CN1103605C - 磁共振成象用可投药组合物及方法 - Google Patents

磁共振成象用可投药组合物及方法 Download PDF

Info

Publication number
CN1103605C
CN1103605C CN98801143A CN98801143A CN1103605C CN 1103605 C CN1103605 C CN 1103605C CN 98801143 A CN98801143 A CN 98801143A CN 98801143 A CN98801143 A CN 98801143A CN 1103605 C CN1103605 C CN 1103605C
Authority
CN
China
Prior art keywords
gas
microvesicle
phospholipid
hyperpolarized
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98801143A
Other languages
English (en)
Other versions
CN1236323A (zh
Inventor
H·图尼耶
M·施奈德
F·严
J·布洛绍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bracco Research SA
Original Assignee
Bracco Research SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bracco Research SA filed Critical Bracco Research SA
Publication of CN1236323A publication Critical patent/CN1236323A/zh
Application granted granted Critical
Publication of CN1103605C publication Critical patent/CN1103605C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1806Suspensions, emulsions, colloids, dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Medicinal Preparation (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及超极化气体在活机体磁共振成象(MRI)上的应用。本发明还涉及可投药的组合物、制剂,制备这些组合物、制剂的方法,和涉及超极化气体的造影剂,以及它们的MRI上的应用。

Description

磁共振成象用可投药组合物及方法
技术领域
本发明涉及超极化气体应用于磁共振成象(MRI)。MRI是特别适用于活的受试者诊断病情的屏幕显示技术。本发明还涉及可投药的组合物、制剂和涉及超极化气体的造影剂(对比剂),以及它们在MRI中的应用。
背景技术
在核磁共振(NMR)技术中,磁场作用于具有部分(fractional)自旋量子数的原子核,将其极化成在选定的方向内定向。在测定时,施加给定共振能的高频脉冲,使核自旋取向改变,并干扰定向分布;然后核以与时间有关的指数方式回到(松弛)初始状态,从而给出信号,该信号经电子处理成可记录的数据。当信号具有位置上的差异和足够的水平时,数据可被编排和成象于屏幕上。例如,将水的质子(1H)与有机组织接触产生的信号进行计算机处理,可使造影成象(MRI)能直接观察到活机体内部器官。因此,它在诊断、医疗和外科上是有力的工具。
尽管1H自然极化性弱(6.8×10-6),但由于有机组织中水相当丰富,因此氢核会提供足够的供处理的信号到所研究的器官的图象中,与所述器官不同部分接触的质子的自旋松弛上的差异提供了对比。事实上,虽包含氟(自旋1/2)的化合物在检测受试者的气体上已被研究作为NMR信号发生源,但在最近产生MRI图象前一直常规使用水质子。这是因为具有核自旋的大量其它有机原子,即某些天然存在的磷(31P)、碳(13C)、钠(23Na)、硫同位素等含量太低,不能提供可操作的成象信号。
最近,有人提出在患者MRI中使用某些极化状态的惰性气体的同位素,如3He、129Xe、131Xe、83Kr等。事实上,这些天然极化状态的同位素发出的信号极弱(比1H发出的信号实际上弱5000倍),但超极化将使其提高约104至105倍,此外,超极化气体的这些自旋松弛参数受其给予机体后所分布环境的性质极大的影响(即它们提供不同强度的信号排列),使它们成为MR成象中极有趣的造影剂。
通常在有或无外部施加的磁场存在下通过与光激发碱金属自旋交换相互作用得到超极化惰性气体(例如见G.D.Cates et al.,Phys.Rev.A 45(1992),4631;M.A.Bouchiat等,Phys.Rev.Lett.5(1960),373;X.Zeng等,Phys.Rev.A31(1985),260)。用这些技术,可能有90%或更多极化,正常松弛(T1、T2)之长(Xe冰为数分钟至数天)使随后处理(用于诊断目的)很可能进行。或者,通过亚稳定性交换可达到超极化,例如用无线电脉冲将3He激发到23S1态,用1.08μm循环极化激光光泵激(pumping)至23P亚稳态,并用基态原子通过亚稳定性交换碰撞将极化转化为基态(见L.D.Schaerer,Phys.Lett.180(1969),83;F.Lalo等.,AIP Conf.Proc.#131(Workshop on Polarized 3He Beams and Targets,1984)。
WO-A-95/27438揭示了超极化气体在诊断性MRI中的应用。例如,在外部超极化后,可将气体单独或与惰性或活性成分一起以气体或液体形式投予活机体。给予方式可通过吸入或直接静脉注射在体外与气体接触过的血液,该接触过的血液再输回机体。给予时,用NMR测定机体内感兴趣的腔内气体的分布,用常用的方法显示所述分布的计算值的形象表示。并未提供非胃肠道使用造影剂组合物或制剂的实际使用例子,也未提供外加组分的鉴定。
US-A-4,586,511公开了将有机氟化合物施用于活机体,并实施NMR测定,包括化学位移、松弛时间或自旋偶合,未提及MRI。
在H.Middleton et al.,Mag,res.Med.33(1995),271这篇文章中,公开了将极化3H引入死豚鼠肺,然后产生所述肺的MR成象。
P.Bachert et al.,Mag.Res.Med.36(1996),192公开了病人在吸入超极化3He后肺部MR成象。
M.S.Chawla等,(Abstract of the Meeting on MRI Techniques Vancouver1997)建议用盐水载液中的3He微泡悬浮液作MR血管成象。为了使微泡对浮力稳定,Chawla等建议将40%PEG(Mw 3,350)掺入载液。用注射器将气体经三通阀注入液体产生气泡。进行MRI体外测定,未报告体内试验。
尽管Chawla等的建议是有价值的,但由于气泡相当不稳定,不能考虑它的实际应用。尽管用Chawla等建议的气泡稳定剂,但按作者建议制备的稀有气体微泡的载液中的悬浮液在无或适度外压下数秒内便破坏。Chawla等的微泡如此不稳定这一事实使其从实用观点上来看是无用的,对于体内使用,即在患者的诊断应用也无益。
发明概述
本发明涉及在液态载体中被气/液界面限定的充气微泡,包含一种或几种两亲化合物稳定化的微泡或聚合物膜,其特征在于:气体包含超极化气体和卤化气体的混合物。所述充气微泡的平均大小为0.1-10μm,所述两亲化合物选自糖衍生物、天然或合成的两亲聚合物、聚氧乙烯-聚氧丙烯嵌段聚合物、磷脂等,所述磷脂包含选自胆碱、乙醇胺、丝氨酸、甘油、戊糖和己糖的亲水性基团,其中磷脂进一步包含选自磷酸联十六烷基酯、胆甾醇、麦角甾醇、植物甾醇、谷甾醇、羊毛甾醇、生育酚、棓酸丙酯、抗坏血酸棕榈酸酯、丁基化羟基甲苯和脂肪酸的物质。其中所述的聚合物选自天然或合成的蛋白质、烃类、氟化烃类、可聚合的磷脂和聚氨基酸。
本发明的一个主要实施例中,公开了用于体内血管和组织MR显象的可注射MRI造影组合物或制剂,该组合物或制剂的形式为超极化气体微泡在医药上可用的载液中的分散体或悬浮液。它们基于如下出乎意料的发现;将一些高Mw外来惰性气体(如碳氟化合物之类挥发性氟化物)少量加入超极化气体中,将其包在小泡(微泡或微球)中,具有显著的稳定化效果。例如,碳氟化物CnF(2n+2)(n以1-12为宜)在用两亲化合物如磷脂单层界面使气/液界面稳定化的3He或129Xe微泡中的比例可低至1-10体积%(见例如EP-A-0 474 833和EP-A-0 554 213),会明显增加压力下气泡的稳定性。
类似地,在一个变化的实施例中,本发明的组合物包括在充有超极化气体和部分稳定化气体的微球(代替上述微泡)的载液中的悬浮液或分散体。该微球是具有真实材料包膜(例如EP-A-0 458 745所描述的聚合物)的小泡。
具体来说,本发明还涉及一种水分散体,它包含充气微泡中两亲化合物选自糖衍生物、天然或合成的两亲聚合物、聚氧乙烯-聚氧丙烯嵌段聚合物、膦脂等的上述充气微泡,含有选自直链或交联多糖和寡糖、糖、亲水性聚合物和碘化的化合物的溶解的增粘剂或稳定剂,其与所含表面活性剂的重量比在1∶5-100∶1之间,该水性分散体进一步包含≤50重量%的非层状表面活性剂,该表面活性剂选自脂肪酸、脂肪酸和醇或多元醇的酯,及醇和/或多元醇的醚,所述的多元醇为聚亚烷基二醇、多亚烷基化糖和其它碳水化合物,及聚亚烷基甘油。所述的水性分散体含有107-108或108-109或1010-1011个微泡/ml。本发明的另一个目的是揭示制备上述制剂的技术,开始制表面活性剂稳定剂和两亲化合物的溶液,向该溶液鼓泡通入超极化气体和部分稳定化气体的混合物;或者,将干燥的两亲化合物粉末和/或表面活性剂粉末暴露于含部分稳定化气体的超极化气体,然后将经暴露的粉末分散在可投药的载液中。稀有气体可以高度纯化形式从商业途径购得,用本领域已知常用的方法富集可极化同位素。超极化可按WO-A-96/39912建议的进行,例如用光激发Rb蒸气进行电子-核自旋交换(G.D.Cates et al.,Phys.Rev.A 45(1992),4631;M.A.Bouchiat et la.Phys.Rev.Lett.5(1960),373;X.Zeng et al.,phys.Rev.A 31(1985),260);或者在含两亲化合物包括磷脂的液体中振荡或用声波处理氟化和超极化气体。
在另一个变化的实施例中,上述技术涉及制备充有含部分稳定化气体的超极化气体的微泡的悬浮液,这在一定的条件下用能聚合物质的乳液来达到,所述条件是聚合物的微球能形成并包裹所述含部分稳定化气体的超极化气体。
在本发明的另一个目的是公开包含原位制备上述含超极化气体和部分稳定化气体的可投药组合物所需组分的药盒,以及对受试者投药然后用常用的MRI方法成象的应用。
发明的详细描述
本发明基于如下出乎意料的发现,即可提供可投药的MRI造影组合物或制剂,它们包含充有至少一种超极化状态稀有气体和一种或多种惰性气体的混合物的小泡(微泡或微球)。超极化气体定义为气体组分A(主成分),惰性气体定义为气体组分B。气体B的分子量相对较高,即>80道尔顿。气体B的目的是通过稳定超极化稀有气体A在小泡内的存在来保护混合物,或换言之,防止小泡破坏或聚结,或所述超极化稀有气体通过小泡壁逃逸,小泡在具有普通表面活性剂、添加剂和稳定剂的载液的悬浮液中。可得到结合所需要的耐压性和在循环中的预定寿命的制剂,根据需要,这两个参数可加以控制。只要组分B以一定的最小比例存在,只要在标准条件下它在水中的溶解度低于0.0283ml气体/ml水,MRI造影组合物即能在体内外提供诊断上有用的图象,例如循环及邻近器官。成象组合物投予受试者后,用通常用的MRI仪器产生图象。迄今尚不清楚,有用的MR成象信号是否主要由仍包在小泡中的或一定时间后从中扩散出来的超极化气体部分所产生。
在大多数情况下,组分B在造影介质中的量从低至0.5体积%(分子量较高、水溶性较低的物质)到约30-40体积%。实际上,对于气体B处于浓度范围较高部分的混合物来说,气体B的保护效果趋于恒定,即一旦达到所需要的保护程度,通常就不再进一步提高混合物中B的比例。在这方面。,重要的是注意组分B对A和B混合物物理性质的影响,特别是在对消失的抑制和耐压力变化的方面,几乎与B单独使用(即纯的形式)相同。尽管,将B的比例保持在与合适的微泡稳定性相适应的最低范围是重要的,但这是为了受益于超极化气体产生成象信号的最高可能浓度。特别惊人的是,包在小泡中的超极化气体的松弛参数(这构成产生有用的MR图象的关键因素)并不明显地受到稳定化气体的存在或周围气/液界面上的物质的影响。事实上,氟化气体与超极化气体的混合存在可能具有减少后者在操作中可能失去极化的效果。
实验表明,分子量低于80的物质不适合作本发明气体混合物的“保护”成分;此外,对B的高分子量限制难以确定,试验的大多数化合物只要其分子量在80以上即为有效的保护剂。因此,分子量约为240道尔顿的化合物(如十氟丁烷)或290道尔顿的化合物(如全氟戊烷)被发现是很有效的“保护剂”成分。以60-99.5%(体积)的相应量存在的“主”成分A是超极化气体,如3He、129Xe、131Xe、83Kr或其类似物。这些超极化气体可按现有技术的方法得到。A可任选地由一种或几种超极化稀有气体与一定比例的“普通”气体如氧气、空气、氮气、二氧化碳或其混合物混合构成。然而,对于组分A来说,还可考虑其它非超极化形式的不太普通的气体,如氩气、氙气、氪气、CHClF2或氧化亚氮。
十分惊人的是,发现悬浮在水性载体中的由低至0.5%(体积)十二氟代戊烷或0.8%(体积)十氟丁烷与稀有气体(特别是极短暂的3He)混合组成的混合物微泡会产生稳定性极好的微泡,微泡耐压力变化,阻止氦逃逸,而不损害极化松弛。
现已表明,氦从微泡中快速消失是由于其分子量低,这使气体能容易地渗透外界介质。在极化129Xe的情况下,气泡消失是由于其在水性载体中的溶解度高。虽然可用各种表面活性剂、添加剂和稳定剂来减少微泡消失,本发明还提出用具有物质壁的微泡(微球)。设想具有天然或合成的聚合物如脂质双层(脂质体)或变性蛋白质如白蛋白制成的壁在有或无另外的添加剂存在下的微泡。过去注意到的一般微泡耐压力变化差,结果微泡计数损失,激励了对现能耐存在于血流中的压力变化的气体颗粒的研究。尽管回弹性的界面物质的存在证明了对压力下微泡稳定性有益,但是,其中掺入部分稳定剂气体(如六氟化硫或十二氟戊烷)仍会改善耐久性。使用这些气体的实验表明,充有以低比例的这些气体与超极化气体混合物的微泡或微球悬浮液在注射后确实很能抗循环中的破坏。这些初步发现的结果,鉴定出近200中不同的气体对于稳定含超极化气体的MRI造影剂可能是有用的。因此,出乎意料地发现,将这些气体中的几种以相当小的比例与超极化稀有气体混合,可能得到耐压的微泡。由于保护气体的存在,这些微泡会具有可接受的生理耐受性、合适的血中重吸收半衰期、合适的产生MRI信号的性能和好的耐压性。假定本发明的气体混合物的这一惊人的特性是因为组分A向周围介质的扩散被组分B的大气体分子所减慢。虽然这一惊人特性的原因尚未阐明,但可以假定,组分B的分子(尽管量很少)实际上的确在微泡或微球的界面上“塞住了孔”,因此阻止了低分子量3He或溶解度很大的129Xe通过跨膜扩散而逃逸。
用作本发明组合物和制剂中的组分B的较佳气体是室温下为气态或液态、但在体温下会立即挥发的物质。可列举如下物质:六氟化硫、四氟甲烷、氯化三氟甲烷、溴化三氟甲烷、溴化氯化二氟甲烷、二氯四氟乙烷、氯化五氟乙烷、六氟乙烷、六氟丙烯、八氟丙烷、六氟丁二烯、八氟-2-丁烯、八氟环丁烷、十氟丁烷、全氟环戊烷、十二氟戊烷。更佳的为八氟环丁烷、八氟丙烷和十氟丁烷。本发明的制剂较佳地包含选自以下气体的气体B,这些气体为四氟甲烷、六氟乙烷、六氟丙烯、八氟丙烷、六氟丁二烯、八氟-2-丁烯、八氟环丁烷、十氟丁烷、全氟环戊烷、十二氟戊烷,更佳地为六氟化硫和/或八氟环丁烷。
当充以本发明的造影剂气体混合物并分散于含有用的表面活性剂、添加剂和稳定剂的水性载体中时,形成的微泡提供有用的MRI造影剂组合物。除微泡外,本发明的造影组合物可含表面活性剂、添加剂和稳定剂。表面活性剂可包含一种或几种层状或片状成膜表面活性剂,它们用来稳定微泡短暂的气/液界面。还可使用水合剂和/或亲水性稳定剂化合物,如聚乙二醇、糖类(如乳糖或蔗糖、葡聚糖、淀粉和其它多糖),或其它常规添加剂(如聚丙二醇和聚氧乙烯二醇);脂肪醇与聚氧化烯基二醇的醚;脂肪酸和脂肪酸与聚氧化烯基脱水山梨醇的酯;皂类;甘油聚亚烷基硬脂酸酯;甘油聚氧化乙烯蓖麻油酸酯;聚亚烷基二醇的均聚物和共聚物;聚乙氧基化豆油和蓖麻油及其氢化衍生物;蔗糖或其它碳水化合物与脂肪酸、脂肪醇的醚和酯,它们可任选地聚氧化烯化;饱和或不饱和脂肪酸的一、二和三甘油酯;豆油与蔗糖的甘油酯。表面活性剂可以是成膜或非成膜的,可包括亚油基-卵磷脂型或聚亚乙基十二烷酸酯型可聚合的两亲化合物。在非成膜表面活性剂中,可使用聚氧丙烯和聚氧乙烯的嵌段共聚物。较佳的是,表面活性剂为成膜的,更佳的是选自磷脂酸、磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰甘油、磷脂酰肌醇、心磷脂、鞘磷脂及其混合物。
已经提到,本发明并不限于微泡悬浮液组成的造影剂作为用于本发明的磁化稀有气体的媒介物。任何充以造影剂气体混合物的合适的中空珠状颗粒均可合适地加以使用,如具有合成或天然聚合物或蛋白质制成的包膜的脂质体或微球。因此,已确定用白蛋白或脂质体、囊泡或胆影酸乙酯多孔颗粒充以本发明的气体造影剂混合物制成的微球提供了好的成象剂。用山梨醇或非离子型表面活性剂如聚氧乙烯/聚氧丙烯共聚物(商品名Pluronic)使微泡稳定的悬浮液与用纯超极化气体单独制成的原来的制剂相比,证明有同样好的成象能力。因此,相信本发明提供了MRI造影介质的更普遍的概念,及提供了对造影剂性质更好的控制。因此认为本发明的介质和含本发明介质的造影剂是将MRI技术的发展更推进一步的产品。
本发明还包括制备本MRI造影制剂的方法,其中,至少两种组分A和B的气体混合物悬浮于含普通表面活性剂和稳定剂的生理上可接受的水性载液,以便形成充气的气泡或微球。该方法的特征在于按如下关系式确定所述气体混合物中组分(B)的最小有效比例:
                      Bc%=K/ebMwt+C其中,Bc%为混合物中组分B的总量(体积),K和C分别为常数140和-10.8,Mwt表示超过80的组分B的分子量,b为操作温度和稳定微泡的膜(类脂膜)厚度的复合函数;但是,由于体温是基本恒定的,稳定剂膜结构基本上与类脂浓度无关,因此b值保持在0.011-0.012之间,可认为是一个常数。按此方法制成的造影剂包含耐压力变化性极好、重吸收相当快的微泡或微球的悬浮液。现在可将这两种性质控制到实际上定制的MRI剂的程度。用上面的标准,从任何可得到的在体温下是气体、分子量和水溶性如上所述的无毒(“of the shelf”)物质开始,制备具有所需要的特性的制剂。制备本制剂所需操作在文献EP-A-0 474 833,EP-A-0554 213和EP-A-0 458 745中有详述(其揭示内容在此引为参考)。
例如,在本发明范围内有益地使用的微球的制备实施例涉及将水包油乳剂制成聚合物有机溶液在水相载体中的液滴,使聚合物沉积在液滴与载体的界面上(例如用稀释法作界面沉积),在载体中的悬浮液中产生充水或溶剂的微泡,最后使悬浮液经受一些条件(如冷冻干燥),从而包在小泡中的溶剂蒸发,被本发明的气体混合物替代。上述方法中可具备合格条件的聚合物包括选自多糖、聚氨基酸、聚丙交酯和聚乙交酯类及其共聚物、丙交酯和内酯的共聚物、多肽、聚原酸酯、聚二噁烷酮、聚-β-氨基酮、聚磷腈、聚酐和聚(氰基丙烯酸烷基酯)的可生物降解的聚合物。更具体地可列举聚谷氨酸或聚天冬氨酸衍生物及其与其它氨基酸的共聚物。还可将添加剂与聚合物一起掺合作为掺合物,例如增塑剂,如肉豆蔻酸异丙酯、单硬脂酸甘油酯等,用来控制柔韧性,表面活性剂之类两亲物质和卵磷脂等磷脂,通过增加孔隙来控制渗透性,以及疏水性化合物如石蜡等高分子量烃,用来降低孔隙性。
或者,如WO-A-96/04018所述,聚合物可包含氟原子,即与含F化合物如全氟甲基和全氟异丁基共价结合。要不然,可通过与全氟化气体如全氟丙烷、全氟化烷基酯和全氟化酰卤和酸酐的反应,引入氟化基团。
另外的聚合物对于本发明的微球也是合适的,即WO-A-96/39912所公开的氟化和/或氘化的聚硅氧烷和聚硅烷。
本发明还包括一种干制剂,该制剂包含储存于含一种或几种超极化气体(气体组分A)和一种或几种保护气体(气体组分B)的气体混合物中的表面活性剂、添加剂和稳定剂。该干制剂包含冷冻干燥的成膜表面活性剂和可任选地包含水合剂,如聚乙二醇或其它合适的亲水性物质。注射前,将干制剂与生理上可接受的载液混合,形成本发明的MRI造影组合物。成膜表面活性剂较佳为选自磷脂酸、磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰甘油、磷脂酰肌醇、心磷脂、鞘磷脂的磷脂及其混合物。
在一个变化的实施例中,可将非离子型表面活性剂如聚氧乙烯和聚氧丙烯共聚物与成膜表面活性剂如二棕榈酰磷脂酰甘油混合用来保证微泡短暂的气/液包膜的稳定性。如前所述,水性液态载体可进一步包含亲水性添加剂,如甘油、PEG、山梨醇等。此外,有用的本发明制剂还可用含有吐温20、山梨醇、豆油和任选的其它添加剂的盐水溶液来制备。
本发明还提供两组分的药盒,包含储存于气体混合物中的表面活性剂、添加剂和稳定剂的干制剂作为第一组分,及生理上可接受的载液作为第二组分,它与第一组分接触,形成MRI造影制剂。药盒可包括两个分开的小瓶系统,每个小瓶包含一种组分,它们互相连在一起,以便在造影剂使用前,这两个组分可方便地放在一起。很清楚,含干制剂的小瓶同时包含按本发明的组分A和B的气体混合物。药盒可以很方便地是预充两种组分的注射器的形式,并可进一步包括将针头连接在其一端的工具。
本发明还提供三组分药盒,包含第一组分,为储存于稳定化气体(B)分压下的表面活性剂、添加剂和稳定剂的干制剂;第二组分,超极化气体(A)和第三组分,生理上可接受的载液。
本发明进一步包括制备造影制剂的方法,该制剂具有含A和B的MRI造影气体混合物的微泡,以及它们在患病的人或动物器官成象上的应用。
当用于人或动物体器官成象时,本发明的MRI造影介质以在上述生理上可接受的载液中的微泡水悬浮液的形式给患者投用,用MRI仪对患者进行扫描,从而产生器官成象或机体的部分成象。
下面的实施例进一步阐述本发明:
实施例1
将58mg二花生酰磷脂酰胆碱(DAPC)、2.4mg二棕榈酰磷脂酸(DPPA)(以上均购自Avanti Polar Lipids(USA))和3.94g聚乙二醇(PEG 4000,购自Siegfried,CH)于60℃溶于叔丁醇(20ml)。将此澄清的溶液快速冷却至-45℃,冷冻干燥成白色固体。将所述白色固体等分量(25mg)加到10ml玻璃小瓶中。
用橡皮塞塞住小瓶,真空下抽空。然后,将氙气与不同量碳氟化合物的混合物经针头通过塞子引入小瓶。
                表1
    气体A    气体B   气体B体积%     PcmmHg
    氙气     -     0     50
    氙气     C4F8     5     147
    氙气     C4F8     10     181
在每个小瓶中注入3%甘油水溶液10ml,然后剧烈混合,得到气泡悬浮液。用浊度测定法(如EP-A-0 554 213所述)测定耐压性Pc。表中的数值相应于原来存在的气泡约一半被破坏的压力(大气压以上)。用Coulter Multisizer II(coulterElectronics Ltd)测定气泡浓度和平均气泡大小。平均气泡大小为2.0μm。
上面的结果表明,已有5%C4F8的氙气气泡抗破坏性提高很多。而且,如NMR所确认的那样,含C4F8的超极化氙气样品的极化在储存条件下比无碳氟化合物的样品维持时间长。
实施例2
如实施例1所述,将下面的成分一起匀化制成无水制剂:
二硬脂酰磷脂酰胆碱(DSPC)30mg
二棕榈酰磷脂酰甘油(DPPG)30mg
聚乙二醇4000(PEG)3.94g
叔丁醇(t.BuOH)20ml
将20mg上述混合物样品放在塞上橡皮塞的小瓶中,真空下抽空后,在其中引入气体或气体混合物(表2)。
                                    表2
 气体(A+%B)       气泡计数(×106)       包入体积(μl/ml)        Pc 50%mmHg
    0小时  6小时   0小时   6小时   0小时   6小时
 He(+0%B)     14.4   ---    0.1   ---    ind    ind
 Xe(+0%B)     7.4   ---    0.1   ---    ind    ind
 He(+10%C4F10)     320   310    7.4   8.1    438    400
 He(+20%C4F10)     311   300    7.1   7.4    532    477
 Xe(+10%C4F10)     320   311    5.6   5.1    553    334
 Xe(+20%C4F10)     421   428    7.7   7.2    588    470
通过针头在小瓶中引入10ml盐水,并搅拌产生气泡悬浮液。在表2中,标明了所用的气体、气泡计数(最初和6小时后)、包入气体的体积(μl/ml),及将气泡计数减半(参考实施例1)所需施加的压力mmHg。注意到纯He和Xe在6小时后无结果,因为气泡均破坏了。“ind”表示数值太低,无法精确测定。
上面的结果又强调了组分B的比例对稳定气泡的重要性。
实施例3
用实施例2的方法,从DSPC(30mg)、DPPG(30mg)、PEG(3g)和叔丁醇(20ml)的混合物中取出20mg的等分样品。将样品放在小瓶中,暴露于各种气体或气体混合物中(见下表)。如前面的实施例所述,产生气泡悬浮液和进行试验。结果收集在下面的表中。
                                        表3
  气体B(10%)   时间(小时)        气泡计数(×106)       包入体积(ul/ml)     Pc 50%mmHg
  He   Xe   He   Xe   He   Xe
  无   t=0   12.8   12.9   0.7   0.2   43.7   ind
  t=6   7.1   9.5   0.1   0.1   ind   ind
  CF4   t=0   216   143   4.8   4.7   115   131
  t=6   106   105   4.1   3.7   135   121
  C2F6   t=0   262   20l   6.1   4.6   320   330
  t=6   241   147   5.8   3.8   311   267
  C3F8   t=0   249   272   6.3   6.2   383   399
  t=6   217   262   6.8   5.7   328   288
  C4F10   t=0   318   336   7.4   5.5   438   553
  t=6   310   343   8.1   5.1   400   335
  C5F12   t=0   313   360   7.2   5.4   429   434
  t=6   311   367   7.3   5.2   379   357
  C6F14   t=0   174   136   6.0   7.6   232   228
  t=6   190   123   6.6   7.0   231.3   229
上表的数据又表明,稀有气体中加入各种碳氟化合物对微泡稳定性的影响。
实施例4
用C4F10作为保护气体B,在超极化3He中以各种比例存在,重复实施例3的操作。条件和结果总结于下面的表4中。
                                    表4
%C4F10 气泡计数×106t小时 包入体积(ml/ml)t小时 Pc50%mmHgt小时
    0     6     0     6   0     6
    0     12.8     7.1     0.7     0.1   44     ---
    1     143     64.6     2.0     1.4   91     116
    3     189     150     3.0     2.9   266     280
    5     147     120     3.3     3.6   265     262
    10     295     260     4.5     4.5   431     429
    20     240     285     8.5     8.3   500     452
表5总结了用Xe进行上面试验时的结果。
                               表5
%C4F10       气泡计数×106t小时 包入体积(ml/ml)t小时       Pc50%mmHgt小时
     0    6     0     6     0     6
    0     12.9    9.6     0.2     0.1     ---     ---
    1     153    94.3     2.0     1.7     178     124
    3     170    133     3.6     3.0     265     170
    5     193    171     3.8     3.9     343     224
    10     284    278     5.1     5.0     436     323
    20     315    316     7.2     6.7     548     455
表4和表5的结果表明,低至1%的十氟丁烷对超极化的Xe和He均已有明显的稳定化效果。
实施例5
用Oxford磁铁于2泰斯拉得到的按实施例3制备的造影剂(90%超极化Xe和10%十氟丁烷)的NMR谱见图1。129Xe峰值在23.55MHz。

Claims (32)

1.在液态载体中被气/液界面限定的充气微泡,包含一种或几种两亲化合物稳定化的微泡或聚合物膜,其特征在于:气体包含超极化气体和卤化气体的混合物。
2.如权利要求1所述的微泡,其中超极化气体选自3氦、氩、129氙或氪。
3.如权利要求2所述的微泡,其中超极化气体为氦或氙。
4.如权利要求1所述的微泡,其中所述卤化气体是氟化的。
5.如权利要求4所述的微泡,其中所述卤化气体为全氟化的。
6.如权利要求4所述的微泡,其中所述氟化气体选自SF6、CF4、C2F6、C3F6、C3F8、C4F6、C4F8、C4F10、C5F10、C5F12、C6F14中的至少一种或其混合物。
7.如权利要求1、2、3、4、5或6所述的微泡,其平均大小为0.1-10μm。
8.如权利要求1所述的微泡,其中所述两亲化合物选自糖衍生物、天然或合成的两亲聚合物、聚氧乙烯-聚氧丙烯嵌段聚合物、磷脂等。
9.如权利要求8所述的微泡,其中所述磷脂包含选自胆碱、乙醇胺、丝氨酸、甘油、戊糖和己糖的亲水性基团。
10.如权利要求8所述的微泡,其中所述磷脂包含成膜饱和磷脂。
11.如权利要求8所述的微泡,其中所述磷脂选自磷脂酸、磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰甘油、磷脂酰肌醇、心磷脂和鞘磷脂。
12.如权利要求11所述的微泡,其中磷脂进一步包含选自磷酸联十六烷基酯、胆甾醇、麦角甾醇、植物甾醇、谷甾醇、羊毛甾醇、生育酚、棓酸丙酯、抗坏血酸棕榈酸酯、丁基化羟基甲苯和脂肪酸的物质。
13.如权利要求12所述的微泡,其中磷脂包括卵磷脂或其衍生物。
14.如权利要求8所述的微泡,包括氟化的高分子量烃气体,并被所述单层磷脂物质稳定。
15.如权利要求1所述的微泡,其中所述聚合物选自天然或合成的蛋白质、烃类、氟化烃类、可聚合的磷脂和聚氨基酸。
16.如权利要求1所述的微泡,其中所述聚合物选自多糖、聚氨基酸、聚丙交酯和聚乙交酯类及其共聚物、丙交酯和内酯的共聚物、多肽、聚原酸酯、聚二噁烷酮、聚-β-氨基酮、聚磷腈、聚酐和聚(氰基丙烯酸烷基酯)的可生物降解的聚合物。
17.如权利要求1或2所述的微泡,其中膜聚合物选自聚谷氨酸或聚天冬氨酸衍生物及其与其它氨基酸的共聚物。
18.水性分散体,包含权利要求8或权利要求15所述的充气微泡。
19.水性分散体,包含权利要求8所述的充气微泡,含有选自直链或交联多糖和寡糖、糖、亲水性聚合物和碘化的化合物的溶解的增粘剂或稳定剂,其与所含表面活性剂的重量比在1∶5-100∶1之间。
20.如权利要求19所述的水性分散体,进一步包含≤50重量%的非层状表面活性剂,该表面活性剂选自脂肪酸、脂肪酸和醇或多元醇的酯,及醇和/或多元醇的醚。
21.如权利要求20所述的水性分散体,其中多元醇为聚亚烷基二醇、多亚烷基化糖和其它碳水化合物,及聚亚烷基甘油。
22.一种水性分散体,它含有107-108个微泡/ml的权利要求1所述的充气微泡。
23.一种水性分散体,它含有108-109个微泡/ml的权利要求1所述的充气微泡。
24.一种水性分散体,它含有1010-1011个微泡/ml的权利要求1所述的充气微泡。
25.含有权利要求1所述微泡的MRI造影剂的制备方法,其特征在于:在包含一种或几种能产生含充气微泡的表面活性剂的载液中产生含生物相容性超极化气体和卤化气体的充气微泡。
26.如权利要求25所述的方法,包括在含两亲化合物包括磷脂的液体中振荡或用声波处理氟化和超极化气体。
27.如权利要求25所述的方法,其中造影剂是用冷冻干燥法分离的。
28.用权利要求25的方法制备的MRI造影剂。
29.按权利要求26制备的用于患病的人和动物器官和组织MRI成象的诊断MRI造影剂。
30.按权利要求26的方法制备的双功能MRI和超声造影剂。
31.包含干制剂的药盒,其特征在于:包含能在超极化气体和至少一种生物相容性卤化气体的混合物的气氛下形成权利要求1所述充气微泡的表面活性剂材料,及水性载液。
32.包含干制剂的药盒,其特征在于:包含储存于稳定化气体的分压下的能形成权利要求1所述充气微泡的表面活性剂材料,第二种组分超极化气体和第三种组分生理上可接受的液。
CN98801143A 1997-08-12 1998-08-11 磁共振成象用可投药组合物及方法 Expired - Fee Related CN1103605C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP97810563.3 1997-08-12
EP97810563 1997-08-12

Publications (2)

Publication Number Publication Date
CN1236323A CN1236323A (zh) 1999-11-24
CN1103605C true CN1103605C (zh) 2003-03-26

Family

ID=8230338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98801143A Expired - Fee Related CN1103605C (zh) 1997-08-12 1998-08-11 磁共振成象用可投药组合物及方法

Country Status (12)

Country Link
US (1) US6042809A (zh)
EP (1) EP0968000B1 (zh)
JP (1) JP4317270B2 (zh)
CN (1) CN1103605C (zh)
AT (1) ATE252916T1 (zh)
AU (1) AU726115C (zh)
CA (1) CA2268324C (zh)
DE (1) DE69819309T2 (zh)
ES (1) ES2209167T3 (zh)
IL (1) IL129173A (zh)
NO (1) NO313865B1 (zh)
WO (1) WO1999007415A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922304A (en) * 1989-12-22 1999-07-13 Imarx Pharmaceutical Corp. Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents
IL126347A (en) 1996-03-29 2003-11-23 Lawrence Berkeley National Lab Enhancement of nmr and mri in the presence of hyperpolarized noble gases
JP2002507438A (ja) 1998-03-18 2002-03-12 メディ−フィジックス・インコーポレイテッド 溶解化した極性化129Xeを用いる肺および心臓脈管構造の映像化および血流を上昇するMR方法
AU747311B2 (en) 1998-06-17 2002-05-16 Medi-Physics, Inc. Hyperpolarized gas transport device and associated transport method
US6128918A (en) * 1998-07-30 2000-10-10 Medi-Physics, Inc. Containers for hyperpolarized gases and associated methods
US6423387B1 (en) 1998-06-17 2002-07-23 Medi-Physics, Inc. Resilient containers for hyperpolarized gases and associated methods
US6159444A (en) * 1998-09-11 2000-12-12 The Regents Of The University Of California NMR/MRI with hyperpolarized gas and high Tc SQUID
EP1118009A1 (en) * 1998-09-28 2001-07-25 Nycomed Imaging As Method of magnetic resonance imaging
US6286319B1 (en) 1998-09-30 2001-09-11 Medi-Physics, Inc. Meted hyperpolarized noble gas dispensing methods and associated devices
US6237363B1 (en) 1998-09-30 2001-05-29 Medi-Physics, Inc. Hyperpolarized noble gas extraction methods masking methods and associated transport containers
US6523356B2 (en) 1998-09-30 2003-02-25 Medi-Physics, Inc. Meted hyperpolarized noble gas dispensing methods and associated devices
US6284222B1 (en) 1998-11-03 2001-09-04 Medi--Physics, Inc. Hyperpolarized helium-3 microbubble gas entrapment methods
AU4686899A (en) 1999-02-23 2000-09-14 Medi-Physics, Inc. Portable system for monitoring the polarization level of a hyperpolarized gas during transport
US6295834B1 (en) 1999-06-30 2001-10-02 Medi-Physics, Inc. NMR polarization monitoring coils, hyperpolarizers with same, and methods for determining the polarization level of accumulated hyperpolarized noble gases during production
US6308705B1 (en) * 1999-12-21 2001-10-30 Siemens Aktiengesellschaft Integrated lung therapy method
JP2003526437A (ja) * 2000-03-13 2003-09-09 メディ−フィジックス・インコーポレイテッド ガス状過分極129Xeの直接注射を使用する診断処置並びに関連するシステムおよび生成物
US7061237B2 (en) * 2000-07-13 2006-06-13 The Regents Of The University Of California Remote NMR/MRI detection of laser polarized gases
US6652833B2 (en) 2000-07-13 2003-11-25 The Regents Of The University Of California Functionalized active-nucleus complex sensor
CA2414610A1 (en) 2000-07-13 2002-01-24 Medi-Physics, Inc. Diagnostic procedures using 129xe spectroscopy characteristic chemical shift to detect pathology in vivo
US20030165431A1 (en) * 2000-07-13 2003-09-04 The Regents Of The University Of California Method for detecting macromolecular conformational change and binding information
US7179450B2 (en) 2001-09-20 2007-02-20 Medi-Physics, Inc. Methods for in vivo evaluation of pulmonary physiology and/or function using NMR signals of polarized Xe
CA2418229A1 (en) * 2002-05-16 2003-11-16 Rohan Dharmakumar Microbubble construct for sensitivity enhanced mr manometry
NO20022960D0 (no) 2002-06-19 2002-06-19 Medinnova Sf Apparat og metode for intubasjonsovervåkning
GB0218868D0 (en) 2002-08-14 2002-09-25 Nasir Muhammed A Improved airway management device
US20040167400A1 (en) * 2002-11-27 2004-08-26 Accuimage Diagnostics Corp. Method and apparatus for improving a virtual colonoscopy and A CT angiography
US20050025710A1 (en) * 2003-07-29 2005-02-03 Michel Schneider Reconstitutable formulation and aqueous suspension of gas-filled microvesicles for diagnostic imaging
DE102005026604A1 (de) * 2005-06-09 2006-12-14 Membrana Gmbh Verfahren zum Lösen von Gasen mit kurzlebigen physikalischen Eigenschaften in einer Flüssigkeit
EP1940475A4 (en) * 2005-09-28 2010-05-26 Harvard College HYPERPOLARIZED SOLID MATERIALS WITH LONG SPIN RECOVERY TIMES FOR USE AS IMAGING MEANS IN MAGNETIC RESONANCE TOMOGRAPHY
AU2006326596A1 (en) * 2005-12-10 2007-06-21 The President And Fellows Of Harvard College In situ hyperpolarization of imaging agents
JP2009523172A (ja) * 2006-01-11 2009-06-18 プレジデント・アンド・フエローズ・オブ・ハーバード・カレツジ 造影剤のエクスビボ過分極
EP1986702A4 (en) 2006-02-21 2012-12-12 Avrum Belzer METHODS, SYSTEMS AND COMPOSITIONS FOR HYPERPORALIZATION
US8703102B2 (en) 2008-04-04 2014-04-22 Millikelvin Technologies Llc Systems and methods for producing hyperpolarized materials and mixtures thereof
GB0811856D0 (en) * 2008-06-27 2008-07-30 Ucl Business Plc Magnetic microbubbles, methods of preparing them and their uses
US20100092390A1 (en) * 2008-10-09 2010-04-15 President And Fellows Of Harvard College Methods for Making Particles Having Long Spin-Lattice Relaxation Times
JP2013180956A (ja) * 2012-02-29 2013-09-12 Sunstar Engineering Inc 殺菌剤組成物
US20140288411A1 (en) * 2013-03-12 2014-09-25 The Regents Of The University Of California Gas vesicle magnetic resonance imaging contrast agents and methods of using the same
CN103807598B (zh) * 2014-03-04 2016-06-01 合肥工业大学 一种储存成像气体的储气装置
CN103815907B (zh) * 2014-03-04 2016-04-06 合肥工业大学 用于人体呼吸系统检测成像的成像气体及其储气装置
WO2019204506A1 (en) 2018-04-17 2019-10-24 California Institute Of Technology Cross amplitude modulation ultrasound pulse sequence
JP7313856B2 (ja) * 2019-03-27 2023-07-25 日本液炭株式会社 キセノンウルトラファインバブル発生剤
CN111110657A (zh) * 2020-02-14 2020-05-08 徐州医科大学 可双模成像及靶向治疗乳腺癌的纳米微球及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015244A2 (en) * 1990-04-02 1991-10-17 Sintetica S.A. Stable microbubbles suspensions injectable into living organisms
WO1996040585A1 (en) * 1995-06-07 1996-12-19 The Regents Of The University Of Michigan METHOD AND SYSTEM FOR PRODUCING POLARIZED 129Xe GAS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922304A (en) * 1989-12-22 1999-07-13 Imarx Pharmaceutical Corp. Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents
US5585112A (en) * 1989-12-22 1996-12-17 Imarx Pharmaceutical Corp. Method of preparing gas and gaseous precursor-filled microspheres
AU636481B2 (en) * 1990-05-18 1993-04-29 Bracco International B.V. Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography
US5785983A (en) * 1991-05-23 1998-07-28 Euroresearch Srl Non-porous collagen sheet for therapeutic use, and the method and apparatus for preparing it
IL104084A (en) * 1992-01-24 1996-09-12 Bracco Int Bv Sustainable aqueous suspensions of pressure-resistant and gas-filled blisters, their preparation, and contrast agents containing them
US5545396A (en) * 1994-04-08 1996-08-13 The Research Foundation Of State University Of New York Magnetic resonance imaging using hyperpolarized noble gases
ES2197986T3 (es) * 1996-02-19 2004-01-16 Amersham Health As Mejoras introducidas en o relacionadas con agentes de contraste.
IL126347A (en) * 1996-03-29 2003-11-23 Lawrence Berkeley National Lab Enhancement of nmr and mri in the presence of hyperpolarized noble gases
US5694934A (en) * 1996-04-17 1997-12-09 Beth Israel Hospital MR studies in which a paramagnetic gas is administered to a living patient

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015244A2 (en) * 1990-04-02 1991-10-17 Sintetica S.A. Stable microbubbles suspensions injectable into living organisms
WO1996040585A1 (en) * 1995-06-07 1996-12-19 The Regents Of The University Of Michigan METHOD AND SYSTEM FOR PRODUCING POLARIZED 129Xe GAS

Also Published As

Publication number Publication date
JP2001501977A (ja) 2001-02-13
CN1236323A (zh) 1999-11-24
CA2268324C (en) 2007-06-12
DE69819309D1 (de) 2003-12-04
NO991688D0 (no) 1999-04-09
JP4317270B2 (ja) 2009-08-19
IL129173A0 (en) 2000-02-17
DE69819309T2 (de) 2004-07-15
EP0968000A1 (en) 2000-01-05
US6042809A (en) 2000-03-28
EP0968000B1 (en) 2003-10-29
AU8458798A (en) 1999-03-01
ATE252916T1 (de) 2003-11-15
IL129173A (en) 2002-03-10
AU726115B2 (en) 2000-11-02
CA2268324A1 (en) 1999-02-18
ES2209167T3 (es) 2004-06-16
NO313865B1 (no) 2002-12-16
AU726115C (en) 2001-12-20
WO1999007415A1 (en) 1999-02-18
NO991688L (no) 1999-06-09

Similar Documents

Publication Publication Date Title
CN1103605C (zh) 磁共振成象用可投药组合物及方法
JP4067116B2 (ja) オストワルド係数の低いフッ素化エーテルで安定化させたガスエマルジョン
CN1068229C (zh) 超声对比介质、含该介质的对比剂及方法
US6372195B1 (en) Mixed gas microbubble compositions
CN1055413C (zh) 一种适用于注射进活体血管和体腔内的组合物的制备方法
JP4229918B2 (ja) 超音波のコントラスト増強のためのリン脂質を含む安定な気体エマルジョン
WO1996040281A9 (en) Gas emulsions stabilized with fluorinated ethers having low ostwald coefficients
CN1121315A (zh) 造影剂及其改进
CN117919456A (zh) 脂质微泡及其制备方法
JP2000504317A (ja) 気泡懸濁物と超音波造影剤への応用
US20030138380A1 (en) Gas emulsions stabilized with fluorinated ethers having low Ostwald coefficients
CN1190899A (zh) 造影剂的改进
AU1759000A (en) Gas emulsions stabilized with flourinated ethers having low Ostwald coefficients
MXPA97009564A (es) Emulsiones de gas estabilizadas con eteres fluorados que tienen coeficientes bajos de ostwald

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee