CN110364590B - 一种高增益带宽积的光探测器及其制造方法 - Google Patents

一种高增益带宽积的光探测器及其制造方法 Download PDF

Info

Publication number
CN110364590B
CN110364590B CN201910616134.9A CN201910616134A CN110364590B CN 110364590 B CN110364590 B CN 110364590B CN 201910616134 A CN201910616134 A CN 201910616134A CN 110364590 B CN110364590 B CN 110364590B
Authority
CN
China
Prior art keywords
layer
wgapd
twsoa
epitaxial structure
type doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910616134.9A
Other languages
English (en)
Other versions
CN110364590A (zh
Inventor
曾磊
王肇中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Guanggu Quantum Technology Co ltd
Original Assignee
Wuhan Guanggu Quantum Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Guanggu Quantum Technology Co ltd filed Critical Wuhan Guanggu Quantum Technology Co ltd
Priority to CN201910616134.9A priority Critical patent/CN110364590B/zh
Publication of CN110364590A publication Critical patent/CN110364590A/zh
Application granted granted Critical
Publication of CN110364590B publication Critical patent/CN110364590B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种高增益带宽积的光探测器的制造方法,涉及光探测器技术领域,包括以下步骤:步骤S1,在衬底上,依次生长缓冲层、第一渐变层、有源层、第二渐变层、第一功能层、第二功能层、扩散控制层和顶层形成外延结构;步骤S2,对整个外延结构进行第一次锌扩散工艺,使锌扩散至扩散控制层;步骤S3,遮蔽部分外延结构,对未遮蔽部分外延结构进行第二次锌扩散工艺,使锌扩散至第二渐变层以形成TWSOA,被遮蔽部分外延结构形成WGAPD;步骤S4,刻蚀外延结构将TWSOA和WGAPD分离,并形成条形的TWSOA和WGAPD;步骤S5,分别制造TWSOA和WGAPD的电极。本发明还公开了一种高增益带宽积的光探测器。本发明的光探测器的增益带宽积能够达到1000GHz。

Description

一种高增益带宽积的光探测器及其制造方法
技术领域
本发明涉及光探测器技术领域,具体涉及一种高增益带宽积的光探测器及其制造方法。
背景技术
随着物联网、5G的快速发展,光纤通信系统的带宽要求不断提高。目前用于高速光信号接收模块的光探测器采用平面型雪崩光电二极管(APD,Avalanche Photo Diode),具有内部增益,可放大电流信号,速率10Gbps的APD已得到广泛应用。然而,25Gbps以上速率的APD设计和制造难度较大,成为光通信系统传输速率的限制因素。APD的带宽主要受光生载流子渡越时间和雪崩建立时间的限制。目前10Gbps的APD采用垂直光入射方式,只能通过减小光吸收层厚度来减小渡越时间,但与此同时会减小量子效率和响应度,导致灵敏度下降。雪崩建立时间与APD增益大小有关,增益越大则雪崩建立时间越长,导致带宽下降,因此要求APD具有一定的增益带宽积。
25Gbps以上高速率APD的研究方向,主要包括p型倒置APD、波导雪崩光电二极管(WGAPD)和隐逝波耦合雪崩光电二极管(ECAPD)。其中p型倒置APD采用三级台阶结构和部分p型掺杂的光吸收层,通过减小光生载流子渡越时间来提高带宽,增益带宽积达到270GHz。WGAPD和ECAPD采用波导结构,使光从器件侧面入射,能够在不降低量子效率的情况下采用较薄的有源层,提高带宽,此类APD的带宽可达35GHz,但增益较低,增益带宽积约140GHz。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种高增益带宽积的光探测器及其制造方法,其增益带宽积能够达到1000GHz。
为达到以上目的,本发明采取的技术方案是:一种高增益带宽积的光探测器的制造方法,包括以下步骤:
在衬底上,依次生长缓冲层、第一渐变层、有源层、第二渐变层、第一功能层、第二功能层、扩散控制层和顶层形成外延结构;
对整个外延结构进行第一次锌扩散工艺,使锌扩散至扩散控制层;
遮蔽部分外延结构,对未遮蔽部分外延结构进行第二次锌扩散工艺,使锌扩散至第二渐变层以形成TWSOA,被遮蔽部分外延结构形成WGAPD;
刻蚀外延结构将TWSOA和WGAPD分离,并形成条形的TWSOA和WGAPD。
在上述技术方案的基础上,刻蚀TWSOA和WGAPD两侧的外延结构至缓冲层以形成条形的TWSOA和WGAPD。
在上述技术方案的基础上,刻蚀TWSOA和WGAPD之间的外延结构至缓冲层下方以将TWSOA和WGAPD分离。
在上述技术方案的基础上,在外延结构上采用等离子体增强化学PECVD工艺镀钝化膜,使部分外延结构被遮蔽。
在上述技术方案的基础上,所述方法还包括以下步骤:分别制造TWSOA和WGAPD的电极。
在上述技术方案的基础上,所述方法还包括以下步骤:在TWSOA的入射光侧面制造增透膜。
本发明的目的在于还提供一种高增益带宽积的光探测器,包括:
衬底;
沿入射光方向间隔设置在所述衬底上的行波半导体光放大器TWSOA和波导雪崩光电二极管WGAPD;
所述WGAPD与TWSOA一一对齐的设有下列层:缓冲层、第一渐变层、有源层、第二渐变层、第一功能层、第二功能层、扩散控制层和顶层;
其中:所述缓冲层为n型掺杂InP;所述第一渐变层为本征或弱n型掺杂InGaAsP;所述有源层为本征或弱n型掺杂InGaAs;所述扩散控制层为p型掺杂InGaAsP;所述顶层均为p型掺杂InP;所述WGAPD的第二渐变层、第一功能层和第二功能层分别为本征或弱n型掺杂InGaAsP、n型掺杂InP和本征或弱n型掺杂InGaAsP;所述TWSOA的第二渐变层、第一功能层和第二功能层分别为p型掺杂InGaAsP、p型掺杂InP和p型掺杂InGaAsP。
在上述技术方案的基础上,所述TWSOA和WGAPD上均设有电极,所述TWSOA的入射光侧面设有增透膜。
在上述技术方案的基础上,所述WGAPD的第一功能层的厚度为50-200nm,所述第一功能层的掺杂浓度为2-7×1017cm-3,掺杂面密度为2.8-3.6×1012cm-2
在上述技术方案的基础上,所述WGAPD的第二功能层的厚度50-300nm。
与现有技术相比,本发明的优点在于:本发明的高增益带宽积的光探测器及其制造方法,将行波半导体光放大器TWSOA与波导雪崩光电二极管WGAPD集成,TWSOA将入射光放大后再由WGAPD转化为电信号,整个光探测器的增益带宽积能够达到1000GHz以上。
附图说明
图1为本发明实施例中的光探测器的制造方法的流程图;
图2为本发明实施例中的外延结构的结构示意图;
图3为本发明实施例中的外延结构两次锌扩散工艺后的结构示意图;
图4为本发明实施例中的外延结构两次锌扩散工艺后的俯视图;
图5为本发明实施例中的制作多通道光探测器的结构示意图。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
参见图1所示,本发明实施例提供一种高增益带宽积的光探测器的制造方法,包括以下步骤:
步骤S1,在衬底上,依次生长缓冲层、第一渐变层、有源层、第二渐变层、第一功能层、第二功能层、扩散控制层和顶层形成外延结构。
具体地,参见图2所示,在半绝缘(S.I.,semi-insulating)磷化铟InP衬底上,通过分子束外延MBE(Molecular Beam Epitaxy)或金属有机化合物化学气相沉淀MOCVD(Metal-organic Chemical Vapor Deposition)等外延生长技术,依次生长缓冲层,第一渐变层,有源层,第二渐变层,第一功能层,第二功能层,扩散控制层和顶层。其中:
缓冲层为n型掺杂InP,掺杂浓度为1-2×1018cm-3,缓冲层的厚度为0.5-1μm;
第一渐变层为本征(i,intrinsic)或弱n型掺杂In1-xGaxAsyP1-y(0<x<1,0<y<1且y/x=2.13,下文称InGaAsP),掺杂浓度小于2×1015cm-3,下文所谓弱n型掺杂InGaAsP即此浓度范围,第一渐变层的厚度50-100nm,采用多层成分不同或一层成分线性渐变的InGaAsP,由缓冲层过渡至有源层;
有源层为本征或弱n型掺杂InGaAs,有源层的厚度100-300nm。优选地,有源层可采用In0.511Ga0.489As或五组量子阱,可有效消除入射光偏振的影响;
第二渐变层为本征或弱n型掺杂InGaAsP,第二渐变层的厚度50-100nm,采用多层成分不同或一层成分线性渐变的InGaAsP,由有源层过渡至第一功能层。
第一功能层为n型掺杂InP,掺杂浓度为2-7×1017cm-3,第一功能层的厚度为50-200nm,同时掺杂面密度为2.8-3.6×1012cm-2
第二功能层为本征或弱n型掺杂InP,第二功能层的厚度50-300nm;
扩散控制层为本征或弱n型掺杂InGaAsP,扩散控制层的厚度为100-200nm;
顶层为本征或弱n型掺杂InP,顶层的厚度1.5-3μm。
步骤S2,对整个外延结构进行第一次锌扩散工艺,使锌扩散至扩散控制层。
具体地,参见图3所示,整个外延结构的顶层和扩散控制层分别变为p型掺杂InP和p型掺杂InGaAsP。
步骤S3,遮蔽部分外延结构,对未遮蔽部分外延结构进行第二次锌扩散工艺,使锌扩散至第二渐变层以形成TWSOA,被遮蔽部分外延结构形成WGAPD。
具体地,参见图3所示,在外延结构上采用等离子体增强化学PECVD(PlasmaEnhanced Chemical Vapor Deposition)工艺镀钝化膜,配合光刻、反应离子刻蚀RIE(Reactive Ion Etching)等工艺使部分外延结构被遮蔽。通过第二次锌扩散工艺,未被遮蔽的外延结构的第二功能层、第一功能层和第二渐变层均为p型掺杂。被遮蔽的外延结构的第二功能层、第一功能层和第二渐变层形成倍增层、电荷层以及过渡层。即未被遮蔽的外延结构形成TWSOA,被遮蔽的外延结构形成WGAPD。
步骤S4,参见图3和图4所示,刻蚀外延结构将TWSOA和WGAPD分离,并形成条形的TWSOA和WGAPD。
具体地,参见图3和图4所示,通过感应耦合等离子体ICP(Inductively CoupledPlasma)刻蚀工艺将TWSOA与WGAPD之间的区域刻蚀至缓冲层下方,使TWSOA与WGAPD隔离,避免电串扰。其中,TWSOA的长度L1为150-300μm,WGAPD长度L2为10-30μm,二者间隔距离δ为1-3μm。TWSOA宽度W1为1-2.5μm,WGAPD宽度W2为1.5-3μm。同时,将TWSOA和WGAPD条形两侧的区域刻蚀至缓冲层,以便后续制作电极。
需要说明的是,参见图5所示,批量生产中,多个光探测器可以在同一晶圆片采用本发明实施例的制造方法进行制造。
与现有技术相比,本发明实施中的高增益带宽积的光探测器的制造方法,将行波半导体光放大器TWSOA与波导雪崩光电二极管WGAPD集成,TWSOA将入射光放大后再由WGAPD转化为电信号,其中TWSOA提供光增益6~10dB(即4~10倍),WGAPD增益带宽积约120GHz,整个光探测器的增益带宽积能够达到1000GHz以上,大大高于现有的光探测器的增益带宽积。
作为优选的实施方式,分别制造TWSOA和WGAPD的电极。具体地,对TWSOA采用p型和n型电极结构,WGAPD采用GSG(接地-信号-接地)共面波导电极结构。
作为优选的实施方式,在TWSOA的入射光侧面制造增透膜,通过减少反射光达到增加光的透过率的目的。
参见图3所示,本发明实施例还提供一种高增益带宽积的光探测器,包括:衬底、波半导体光放大器TWSOA和波导雪崩光电二极管WGAPD。TWSOA和WGAPD沿入射光方向间隔设置在所述衬底上,优选地,衬底为半绝缘InP。WGAPD与TWSOA一一对齐的设有下列层:缓冲层、第一渐变层、有源层、第二渐变层、第一功能层、第二功能层、扩散控制层和顶层。
其中:所述缓冲层为n型掺杂InP;所述第一渐变层为本征或弱n型掺杂InGaAsP;所述有源层为本征或弱n型掺杂InGaAs;所述扩散控制层为p型掺杂InGaAsP;所述顶层均为p型掺杂InP;所述WGAPD的第二渐变层、第一功能层和第二功能层分别为本征或弱n型掺杂InGaAsP、n型掺杂InP和本征或弱n型掺杂InGaAsP;所述TWSOA的第二渐变层、第一功能层和第二功能层分别为p型掺杂InGaAsP、p型掺杂InP和p型掺杂InGaAsP。
与现有技术相比,本发明实施中的高增益带宽积的光探测器,将行波半导体光放大器TWSOA与波导雪崩光电二极管WGAPD集成,TWSOA将入射光放大后再由WGAPD转化为电信号,其中TWSOA提供光增益6~10dB(即4~10倍),WGAPD增益带宽积约120GHz,整个光探测器的增益带宽积能够达到1000GHz以上,大大高于现有的光探测器的增益带宽积。
作为优选的实施方式,TWSOA和WGAPD均设有电极。具体地,TWSOA采用p型和n型电极结构,WGAPD采用GSG(接地-信号-接地)共面波导电极结构。
作为优选的实施方式,TWSOA的入射光侧面设有增透膜,通过减少反射光达到增加光的透过率的目的。
作为优选的实施方式,缓冲层为n型掺杂InP,掺杂浓度为1-2×1018cm-3,缓冲层的厚度为0.5-1μm;
作为优选的实施方式,第一渐变层为本征(i,intrinsic)或弱n型掺杂In1- xGaxAsyP1-y(0<x<1,0<y<1且y/x=2.13,下文称InGaAsP),掺杂浓度小于2×1015cm-3,下文所谓弱n型掺杂InGaAsP即此浓度范围,第一渐变层的厚度50-100nm,采用多层成分不同或一层成分线性渐变的InGaAsP,由缓冲层过渡至有源层;
作为优选的实施方式,有源层为本征或弱n型掺杂InGaAs,有源层的厚度100-300nm。优选地,有源层可采用In0.511Ga0.489As或五组量子阱,可有效消除入射光偏振的影响;
作为优选的实施方式,所述WGAPD的第二渐变层为本征或弱n型掺杂InGaAsP,又称为过渡层,第二渐变层的厚度50-100nm,采用多层成分不同或一层成分线性渐变的InGaAsP,由有源层过渡至第一功能层。
作为优选的实施方式,所述WGAPD的第一功能层为n型掺杂InP,又称为电荷层,厚度为50-200nm,掺杂浓度为2-7×1017cm-3,掺杂面密度为2.8-3.6×1017cm-2
作为优选的实施方式,所述WGAPD的第二功能层为本征或弱n型掺杂InP,又称为倍增层,厚度为50-300nm。
作为优选的实施方式,所述TWSOA的第二渐变层、第一功能层和第二功能层分别为p型掺杂InGaAsP、p型掺杂InP和p型掺杂InGaAsP,各个层的厚度与所述WGAPD的对应的层相同。
作为优选的实施方式,扩散控制层为p型掺杂InGaAsP,扩散控制层的厚度为100-200nm。
作为优选的实施方式,顶层为p型掺杂InP,顶层的厚度1.5-3μm。
作为优选的实施方式,TWSOA的长度L1为150-300μm,WGAPD长度L2为10-30μm。TWSOA宽度W1为1-2.5μm,WGAPD宽度W2为1.5-3μm。所述TWSOA和WGAPD之间间隔的距离为1-3μm。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (9)

1.一种高增益带宽积的光探测器的制造方法,其特征在于,包括以下步骤:
在衬底上,依次生长缓冲层、第一渐变层、有源层、第二渐变层、第一功能层、第二功能层、扩散控制层和顶层形成外延结构;
对整个外延结构进行第一次锌扩散工艺,使锌扩散至扩散控制层;
遮蔽部分外延结构,对未遮蔽部分外延结构进行第二次锌扩散工艺,使锌扩散至第二渐变层以形成行波半导体光放大器TWSOA,被遮蔽部分外延结构形成波导雪崩光电二极管WGAPD;
刻蚀外延结构将TWSOA和WGAPD分离,并形成条形的TWSOA和WGAPD。
2.如权利要求1所述的制造方法,其特征在于:刻蚀TWSOA和WGAPD两侧的外延结构至缓冲层以形成条形的TWSOA和WGAPD。
3.如权利要求1所述的制造方法,其特征在于:刻蚀TWSOA和WGAPD之间的外延结构至缓冲层下方以将TWSOA和WGAPD分离。
4.如权利要求1所述的制造方法,其特征在于:在外延结构上采用等离子体增强化学PECVD工艺镀钝化膜,使部分外延结构被遮蔽。
5.如权利要求1所述的制造方法,其特征在于,还包括以下步骤:分别制造TWSOA和WGAPD的电极。
6.如权利要求1所述的制造方法,其特征在于,还包括以下步骤:在TWSOA的入射光侧面制造增透膜。
7.一种高增益带宽积的光探测器,其特征在于,包括:
衬底;
沿入射光方向间隔设置在所述衬底上的行波半导体光放大器TWSOA和波导雪崩光电二极管WGAPD;
所述WGAPD与TWSOA一一对齐的设有下列层:缓冲层、第一渐变层、有源层、第二渐变层、第一功能层、第二功能层、扩散控制层和顶层;
所述TWSOA和WGAPD上均设有电极,所述TWSOA的入射光侧面设有增透膜;
其中:所述缓冲层为n型掺杂InP;所述第一渐变层为本征或弱n型掺杂InGaAsP;所述有源层为本征或弱n型掺杂InGaAs;所述扩散控制层为p型掺杂InGaAsP;所述顶层均为p型掺杂InP;所述WGAPD的第二渐变层、第一功能层和第二功能层分别为本征或弱n型掺杂InGaAsP、n型掺杂InP和本征或弱n型掺杂InGaAsP;所述TWSOA的第二渐变层、第一功能层和第二功能层分别为p型掺杂InGaAsP、p型掺杂InP和p型掺杂InGaAsP。
8.如权利要求7所述的光探测器,其特征在于:所述WGAPD的第一功能层的厚度为50-200nm,所述第一功能层的掺杂浓度为(2-7)×1017cm-3,掺杂面密度为(2.8-3.6)×1012cm-2
9.如权利要求7所述的光探测器,其特征在于:所述WGAPD的第二功能层的厚度50-300nm。
CN201910616134.9A 2019-07-09 2019-07-09 一种高增益带宽积的光探测器及其制造方法 Active CN110364590B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910616134.9A CN110364590B (zh) 2019-07-09 2019-07-09 一种高增益带宽积的光探测器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910616134.9A CN110364590B (zh) 2019-07-09 2019-07-09 一种高增益带宽积的光探测器及其制造方法

Publications (2)

Publication Number Publication Date
CN110364590A CN110364590A (zh) 2019-10-22
CN110364590B true CN110364590B (zh) 2024-05-10

Family

ID=68218813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910616134.9A Active CN110364590B (zh) 2019-07-09 2019-07-09 一种高增益带宽积的光探测器及其制造方法

Country Status (1)

Country Link
CN (1) CN110364590B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687751B (zh) * 2020-12-29 2022-06-21 全磊光电股份有限公司 一种高速光电探测器结构及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518934A (en) * 1994-07-21 1996-05-21 Trustees Of Princeton University Method of fabricating multiwavelength infrared focal plane array detector
US6278820B1 (en) * 1999-04-28 2001-08-21 The Boeing Company High power and large bandwidth traveling-wave photodetector
JP2008047587A (ja) * 2006-08-11 2008-02-28 Sumitomo Electric Ind Ltd 光検出装置
CN102881761A (zh) * 2011-07-15 2013-01-16 常州光电技术研究所 Apd红外探测器及其制作方法
CN105206628A (zh) * 2015-10-09 2015-12-30 重庆鹰谷光电有限公司 大直径多象限光电探测器制作方法
CN105261667A (zh) * 2015-10-30 2016-01-20 中山大学 一种行波结构光探测器芯片及制备方法
CN105957908A (zh) * 2016-05-20 2016-09-21 中国科学院半导体研究所 倍增区控制的雪崩光电二极管及其制造方法
CN106299016A (zh) * 2016-11-07 2017-01-04 重庆文理学院 一种雪崩光电二极管及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI228320B (en) * 2003-09-09 2005-02-21 Ind Tech Res Inst An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518934A (en) * 1994-07-21 1996-05-21 Trustees Of Princeton University Method of fabricating multiwavelength infrared focal plane array detector
US6278820B1 (en) * 1999-04-28 2001-08-21 The Boeing Company High power and large bandwidth traveling-wave photodetector
JP2008047587A (ja) * 2006-08-11 2008-02-28 Sumitomo Electric Ind Ltd 光検出装置
CN102881761A (zh) * 2011-07-15 2013-01-16 常州光电技术研究所 Apd红外探测器及其制作方法
CN105206628A (zh) * 2015-10-09 2015-12-30 重庆鹰谷光电有限公司 大直径多象限光电探测器制作方法
CN105261667A (zh) * 2015-10-30 2016-01-20 中山大学 一种行波结构光探测器芯片及制备方法
CN105957908A (zh) * 2016-05-20 2016-09-21 中国科学院半导体研究所 倍增区控制的雪崩光电二极管及其制造方法
CN106299016A (zh) * 2016-11-07 2017-01-04 重庆文理学院 一种雪崩光电二极管及其制备方法

Also Published As

Publication number Publication date
CN110364590A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
US6104047A (en) Avalanche photodiode with thin built-in depletion region
US6515315B1 (en) Avalanche photodiode for high-speed applications
US10199525B2 (en) Light-receiving element and optical integrated circuit
US5055894A (en) Monolithic interleaved LED/PIN photodetector array
WO2008066696A2 (en) Sam avalanche photodiode detector with absorption region and multiplication region in individual isolated mesas
US20050285123A1 (en) Photodiode array and optical receiver device including the same
CN112993065A (zh) 一种基于Bragg光栅和横向波导结构的雪崩光电探测器
CN112786717A (zh) 一种微环耦合多通道集成光电探测器
CN116053336A (zh) 铟镓砷雪崩探测器表面陷光结构制备方法
CN210467859U (zh) 一种高速光电探测器
JPH03156980A (ja) 受光素子
CN110364590B (zh) 一种高增益带宽积的光探测器及其制造方法
JP3675223B2 (ja) アバランシェフォトダイオードとその製造方法
WO2022099747A1 (zh) 一种850nm波段高响应度探测器
CN112382689A (zh) 一种雪崩光电探测器及其制备方法
Hollenhorst et al. High frequency performance of planar InGaAs/InP avalanche photodiodes
KR100303471B1 (ko) 애벌란치형 광검출기 및 제작 방법
CN112768550A (zh) 一种用于提高背照式光电二极管响应度的结构及制作方法
CN210006751U (zh) 一种高增益带宽积的光探测器
KR100216524B1 (ko) 애벌런치 포토다이오드 및 그 제조방법
KR101066604B1 (ko) 아발란치 포토 다이오드의 제조 방법
JP2962069B2 (ja) 導波路構造半導体受光素子
CN115312630B (zh) 一种具有双漂移区的雪崩光电探测器的制备方法
CN114497265B (zh) 一种雪崩光电探测器
CN218299812U (zh) 一种雪崩光电探测器结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant