CN110364606A - 一种紫外发光二极管外延结构及其制作方法 - Google Patents

一种紫外发光二极管外延结构及其制作方法 Download PDF

Info

Publication number
CN110364606A
CN110364606A CN201910679874.7A CN201910679874A CN110364606A CN 110364606 A CN110364606 A CN 110364606A CN 201910679874 A CN201910679874 A CN 201910679874A CN 110364606 A CN110364606 A CN 110364606A
Authority
CN
China
Prior art keywords
layer
source
thickness
flow
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910679874.7A
Other languages
English (en)
Inventor
农明涛
庄家铭
贺卫群
郭嘉杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Nationstar Semiconductor Co Ltd
Original Assignee
Foshan Nationstar Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Nationstar Semiconductor Co Ltd filed Critical Foshan Nationstar Semiconductor Co Ltd
Priority to CN201910679874.7A priority Critical patent/CN110364606A/zh
Publication of CN110364606A publication Critical patent/CN110364606A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种紫外发光二极管外延结构及其制作方法,所述外延结构包括依次设于衬底上的AlN层、N型AlGaN层、有源层、P型超晶格阻挡层和P型GaN层,所述P型超晶格阻挡层由第一非掺杂层、第一Mg层、第二非掺杂层和第二Mg层交替形成,第一非掺杂层中Al的含量与第二非掺杂层中Al的含量不等。本发明在有源层和P型GaN层之间设置一层P型超晶格阻挡层,不仅起到阻挡电流,提高电流扩展的作用,还可以提高P型GaN层的空穴浓度及其迁移率,为有源层提供更多的空穴‑电子对,提高复合几率,提升亮度,从而提高外延结构的光电性能。

Description

一种紫外发光二极管外延结构及其制作方法
技术领域
本发明涉及发光二极管技术领域,尤其涉及一种紫外发光二极管外延结构及其制作方法。
背景技术
AlGaN半导体材料具有很宽的直接带隙,禁带宽度从3.4~6.2eV连续可调,使其光响应波段覆盖从近紫外(UVA)到深紫外(UVC)。相比于传统紫外光源,如汞灯和氙灯,紫外LED具有无汞污染、波长可控、体积小、耗电低、寿命长等优点,在高显色指数白光照明、防伪识别、紫外聚合物固化、杀菌消毒、医疗卫生、水与空气净化、高密度光学数据存贮等领域都有着广阔的应用前景和巨大的市场需求。
相较于成熟的GaN基蓝光外延结构,紫外发光二极管外延结构的发光效率普遍偏低,且发光效率随波长的减小急剧下降。
现有的紫外发光二极管外延结构,由于Mg受主的激活能随着Al组分的增加而增大,在高Al组分下p层Mg掺杂浓度降低和活化效率下降,从而降低外延结构的发光效率。此外,外延结构的晶体质量差,Mg容易集簇在一起,形成杂质中心,不利于掺杂浓度的提升。如何制备结晶质量好、发光功率高的紫外发光二极管外延结构,是当前急需解决的问题。
发明内容
本发明所要解决的技术问题在于,提供一种紫外发光二极管外延结构,提高p层的掺杂浓度,提高外延结构的发光效率。
本发明还提供了一种紫外发光二极管外延结构的制作方法,工艺简单,成本低。
为了解决上述问题,本发明提供了一种紫外发光二极管外延结构,包括依次设于衬底上的AlN层、N型AlGaN层、有源层、P型超晶格阻挡层和P型GaN层,所述P型超晶格阻挡层由第一非掺杂层、第一Mg层、第二非掺杂层和第二Mg层交替形成,第一非掺杂层中Al的含量与第二非掺杂层中Al的含量不等。
作为上述方案的改进,所述第一非掺杂层由AluGa1-uN制成,0≤u≤1;所述第二非掺杂层由AlvGa1-vN制成,0≤v≤1,u≠v。
作为上述方案的改进,u>v。
作为上述方案的改进,所述P型超晶格阻挡层中Mg的掺杂浓度为8~10E18atom/cm3
作为上述方案的改进,所述P型超晶格阻挡层由下述方法制得:
(1)通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第一非掺杂层;
(2)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第一Mg层;
(3)关闭镁源,通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第二非掺杂层;
(4)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第二Mg层;
(5)重复步骤(1)、(2)、(3)和(4)若干次。
作为上述方案的改进,所述AlN层和N型AlGaN层之间设有一层过渡层;所述过渡层由若干个周期的AlN/AlaGa1-aN(0.01<a<0.99)超晶格结构组成;所述AlN/AlaGa1-aN超晶格结构中AlN的厚度为1~5nm,AlaGa1-aN的厚度为1~5nm。
作为上述方案的改进,所述有源层由若干个周期的量子阱结构组成,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,0<x<0.5,y比x大20%以上;
所述AlxGa1-xN阱层的厚度为3~8nm,所述AlyGa1-yN垒层的厚度为4~10nm。
作为上述方案的改进,所述N型AlGaN层中,Si掺杂浓度为5E17~5E19atom/cm3,厚度为0.5~2μm。
作为上述方案的改进,所述P型GaN层中,Mg掺杂浓度为1E17~1E21atom/cm3,厚度为0~200nm。
相应地,本发明还提供了一种紫外发光二极管外延结构的制作方法,包括以下步骤:
一、将衬底放入MOCVD设备中,在900~1500℃条件下烘烤1~20分钟;
二、将温度调整为900~1500℃,在衬底上形成一层厚度为0.1~5μm的AlN层;
三、将温度调整为900~1500℃,在AlN层上形成一层厚度为0.5~2μm的N型AlGaN层,Si掺杂浓度为5E17~5E19atom/cm3
四、将温度调整为900~1500℃,在N型AlGaN层上生长若干个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,0<x<0.5,0.2<y<1,每个量子阱结构中AlxGa1-xN阱层的厚度为3~8nm,AlyGa1-yN垒层的厚度为4~10nm;
五、将温度调整为900~1500℃,(1)通入氮源、铝源、镓源,生长厚度为0~20nm的第一非掺杂层;(2)关闭铝源和镓源,通入氮源和镁源,持续0~10分钟,形成第一Mg层;(3)关闭镁源,通入氮源、铝源、镓源,生长厚度为0~20nm的第二非掺杂层;(4)关闭铝源和镓源,通入氮源和镁源,持续0~10分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)若干次,形成P型超晶格阻挡层;
六、将温度调整为900~1500℃,在P型超晶格阻挡层上形成一层厚度为0~200nm的P型GaN层,Mg掺杂浓度为1E17~1E21atom/cm3
实施本发明,具有如下有益效果:
本发明提供的一种紫外发光二极管外延结构,包括依次设于衬底上的AlN层、N型AlGaN层、有源层、P型超晶格阻挡层和P型GaN层。本发明在有源层和P型GaN层之间设置一层P型超晶格阻挡层,不仅起到阻挡电流,提高电流扩展的作用,还可以提高P型GaN层的空穴浓度及其迁移率,为有源层提供更多的空穴-电子对,提高复合几率,提升亮度,从而提高外延结构的光电性能。
所述P型超晶格阻挡层由第一非掺杂层、第一Mg层、第二非掺杂层和第二Mg层交替形成,第一非掺杂层中Al的含量与第二非掺杂层中Al的含量不同。本发明的第一非掺杂层和第二非掺杂层中没有Mg杂质的引入,不会形成堆垛位错,有效改善P型GaN层的结晶质量,降低位错密度,而Mg的掺入是在第一非掺杂层和第二非掺杂层形成之后,因此Mg原子可以自由选择最佳的位置进行掺杂,从而减少自补偿效应,提高P型GaN层的空穴浓度及其迁移率。
本发明P型超晶格阻挡层的Mg的掺杂浓度可达8~10E18atom/cm3
附图说明
图1是本发明外延结构的结构示意图;
图2是本发明外延结构另一实施例的结构示意图;
图3是本发明P型超晶格阻挡层的生长工艺图;
图4是本发明现有电子阻挡层的生长工艺图;
图5是本发明对比例1和实施例3的Mg的掺杂浓度对比图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
参见图1,本发明提供的一种紫外发光二极管外延结构,包括依次设于衬底10上的AlN层20、N型AlGaN层30、有源层40、P型超晶格阻挡层50和P型GaN层60。
本发明衬底10的材料可以为蓝宝石、碳化硅或硅,也可以为其他半导体材料。优选的,本发明的衬底10为蓝宝石衬底。
本发明AlN层20由AlN制成,作为外延结构的基材材料,其作用是为后续生长的N型AlGaN层30、有源层40和P型GaN层60做准备。由于AlN的能级在III/V族体系中是最大的,对LED的吸光是最小的,采用AlN作为基础材料有效提高外延结构的出光效率。
优选的,AlN层20的厚度是2~4μm。若AlN层20的厚度小于2μm,则不能完全释放衬底与AlN材料的应力失配,影响AlN材料的晶体质量;若厚度太厚,则浪费时间和材料。
由于AlN层20和N型AlGaN层30之间存在较大的晶格差异,若直接在AlN层上生长N型AlGaN层,会因应力聚集在两种材料界面导致龟裂的问题。参见图2,作为本发明的另一优选方案,本发明在AlN层20和N型AlGaN层30之间形成一层过渡层21,以将晶格失配产生的应力在过渡层21逐步释放,从而避免AlN层发生龟裂问题,AlN层的质量得到提升,位错和缺陷会大幅减少,从而提升外延结构的晶体质量,进而改善发光效率。另外,更低的外延材料位错和缺陷意味着更少的光子俘获中心,有利于更多的紫外光能够穿越外延结构向外出光,提高了出光效率,同时降低了光子被俘获后产生的总热量,对紫光LED器件的性能有极大提升。
优选的,所述过渡层的厚度为200~400nm。若过渡层的厚度小于200nm,则不能很好地释放应力和降低错位,若厚度太厚,则浪费时间和材料。
由于AlN/AlaGa1-aN超晶格结构能够很好地释放AlN材料与N型AlGaN之间的应力,另外AlN/AlaGa1-aN超晶格结构能弯转位错线,从而达到提高晶体质量的目的。具体的,所述过渡层21由若干个周期的AlN/AlaGa1-aN(0.01<a<0.99)超晶格结构组成。
所述AlN/AlaGa1-aN超晶格结构中,a的值大于N型AlGaN层中Al的含量并小于0.8。若a大于0.8,则过渡层不能很好释放应力,若a小于N型AlGaN层中Al的含量,则会产生吸光效应,不利于光传出外延表面。
所述AlN/AlaGa1-aN超晶格结构中AlN的厚度为1~5nm,AlaGa1-aN的厚度为1~5nm。优选的,每个AlN/AlaGa1-aN超晶格结构的厚度为2~10nm,由于其厚度是几个原子层的厚度,因此AlN/AlaGa1-aN超晶格结构对应力释放和降低位错效果最佳。
为了提高有源层40的出光效率,本发明对有源层的结构做了特殊设计。所述有源层40由3~5个周期的量子阱结构组成,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,0<x<0.5,0.2<y<1。
需要说明的是,太少的量子阱不能完全限制电子和空穴对,影响亮度;由于空穴的迁移距离有限,太多的量子阱周期数不会提升亮度,但时间和原材料成本增加。
由于外延结构的发光波长由量子阱结构中的x决定,目前市场紫外LED芯片的紫光波长分布在260~365nm左右,对应的Al组分为0~50%,即0<x<0.5。为了更好的限制电子空穴对在量子阱结构中的发光,y需要比x大20%以上。
所述AlxGa1-xN阱层的厚度为3~8nm,所述AlyGa1-yN垒层的厚度为4~10nm。若AlyGa1-yN垒层的厚度太薄不利于束缚电子空穴对,太厚不利于空穴的迁移。
本发明的N型AlGaN层40用于提供电子,P型AlGaN层60用于提供空穴。为了提高外延结构的出光效率,所述N型AlGaN层的厚度为0.5~2μm,Si掺杂浓度为5E17~5E19atom/cm3。所述P型GaN层中,Mg掺杂浓度为1E17~1E21atom/cm3,厚度为0~200nm。
本发明在有源层40和P型GaN层60之间设置一层P型超晶格阻挡层50,不仅起到阻挡电流,提高电流扩展的作用,还可以提高P型GaN层的空穴浓度及其迁移率,为有源层提供更多的空穴-电子对,提高复合几率,提升亮度,从而提高外延结构的光电性能。
本发明的P型超晶格阻挡层由第一非掺杂层、第一Mg层、第二非掺杂层和第二Mg层交替形成,第一非掺杂层中Al的含量与第二非掺杂层中Al的含量不等。本发明的第一非掺杂层和第二非掺杂层中没有Mg杂质的引入,不会形成堆垛位错,有效改善P型GaN层的结晶质量,降低位错密度,而Mg的掺入是在第一非掺杂层和第二非掺杂层形成之后,因此Mg原子可以自由选择最佳的位置进行掺杂,从而减少自补偿效应,提高P型GaN层的空穴浓度及其迁移率。
所述第一非掺杂层由AluGa1-uN制成,0≤u≤1;所述第二非掺杂层由AlvGa1-vN制成,0≤v≤1,u≠v。第一非掺杂层中Al的含量与第二非掺杂层中Al的含量必须不同,这样才能产生势磊的差异,才能使P型超晶格阻挡层能带弯曲。本发明通过改变P型超晶格阻挡层的能带弯曲来提高Mg的掺杂浓度,以形成第一Mg层和第二Mg层,从而提高P型GaN层的空穴浓度及其迁移率。优选的,u>v。
具体的,所述第一非掺杂层由AlGaN制成,所述第二非掺杂层均AlN制成。或者,所述第一非掺杂层由AlN制成,所述第二非掺杂层均AlGaN制成。在本发明的其他实施例中,所述第一非掺杂层由AlN制成,所述第二非掺杂层均GaN制成。或者,所述第一非掺杂层由AlGaN制成,所述第二非掺杂层均GaN制成。
本发明P型超晶格阻挡层的Mg的掺杂浓度可达8~10E18atom/cm3,现有的电子阻挡层的Mg的掺杂浓度只有1E18atom/cm3,Mg激活空穴的效率一般为Mg掺杂浓度的1%左右,越高的掺杂浓度越容易激发出空穴。
所述第一非掺杂层的厚度为1~20nm,所述第二非掺杂层的厚度为1~20nm。优选的,所述第一非掺杂层的厚度为2~6nm,所述第二非掺杂层的厚度为2~6nm。本发明是通过改变P型超晶格阻挡层的能带弯曲来提高掺杂浓度的,第一非掺杂层或第二非掺杂层的厚度太薄和太厚都会导致超晶格层的压电极化减弱,使能带弯曲减小,不利于Mg的掺杂。
参见图3,本发明的P型超晶格阻挡层由下述方法制得:
(1)通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第一非掺杂层;
(2)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第一Mg层;
(3)关闭镁源,通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第二非掺杂层;
(4)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第二Mg层;
(5)重复步骤(1)、(2)、(3)和(4)若干次。
需要说明的是,所述氮源优选为NH3,铝源为TMAl,镓源为TMGa,镁源为Cp2Mg。优选的,步骤(3)中镓源的流量小于步骤(1)中镓源的流量。
参见图4,现有的阻挡层是同时通入氮源、铝源、镓源和镁源,会存在Mg元素、Al元素、Ga元素同时与N元素结合的竞争关系,本发明在步骤(2)和(4)中只通入氮源和镁源,形成第一Mg层和第二Mg层,因此不存在竞争关系,Mg元素的掺杂效率会提升。
本发明使用间断掺杂方式生长第一非掺杂层和第二非掺杂层的过程中,由于没有Mg杂质的引入,不会形成堆垛位错,从而提高P型超晶格阻挡层的晶体质量和改善P型GaN层的结晶质量、降低位错密度,而Mg的掺入是在第一非掺杂层和第二非掺杂层形成之后,分别形成第一Mg层和第二Mg层,因此Mg原子可以自由选择最佳的位置进行掺杂,从而减少自补偿效应,提高P型GaN层的空穴浓度及其迁移率。
此外,本发明的间断掺杂方式利用AluGa1-uN和AlvGa1-vN不同的势磊差异促P型超晶格阻挡层能带弯曲。本发明通过改变P型超晶格阻挡层的能带弯曲来提高Mg的掺杂浓度,从而提高P型GaN层的空穴浓度及其迁移率。
需要说明的是,本发明通过提高P型超晶格阻挡层的材料质量和改善其能带结构,以使大部分Mg杂质位于费米能级之下来提高掺杂浓度。
为了得到能带弯曲的P型超晶格阻挡层,步骤(1)和步骤(3)中Al组分的含量是不能相同的。由于Mg在不同Al含量的AlGaN中的掺杂速率不同,步骤(2)和步骤(4)的持续时间设定也不同。Al组分含量越高,Mg越难掺杂,需要时间越长。若步骤(1)中Al组分的含量大于步骤(3)中Al组分的含量,则步骤(2)中的持续时间长于步骤(4)中的持续时间。
相应地,本发明还提供了一种紫外发光二极管外延结构的制作方法,包括以下步骤:
一、将衬底放入MOCVD设备中,在900~1500℃条件下烘烤1~20分钟;
二、将温度调整为900~1500℃,在衬底上形成一层厚度为0.1~5μm的AlN层;
三、将温度调整为900~1500℃,在AlN层上形成一层厚度为0.5~2μm的N型AlGaN层,Si掺杂浓度为5E17~5E19atom/cm3
四、将温度调整为900~1500℃,在N型AlGaN层上生长若干个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,0<x<0.5,0.2<y<1,每个量子阱结构中AlxGa1-xN阱层的厚度为3~8nm,AlyGa1-yN垒层的厚度为4~10nm;
五、将温度调整为900~1500℃,(1)通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第一Mg层;(3)关闭镁源,通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)若干次;
六、将温度调整为900~1500℃,在P型超晶格阻挡层上形成一层厚度为0~200nm的P型GaN层,Mg掺杂浓度为1E17~1E21atom/cm3
下面将以具体实施例来进一步阐述本发明
实施例1
一种紫外发光二极管外延结构的制作方法,包括以下步骤:
一、将衬底放入MOCVD设备中,在900℃条件下烘烤20分钟;
二、将温度调整为1000℃,在衬底上形成一层厚度为1μm的AlN层;
三、将温度调整为900℃,在AlN层上形成一层厚度为0.5μm的N型AlGaN层,Si掺杂浓度为5E17atom/cm3
四、将温度调整为1000℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;
五、将温度调整为1000℃,(1)通入流量为65slm的氮源、流量为180sccm的铝源、流量为30sccm的镓源,生长厚度为1nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为65slm的氮源和流量为950sccm的镁源,持续0.5分钟,形成第一Mg层;(3)关闭镁源,通入流量为65slm的氮源、流量为180sccm的铝源、流量为28sccm的镓源,生长厚度为1nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为65slm的氮源和流量为950sccm的镁源,持续0.5分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)8次,形成P型超晶格阻挡层;
六、将温度调整为1000℃,在P型超晶格阻挡层上形成一层厚度为10nm的P型GaN层,Mg掺杂浓度为1E17atom/cm3
实施例2
一种紫外发光二极管外延结构的制作方法,包括以下步骤:
一、将衬底放入MOCVD设备中,在1000℃条件下烘烤15分钟;
二、将温度调整为1000℃,在衬底上形成一层厚度为1.5μm的AlN层;
三、将温度调整为1100℃,在AlN层上形成一层厚度为1μm的N型AlGaN层,Si掺杂浓度为9E17atom/cm3
四、将温度调整为1000℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;
五、将温度调整为1100℃,(1)通入流量为70slm的氮源、流量为190sccm的铝源、流量为32sccm的镓源,生长厚度为1.5nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为70slm的氮源和流量为980sccm的镁源,持续1分钟,形成第一Mg层;(3)关闭镁源,通入流量为70slm的氮源、流量为190sccm的铝源、流量为30sccm的镓源,生长厚度为1.5nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为70slm的氮源和流量为980sccm的镁源,持续1分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)10次,形成P型超晶格阻挡层;
六、将温度调整为1100℃,在P型超晶格阻挡层上形成一层厚度为30nm的P型GaN层,Mg掺杂浓度为5E17atom/cm3
实施例3
一种紫外发光二极管外延结构的制作方法,包括以下步骤:
一、将衬底放入MOCVD设备中,在1100℃条件下烘烤10分钟;
二、将温度调整为1300℃,在衬底上形成一层厚度为3μm的AlN层;
三、将温度调整为1200℃,在AlN层上形成一层厚度为2μm的N型AlGaN层,Si掺杂浓度为2E18atom/cm3
四、将温度调整为1100℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;
五、将温度调整为1100℃,(1)通入流量为70slm的氮源、流量为200sccm的铝源、流量为32sccm的镓源,生长厚度为2.5nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为70slm的氮源和流量为1000sccm的镁源,持续1.5分钟,形成第一Mg层;(3)关闭镁源,通入流量为70slm的氮源、流量为200sccm的铝源、流量为30sccm的镓源,生长厚度为2.5nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为70slm的氮源和流量为1000sccm的镁源,持续1.5分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)10次,形成P型超晶格阻挡层;
六、将温度调整为1000℃,在P型超晶格阻挡层上形成一层厚度为50nm的P型GaN层,Mg掺杂浓度为2E18atom/cm3
实施例4
一种紫外发光二极管外延结构的制作方法,包括以下步骤:
一、将衬底放入MOCVD设备中,在1200℃条件下烘烤8分钟;
二、将温度调整为1300℃,在衬底上形成一层厚度为4μm的AlN层;
三、将温度调整为1200℃,在AlN层上形成一层厚度为2μm的N型AlGaN层,Si掺杂浓度为5E18atom/cm3
四、将温度调整为1100℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;
五、将温度调整为1100℃,(1)通入流量为72slm的氮源、流量为200sccm的铝源、流量为33sccm的镓源,生长厚度为5nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为75slm的氮源和流量为1050sccm的镁源,持续3分钟,形成第一Mg层;(3)关闭镁源,通入流量为72slm的氮源、流量为200sccm的铝源、流量为32sccm的镓源,生长厚度为5nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为75slm的氮源和流量为1050sccm的镁源,持续3分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)15次,形成P型超晶格阻挡层;
六、将温度调整为1200℃,在P型超晶格阻挡层上形成一层厚度为100nm的P型GaN层,Mg掺杂浓度为5E18atom/cm3
实施例5
一种紫外发光二极管外延结构的制作方法,包括以下步骤:
一、将衬底放入MOCVD设备中,在1500℃条件下烘烤5分钟;
二、将温度调整为1400℃,在衬底上形成一层厚度为5μm的AlN层;
三、将温度调整为1400℃,在AlN层上形成一层厚度为2μm的N型AlGaN层,Si掺杂浓度为5E19atom/cm3
四、将温度调整为1300℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;
五、将温度调整为1300℃,(1)通入流量为75slm的氮源、流量为210sccm的铝源、流量为33sccm的镓源,生长厚度为10nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为75slm的氮源和流量为1100sccm的镁源,持续5分钟,形成第一Mg层;(3)关闭镁源,通入流量为75slm的氮源、流量为210sccm的铝源、流量为31sccm的镓源,生长厚度为10nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为75slm的氮源和流量为1100sccm的镁源,持续5分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)10次,形成P型超晶格阻挡层;
六、将温度调整为1400℃,在P型超晶格阻挡层上形成一层厚度为150nm的P型GaN层,Mg掺杂浓度为5E19atom/cm3
对比例1
一种紫外发光二极管外延结构的制作方法,包括以下步骤:
一、将衬底放入MOCVD设备中,在1100℃条件下烘烤10分钟;
二、将温度调整为1300℃,在衬底上形成一层厚度为3μm的AlN层;
三、将温度调整为1200℃,在AlN层上形成一层厚度为2μm的N型AlGaN层,Si掺杂浓度为2E19atom/cm3
四、将温度调整为1100℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;
五、将温度调整为1100℃,(1)通入氮源、铝源、镓源和镁源,生长厚度为50nm阻挡层;
六、将温度调整为1000℃,在阻挡层上形成一层厚度为50nm的P型GaN层,Mg掺杂浓度为2E20atom/cm3
采用实施例1至实施例5和对比例1的制作方法制作出相同尺寸的芯片,进行光电测试,结果如下表:
ID 波长/nm 亮度/mW 电压/V
对比例1 279.6 9.35 6.31
实施例1 279.5 11.11 6.02
实施例2 279.6 11.95 6.01
实施例3 279.5 12.68 5.98
实施例4 279.6 12.63 5.99
实施例5 279.6 12.62 6.02
参见图5,图5是对比例1和实施例3的Mg的掺杂浓度对比图,实施例3的阻挡层的Mg掺杂浓度远远高于对比例1的阻挡层的Mg的掺杂浓度。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

1.一种紫外发光二极管外延结构,其特征在于,包括依次设于衬底上的AlN层、N型AlGaN层、有源层、P型超晶格阻挡层和P型GaN层,所述P型超晶格阻挡层由第一非掺杂层、第一Mg层、第二非掺杂层和第二Mg层交替形成,第一非掺杂层中Al的含量与第二非掺杂层中Al的含量不等。
2.如权利要求1所述的紫外发光二极管外延结构,其特征在于,所述第一非掺杂层由AluGa1-uN制成,0≤u≤1;所述第二非掺杂层由AlvGa1-vN制成,0≤v≤1,u≠v。
3.如权利要求2所述的紫外发光二极管外延结构,其特征在于,u>v。
4.如权利要求1所述的紫外发光二极管外延结构,其特征在于,所述P型超晶格阻挡层中Mg的掺杂浓度为8~10E18atom/cm3
5.如权利要求1所述的紫外发光二极管外延结构,其特征在于,所述P型超晶格阻挡层由下述方法制得:
(1)通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第一非掺杂层;
(2)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第一Mg层;
(3)关闭镁源,通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第二非掺杂层;
(4)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第二Mg层;
(5)重复步骤(1)、(2)、(3)和(4)若干次。
6.如权利要求1所述的紫外发光二极管外延结构,其特征在于,所述AlN层和N型AlGaN层之间设有一层过渡层;所述过渡层由若干个周期的AlN/AlaGa1-aN(0.01<a<0.99)超晶格结构组成;所述AlN/AlaGa1-aN超晶格结构中AlN的厚度为1~5nm,AlaGa1-aN的厚度为1~5nm。
7.如权利要求1所述的紫外发光二极管外延结构,其特征在于,所述有源层由若干个周期的量子阱结构组成,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,0<x<0.5,y比x大20%以上;
所述AlxGa1-xN阱层的厚度为3~8nm,所述AlyGa1-yN垒层的厚度为4~10nm。
8.如权利要求1所述的紫外发光二极管外延结构,其特征在于,所述N型AlGaN层中,Si掺杂浓度为5E17~5E19atom/cm3,厚度为0.5~2μm。
9.如权利要求8所述的紫外发光二极管外延结构,其特征在于,所述P型GaN层中,Mg掺杂浓度为1E17~1E21atom/cm3,厚度为0~200nm。
10.一种如权利要求1~9任一项所述紫外发光二极管外延结构的制作方法,其特征在于,包括以下步骤:
一、将衬底放入MOCVD设备中,在900~1500℃条件下烘烤1~20分钟;
二、将温度调整为900~1500℃,在衬底上形成一层厚度为0.1~5μm的AlN层;
三、将温度调整为900~1500℃,在AlN层上形成一层厚度为0.5~2μm的N型AlGaN层,Si掺杂浓度为5E17~5E19atom/cm3
四、将温度调整为900~1500℃,在N型AlGaN层上生长若干个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,0<x<0.5,0.2<y<1,每个量子阱结构中AlxGa1-xN阱层的厚度为3~8nm,AlyGa1-yN垒层的厚度为4~10nm;
五、将温度调整为900~1500℃,(1)通入氮源、铝源、镓源,生长厚度为0~20nm的第一非掺杂层;(2)关闭铝源和镓源,通入氮源和镁源,持续0~10分钟,形成第一Mg层;(3)关闭镁源,通入氮源、铝源、镓源,生长厚度为0~20nm的第二非掺杂层;(4)关闭铝源和镓源,通入氮源和镁源,持续0~10分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)若干次,形成P型超晶格阻挡层;
六、将温度调整为900~1500℃,在P型超晶格阻挡层上形成一层厚度为0~200nm的P型GaN层,Mg掺杂浓度为1E17~1E21atom/cm3
CN201910679874.7A 2019-07-26 2019-07-26 一种紫外发光二极管外延结构及其制作方法 Pending CN110364606A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910679874.7A CN110364606A (zh) 2019-07-26 2019-07-26 一种紫外发光二极管外延结构及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910679874.7A CN110364606A (zh) 2019-07-26 2019-07-26 一种紫外发光二极管外延结构及其制作方法

Publications (1)

Publication Number Publication Date
CN110364606A true CN110364606A (zh) 2019-10-22

Family

ID=68221589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910679874.7A Pending CN110364606A (zh) 2019-07-26 2019-07-26 一种紫外发光二极管外延结构及其制作方法

Country Status (1)

Country Link
CN (1) CN110364606A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180563A (zh) * 2020-02-12 2020-05-19 江西乾照光电有限公司 一种led芯片及其制作方法
CN111403568A (zh) * 2020-03-25 2020-07-10 江西新正耀光学研究院有限公司 紫外led外延结构及其制备方法
CN112951961A (zh) * 2021-02-08 2021-06-11 江西乾照光电有限公司 一种深紫外led及其制作方法
CN113013303A (zh) * 2021-02-02 2021-06-22 东莞理工学院 一种紫外发光二极管及其制备方法和应用
CN113451451A (zh) * 2020-08-20 2021-09-28 重庆康佳光电技术研究院有限公司 Led外延层及其电流扩展层的生长方法、led芯片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030178633A1 (en) * 2002-03-25 2003-09-25 Flynn Jeffrey S. Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
CN101289173A (zh) * 2008-06-04 2008-10-22 厦门大学 选择超晶格位置掺杂的p型III族氮化物材料的制备方法
CN102569571A (zh) * 2012-03-06 2012-07-11 华灿光电股份有限公司 半导体发光二极管及其制造方法
CN107808916A (zh) * 2017-10-09 2018-03-16 浙江帅康电气股份有限公司 Led晶元及其制备方法和led灯
CN108878606A (zh) * 2018-06-22 2018-11-23 西安电子科技大学 基于超晶格结构和δ掺杂的高效发光二极管及制备方法
CN109427938A (zh) * 2017-08-23 2019-03-05 中国科学院苏州纳米技术与纳米仿生研究所 一种深紫外半导体器件及其制作方法
CN210156417U (zh) * 2019-07-26 2020-03-17 佛山市国星半导体技术有限公司 一种紫外发光二极管外延结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030178633A1 (en) * 2002-03-25 2003-09-25 Flynn Jeffrey S. Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
CN101289173A (zh) * 2008-06-04 2008-10-22 厦门大学 选择超晶格位置掺杂的p型III族氮化物材料的制备方法
CN102569571A (zh) * 2012-03-06 2012-07-11 华灿光电股份有限公司 半导体发光二极管及其制造方法
CN109427938A (zh) * 2017-08-23 2019-03-05 中国科学院苏州纳米技术与纳米仿生研究所 一种深紫外半导体器件及其制作方法
CN107808916A (zh) * 2017-10-09 2018-03-16 浙江帅康电气股份有限公司 Led晶元及其制备方法和led灯
CN108878606A (zh) * 2018-06-22 2018-11-23 西安电子科技大学 基于超晶格结构和δ掺杂的高效发光二极管及制备方法
CN210156417U (zh) * 2019-07-26 2020-03-17 佛山市国星半导体技术有限公司 一种紫外发光二极管外延结构

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180563A (zh) * 2020-02-12 2020-05-19 江西乾照光电有限公司 一种led芯片及其制作方法
CN111403568A (zh) * 2020-03-25 2020-07-10 江西新正耀光学研究院有限公司 紫外led外延结构及其制备方法
CN113451451A (zh) * 2020-08-20 2021-09-28 重庆康佳光电技术研究院有限公司 Led外延层及其电流扩展层的生长方法、led芯片
CN113451451B (zh) * 2020-08-20 2022-09-13 重庆康佳光电技术研究院有限公司 Led外延层及其电流扩展层的生长方法、led芯片
CN113013303A (zh) * 2021-02-02 2021-06-22 东莞理工学院 一种紫外发光二极管及其制备方法和应用
CN112951961A (zh) * 2021-02-08 2021-06-11 江西乾照光电有限公司 一种深紫外led及其制作方法

Similar Documents

Publication Publication Date Title
CN110364606A (zh) 一种紫外发光二极管外延结构及其制作方法
CN102368519B (zh) 一种提高半导体二极管多量子阱发光效率的方法
CN110970533B (zh) 一种led倒装芯片的紫光外延结构及其制备方法
CN115050870B (zh) 一种GaN基发光二极管外延片及其制备方法
CN110364600A (zh) 一种紫外发光二极管外延结构及其制作方法
CN105070805B (zh) 一种硅基氮化物紫外led外延结构及其实现方法
CN104409587B (zh) 一种InGaN基蓝绿光发光二极管外延结构及生长方法
TW201013987A (en) Group III nitride semiconductor light emitting device, process for producing the same, and lamp
CN104282808B (zh) 一种紫外led外延有源区结构生长方法
CN106784188B (zh) 一种具有复合电子阻挡层的近紫外led的制备方法
CN101488550A (zh) 高In组分多InGaN/GaN量子阱结构的LED的制造方法
CN103811601B (zh) 一种以蓝宝石衬底为基板的GaN基LED多阶缓冲层生长方法
CN103887392B (zh) 一种提高led发光效率的外延生长方法
CN106935690B (zh) 一种提高紫外led光输出功率的外延结构
WO2022267446A1 (zh) 一种AlInGaN半导体发光器件
CN105977351A (zh) 一种紫外led有源区多量子阱的生长方法
CN115312643B (zh) 一种具有插入层的led外延片及其制备方法
CN116014043A (zh) 深紫外发光二极管外延片及其制备方法、led
CN209104183U (zh) 一种高性能的绿光二极管多量子阱结构
CN110649137A (zh) 一种紫外发光二极管外延结构及其制作方法
CN117410406B (zh) 发光二极管外延片及其制备方法、发光二极管
CN210156417U (zh) 一种紫外发光二极管外延结构
CN108807622B (zh) 一维InGaN/AlGaN多量子阱型的紫外LED及其制备方法
CN210156413U (zh) 一种紫外发光二极管外延结构
CN109524520A (zh) 一种高性能的绿光二极管多量子阱结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination