-400纳米,增硬层中的AlCrSiON层的厚度为50-400纳米,增硬层的调制周期为100-800纳米;
所述的耐温耐腐蚀层的厚度为100-2700纳米,所述的耐温耐腐蚀层中的AlCrSiON层的厚度为50-500纳米,所述的耐温耐腐蚀层重的AlCrSiO层的厚度为50-400纳米,耐温耐腐蚀层的调制周期为100-900纳米。
2.根据权利要求1所述的具有纳米晶复合涂层的压铸铝模具,其特征在于所述的支撑层中CrN层的厚度为4-10纳米,支撑层中的AlCrSiN层的厚度为4-40纳米,支撑层的调制周期为8-50纳米。
3.具有纳米晶复合涂层的压铸铝模具的制备方法,其特征在于包括如下步骤:
1)在450~550℃、氩气和氢气环境中,对压铸铝模具经过等离子刻蚀;
2)在0.02~0.4Pa,-800V~-1000V条件下,从Cr靶上将Cr高温蒸发并在高偏压作用下高速运动到模具表面,并沉积在模具的表面,形成1-40纳米厚的纯Cr结合层;
3)在0.5~2Pa,-50V~-300V条件下,通入氮气与Cr反应,在模具表面沉积生成40-2000纳米厚的CrN过渡层;
4)在2~5Pa,-100~-250V条件下,AlCrSi靶上释放AlCrSi与CrN过渡层反应,在模具表面沉积生成40-2000纳米厚的CrN/AlCrSiN支撑层;
5)在3~5Pa,-100~-300V条件下,控制氧气和氮气的通断,在模具表面沉积生成100-2400纳米厚的AlCrSiN/AlCrSiON增硬层;
先仅通入氮气以形成AlCrSiN层,然后再通入氧气与AlCrSiN反应,形成AlCrSiON层,循环上述步骤,则会形成AlCrSiN和AlCrSiON的交替层;
6)在3~5Pa,-50~-200V条件下,控制氧气和氮气的通断,在模具表面沉积生成100-2700纳米厚的AlCrSiON/AlCrSiO耐温耐腐蚀层;
同时通入氮气和氧气时,会形成AlCrSiON层,当只通入氧气时,则会形成AlCrSiO层;
7)制备结束后静置冷却,得到具有纳米晶复合涂层的压铸铝模具。
CN201910589883.7A 2019-07-02 2019-07-02 具有纳米晶复合涂层的压铸铝模具及制备方法 Active CN110373632B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910589883.7A CN110373632B (zh) 2019-07-02 2019-07-02 具有纳米晶复合涂层的压铸铝模具及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910589883.7A CN110373632B (zh) 2019-07-02 2019-07-02 具有纳米晶复合涂层的压铸铝模具及制备方法

Publications (2)

Publication Number Publication Date
CN110373632A CN110373632A (zh) 2019-10-25
CN110373632B true CN110373632B (zh) 2024-05-03

Family

ID=68251630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910589883.7A Active CN110373632B (zh) 2019-07-02 2019-07-02 具有纳米晶复合涂层的压铸铝模具及制备方法

Country Status (1)

Country Link
CN (1) CN110373632B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111014616B (zh) * 2019-12-26 2022-12-02 爱柯迪股份有限公司 HfZrWMoVNbN/CrSiN高熵合金纳米复合涂层压铸铝模具及其制备方法
CN112626468B (zh) * 2021-03-09 2021-06-08 爱柯迪股份有限公司 搅拌摩擦焊头用超硬自润滑纳米复合涂层及制备方法
CN113174562A (zh) * 2021-03-17 2021-07-27 广东工业大学 一种自组织纳米结构氧氮化物硬质涂层及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106183A (ja) * 2003-12-09 2004-04-08 Hitachi Tool Engineering Ltd 硬質皮膜被覆工具及びその製造方法
CN104213075A (zh) * 2014-09-22 2014-12-17 武汉大学 一种AlTiSiN-AlCrSiN纳米晶-非晶多层复合超硬强韧涂层材料及制备方法
CN210506503U (zh) * 2019-07-02 2020-05-12 爱柯迪股份有限公司 具有纳米晶复合涂层的压铸铝模具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106183A (ja) * 2003-12-09 2004-04-08 Hitachi Tool Engineering Ltd 硬質皮膜被覆工具及びその製造方法
CN104213075A (zh) * 2014-09-22 2014-12-17 武汉大学 一种AlTiSiN-AlCrSiN纳米晶-非晶多层复合超硬强韧涂层材料及制备方法
CN210506503U (zh) * 2019-07-02 2020-05-12 爱柯迪股份有限公司 具有纳米晶复合涂层的压铸铝模具

Also Published As

Publication number Publication date
CN110373632A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN110373632B (zh) 具有纳米晶复合涂层的压铸铝模具及制备方法
CN108642449B (zh) 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法
US9133543B2 (en) Coating material for aluminum die casting mold and method for manufacturing the same
CN109207938B (zh) Ti/TiN/TiAlSiN/TiAlCrSiN纳米多层梯度膜及其制备方法
CN111270203B (zh) 一种用于压铸模具的AlCrNbSiTiCN高熵合金纳米复合涂层及其制备方法
CN104911552B (zh) 一种热挤压模具渗镀复合表面强化方法
CN104213075A (zh) 一种AlTiSiN-AlCrSiN纳米晶-非晶多层复合超硬强韧涂层材料及制备方法
KR20140019947A (ko) 알루미늄 다이캐스팅 금형용 코팅재 및 이의 제조방법
CN112323013A (zh) 一种在钛合金表面制备高膜-基结合力复合涂层的方法
CN111321381B (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
CN210506503U (zh) 具有纳米晶复合涂层的压铸铝模具
CN110724923A (zh) 一种表面梯度纳米结构离子注渗碳化钨层制备方法
CN112746253A (zh) 一种钢基表面复合改性层及其制备方法
CN111519145A (zh) 压铸模具表面AlCrYN/AlCrSiN纳米复合梯度涂层及其制备方法
JP2015024625A (ja) 成形用金型及びその製造方法
CN111719152B (zh) 一种NbC/Fe2B复合梯度耐磨涂层及其制备方法
JP2010229463A (ja) 硬質皮膜被覆部材およびその製造方法
CN110484870B (zh) 一种多组元氮化物硬质涂层及其制备方法和应用
CN115627445B (zh) 一种铝压铸模具抗黏附高熵硼化物复合涂层及其制备方法
CN111235533B (zh) 一种硬质合金铣刀的AlCrNbSiTiBC高温自润滑复合涂层及其制备方法
JP5389474B2 (ja) 硬質被膜を有する球状化黒鉛鋳鉄材、プレス用金型、及び硬質被膜を有する球状化黒鉛鋳鉄材の製造方法
CN110904413A (zh) 铝合金型材热挤压模具表面超硬涂层加工方法
CN111014616B (zh) HfZrWMoVNbN/CrSiN高熵合金纳米复合涂层压铸铝模具及其制备方法
CN114632910A (zh) 一种压铸铝模具表面的纳米复合多元碳氧化物涂层的制备方法
CN213037833U (zh) 压铸模具表面AlCrYN-AlCrSiN纳米复合梯度涂层及压铸模具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant