CN110346793A - 一种分布式阵列雷达迭代自适应高分辨成像方法 - Google Patents

一种分布式阵列雷达迭代自适应高分辨成像方法 Download PDF

Info

Publication number
CN110346793A
CN110346793A CN201910670738.1A CN201910670738A CN110346793A CN 110346793 A CN110346793 A CN 110346793A CN 201910670738 A CN201910670738 A CN 201910670738A CN 110346793 A CN110346793 A CN 110346793A
Authority
CN
China
Prior art keywords
matrix
signal
array radar
distributive array
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910670738.1A
Other languages
English (en)
Inventor
张永超
徐帆云
任叶涵
毛德庆
黄钰林
裴季方
张寅�
郭德明
杨建宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910670738.1A priority Critical patent/CN110346793A/zh
Publication of CN110346793A publication Critical patent/CN110346793A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/42Diversity systems specially adapted for radar

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供了一种分布式阵列雷达迭代自适应高分辨成像方法,属于雷法成像技术领域。本发明针对传统分布式阵列雷达的构型依赖问题,首先利用分布式阵列雷达稀疏布阵的空间关系,导出分布式雷达阵列空间谱分布;其次,利用分布式雷达空间谱分布和系统参数,构造分布式阵列雷达系统观测矩阵;最后,为降低成像处理过程的构型依赖性,采用迭代自适应成像处理方法,实现分布式阵列雷达高分辨成像。本发明通过目标求解过程中的迭代自适应收敛,降低了分布式阵列雷达对构型的依赖性。

Description

一种分布式阵列雷达迭代自适应高分辨成像方法
技术领域
本发明属于雷达成像技术领域,特别涉及一种分布式阵列雷达迭代自适应高分辨成像方法。
背景技术
雷达利用反射电磁波中携带的目标信息,获得雷达图像,在灾情监测、目标追踪等场景中得到广泛应用。但单个雷达平台由于其天线孔径的限制,难以获得高分辨图像。分布式阵列雷达利用多个平台在空间上分集关系形成大的观测孔径,为雷达高分辨成像提供条件。而分布式阵列雷达的空间分布关系,对目标观测信息的获取产生着至关重要的影响。
现有技术中,通过建立一种分布式多通道雷达成像观测模型,采用非线性傅里叶变化方法获得目标成像结果,但是该方法对雷达构型分布的要求较为严格。另外。可基于MUSIC方法的分布式雷达成像方法,但是场景中目标散射点的数量需要通过盖尔圆盘准则进行估计,该方法对目标数量和雷达构型分布均较为敏感。
综上可知,上述方法能够用于分布式阵列雷达成像应用中,但是上述方法对阵列雷达空间构型依赖性强,工程应用难度大。
发明内容
本发明的目的在于针对分布式雷达在成像过程中对空间构型的依赖性,提出一种分布式阵列雷达迭代自适应高分辨成像方法,通过在目标求解过程中的迭代自适应收敛,降低分布式阵列雷达成像的空间构型依赖性。
一种分布式阵列雷达迭代自适应高分辨成像方法,包括以下步骤:
S1、根据发射信号和回波信号,构造滤波因子,得到频域回波信号;
S2、构建分布式阵列雷达测量矩阵,融合多成像通道的频域回波信号,将所述频域回波信号转化为矩阵形式;
S3、构建自相关矩阵,迭代自适应目标散射系数反演;
S4、输出目标成像结果。
进一步地,所述步骤S1包括:
所述分布式阵列雷达包括M个发射机和N个接收机,在球坐标中,第m个发射机的位置为第n个接收机的位置为目标散射点的位置为其中,分别表示发射机、接收机及点目标的斜距、俯仰角及方位角;
在二维成像场景中,发射带宽为B的窄带信号,第m个发射机的发射信号为
其中,um(t)、fm∈[-B/2,B/2]及φm分别表示第m个发射机的幅度包络、发射信号载频及初始相位,不同发射信号的幅度包络相互正交;第n个接收机接收到的第m个发射机的回波信号为
其中,Ω表示二维成像区域,σ(r)表示在极坐标系内场景中点的目标散射系数,τmn(r)表示发射信号的传播延迟,nmn(t)表示加性高斯白噪声;
将所述回波信号gmn(t)和发射信号sm(t)处理后构造滤波因子,滤去与积分变量r无关的参数,得到频域回波信号Ymn(f)
其中,σxy表示直角坐标系内r=(x,y)位置处的目标散射系数,Nmn(f)表示加性高斯白噪声的频谱,表示空间谱,表示为
其中,c表示电磁波的传播速度。
进一步地,所述步骤S2包括:
所述发射信号带宽B内的Ws个频率采样点分别为将成像场景划分为Kx行Ky列共K=Kx×Ky个目标点,第k(k=1,2,...,K)个目标点的目标散射系数为σk,将所有目标散射系数依次排列为列向量形式,即
σ=(σ12,...,σK)T
其中,(·)T表示转置运算;
构建分布式阵列雷达测量矩阵H,融合M个发射机、目标点、N个接收机构成的个成像通道的回波信号,所述回波频域回波信号转化为矩阵形式,即
Y=Hσ+N
其中,N表示噪声矩阵,Y=(Y11,Y12,...,Y1N,Y21,...,YMN)T表示回波矢量矩阵,H=(H11,H12,...,H1N,H21,...,HMN)T表示分布式阵列雷达测量矩阵,表示为
其中,(ws=1,...,WS;k=1,...,K)。
进一步地,所述步骤S3包括:
构建自相关矩阵R
其中,hk表示矩阵H的第k列数据,矩阵P=diag(p1,p2,...,pK),pk=|σk|2;定义代价函数为
其中,Qk=R-pkhk(hk)H表示相关矩阵;初始化矩阵P为单位矩阵,对于k=1,2,...,K,采用最小二乘法得到目标点散射系数为
每经过一次迭代,所述自相关矩阵R更新,目标散射系数迭代自适应收敛。
本发明的有益效果:本发明提供了一种分布式阵列雷达迭代自适应高分辨成像方法,首先利用分布式阵列雷达稀疏布阵的空间关系,导出分布式雷达阵列空间谱分布;其次,利用分布式雷达空间谱分布和系统参数,构造分布式阵列雷达系统观测矩阵;最后,为降低成像处理过程的构型依赖性,采用迭代自适应成像处理方法,实现分布式阵列雷达高分辨成像。本发明通过目标求解过程中的迭代自适应收敛,降低了分布式阵列雷达对构型的依赖性。
附图说明
图1为本发明实施例的流程图。
图2为本发明实施例中的分布式雷达成像系统集合构型图。
图3为本发明实施例中的目标原始场景图。
图4为本发明实施例中几何构型A空间谱分布图。
图5为本发明实施例中采用MUSIC方法在几何构型A下的成像结果图。
图6为本发明实施例中采用本发明方法在几何构型A下的成像结果图。
图7为本发明实施例中几何构型B空间谱分布图。
图8为本发明实施例中采用MUSIC方法在几何构型B下的成像结果图。
图9为本发明实施例中采用本发明方法在几何构型B下的成像结果图。
具体实施方式
下面结合附图对本发明的实施例做进一步的说明。
请参阅图1,本发明提出了一种分布式阵列雷达迭代自适应高分辨成像方法,通过以下步骤实现:
S1、根据发射信号和回波信号,构造滤波因子,得到频域回波信号和空间谱分布。
本实施例中,分布式雷达成像系统几何关系如图2所示,原始成像场景中的5个目标点,其布设方式如图3所示。下表1和表2分别为雷达系统参数和对比参数表。
表1 分布式雷达系统参数表
表2 系统比较参数表
本实施例中,采用表2中两组参数进行对比。
本实施例中,分布式阵列雷达包括M个发射机和N个接收机,在球坐标中,第m个发射机的位置为第n个接收机的位置为目标散射点的位置为其中,分别表示发射机、接收机及点目标的斜距、俯仰角及方位角。
本实施例在二维成像场景下进行,有M=4个发射机均匀处在工作距离100km、俯仰角为0°、方位角为0°~5°的位置上,发射带宽为B=30MHz、载频为fm=8GHz的窄带信号,第m个发射信号为:
其中,um(t)、fm∈[-B/2,B/2]及φm分别表示第m个发射机的幅度包络、发射信号载频及初始相位,不同发射信号的幅度包络相互正交,幅度包络满足有N=4个接收机均匀处在工作距离10km、俯仰角为0°的位置上,几何构型A的方位角处在90°~95°,几何构型B的方位角处在135°~140°。第m个发射信号经过目标点反射后,被第n个接收机接收,接收信号表示为:
其中,Ω表示二维成像区域,σ(r)表示在极坐标系内场景中点的目标散射系数,表示发射信号经目标点反射后的时间延迟,dmn表示信号传播距离,nmn(t)表示加性高斯白噪声。
将回波信号gmn(t)和发射信号sm(t)处理后构造滤波因子,滤去与积分变量r无关的部分,得到频域回波信号Ymn(f)
其中,σxy表示直角坐标系内r=(x,y)位置处的目标散射系数,Nmn(f)表示加性高斯白噪声的频谱,表示分布式雷达二维空间谱,表示为
其中,c表示电磁波的传播速度。
S2、构建分布式阵列雷达测量矩阵,融合多成像通道的频域回波信号,将频域回波信号转化为矩阵形式。
本实施例中,矩阵H为分布式阵列雷达测量矩阵,由发射机、接收机和成像场景的相对位置以及发射信号的形式决定。
本实施例中,将成像场景划分为K=Kx×Ky=40×40个目标点,发射信号带宽内采样点数为Ws=100,采样点分别为第k(k=1,2,,K)个目标点的目标散射系数为σk,将所有目标散射系数依次排列为列向量形式,即
σ=(σ12,…,σK)T。 (5)
其中,(·)T表示转置运算。
融合4个发射机和4个接收机构成的4×4个成像通道的回波信号,式(3)表示为矩阵形式
Y=Hσ+N。 (6)
其中,Y=(Y11,Y12,...,Y1N,Y21,...,YMN)T表示回波矢量矩阵,H=(H11,H12,...,H1N,H21,...,HMN)T表示分布式阵列雷达测量矩阵,N表示噪声矩阵;具体为:
其中,(ws=1,...,WS;k=1,...,K)。
由式(3)可得,接收机接收的回波数据与目标散射系数之间存在着傅里叶变换对的关系;由式(3)和式(4)可得,发射信号带宽B以及发射机和接收机的方位相对位置共同影响空间谱的分布和成像效果。其综合影响的效果可以通过空间谱分布分别在kx和ky上的投影宽度来反映。所以,在相同条件下,空间谱在二维波数域轴上的投影尽可能达到最大时,对应的两维分辨率越高,此时对应的构型为较优的构型。本发明通过分析空间谱的分布以确定构型的优劣,并在构型不佳的情况下提出了一种分布式阵列雷达迭代自适应高分辨成像方法。
S3、构建自相关矩阵,迭代自适应目标散射系数反演。
本实施例中,采用本发明所提出的分布式阵列雷达迭代自适应高分辨成像方法进行对比分析,如表2所示,分别对接收机方位角位于90°~95°的几何构型A和接收机方位角处在135°~140°的几何构型B进行成像,上述两种配置方式所对应的空间谱填充样式如图4和图7所示,几何构型A的空间谱填充更加均匀。
构建自相关矩阵R
其中,hk表示矩阵H的第k列数据,矩阵P=diag(p1,p2,...,pK),pk=|σk|2;定义代价函数为
其中,Qk=R-pkhk(hk)H表示相关矩阵;初始化矩阵P为单位矩阵,对于k=1,2,...,K,采用最小二乘法得到目标点散射系数为
由式(11)可知,每经过一次迭代,自相关矩阵R都将被更新,目标散射系数迭代自适应收敛,降低了分布式阵列雷达的构型依赖性。
本实施例中,回波的信噪比为15dB,几何构型A和几何构型B的所对应的空间谱分布分别如图4、7所示,由图可知几何构型A的分布在波数域横纵轴上的投影均比几何构型B的宽,在相同条件下几何构型A相比几何构型B能够获得更高的二维成像分辨率,图5和图8是利用基于谱估计的MUSIC算法的成像结果,图6和图9是本发明方法的成像及结果。由成像结果可知,相比于传统的谱估计方法,本发明方法能够在较差的构型下保持良好的成像结果,具有一定的构型适应能力。
S4、输出目标成像结果。
本领域的普通技术人员将会意识到,这里的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (4)

1.一种分布式阵列雷达迭代自适应高分辨成像方法,其特征在于,包括以下步骤:
S1、根据发射信号和回波信号,构造滤波因子,得到频域回波信号;
S2、构建分布式阵列雷达测量矩阵,融合多成像通道的频域回波信号,将所述频域回波信号转化为矩阵形式;
S3、构建自相关矩阵,迭代自适应目标散射系数反演;
S4、输出目标成像结果。
2.如权利要求1所述的分布式阵列雷达迭代自适应高分辨成像方法,其特征在于,所述步骤S1包括:
所述分布式阵列雷达包括M个发射机和N个接收机,在球坐标中,第m个发射机的位置为第n个接收机的位置为目标散射点的位置为其中,分别表示发射机、接收机及点目标的斜距、俯仰角及方位角;
在二维成像场景中,发射带宽为B的窄带信号,第m个发射机的发射信号为
其中,um(t)、fm∈[-B/2,B/2]及φm分别表示第m个发射机的幅度包络、发射信号载频及初始相位,不同发射信号的幅度包络相互正交;第n个接收机接收到的第m个发射机的回波信号为
其中,Ω表示二维成像区域,σ(r)表示在极坐标系内场景中点的目标散射系数,τmn(r)表示发射信号的传播延迟,nmn(t)表示加性高斯白噪声;
将所述回波信号gmn(t)和发射信号sm(t)处理后构造滤波因子,滤去与积分变量r无关的参数,得到频域回波信号Ymn(f)
其中,σxy表示直角坐标系内r=(x,y)位置处的目标散射系数,Nmn(f)表示加性高斯白噪声的频谱,表示空间谱,表示为
其中,c表示电磁波的传播速度。
3.如权利要求2所述的分布式阵列雷达迭代自适应高分辨成像方法,其特征在于,所述步骤S2包括:
所述发射信号带宽B内的Ws个频率采样点分别为将成像场景划分为Kx行Ky列共K=Kx×Ky个目标点,第k(k=1,2,...,K)个目标点的目标散射系数为σk,将所有目标散射系数依次排列为列向量形式,即
σ=(σ12,...,σK)T
其中,(·)T表示转置运算;
构建分布式阵列雷达测量矩阵H,融合M个发射机、目标点、N个接收机构成的个成像通道的回波信号,所述回波频域回波信号转化为矩阵形式,即
Y=Hσ+N
其中,N表示噪声矩阵,Y=(Y11,Y12,...,Y1N,Y21,...,YMN)T表示回波矢量矩阵,H=(H11,H12,...,H1N,H21,...,HMN)T表示分布式阵列雷达测量矩阵,表示为
其中,
4.如权利要求3所述的分布式阵列雷达迭代自适应高分辨成像方法,其特征在于,所述步骤S3包括:
构建自相关矩阵R
其中,hk表示矩阵H的第k列数据,矩阵P=diag(p1,p2,...,pK),pk=|σk|2;定义代价函数为
其中,Qk=R-pkhk(hk)H表示相关矩阵;初始化矩阵P为单位矩阵,对于k=1,2,...,K,采用最小二乘法得到目标点散射系数为
每经过一次迭代,所述自相关矩阵R更新,目标散射系数迭代自适应收敛。
CN201910670738.1A 2019-07-24 2019-07-24 一种分布式阵列雷达迭代自适应高分辨成像方法 Pending CN110346793A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910670738.1A CN110346793A (zh) 2019-07-24 2019-07-24 一种分布式阵列雷达迭代自适应高分辨成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910670738.1A CN110346793A (zh) 2019-07-24 2019-07-24 一种分布式阵列雷达迭代自适应高分辨成像方法

Publications (1)

Publication Number Publication Date
CN110346793A true CN110346793A (zh) 2019-10-18

Family

ID=68180164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910670738.1A Pending CN110346793A (zh) 2019-07-24 2019-07-24 一种分布式阵列雷达迭代自适应高分辨成像方法

Country Status (1)

Country Link
CN (1) CN110346793A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110954883A (zh) * 2019-11-12 2020-04-03 西安电子科技大学 基于非参数迭代自适应的捷变频雷达目标重构方法
CN112083417A (zh) * 2020-09-18 2020-12-15 电子科技大学 基于波数域拼接的分布式雷达成像拓扑设计方法
CN113238201A (zh) * 2021-05-26 2021-08-10 深圳成谷科技有限公司 一种超分辨雷达定位方法、系统、设备及存储介质
CN113391311A (zh) * 2021-06-21 2021-09-14 电子科技大学 一种分布式雷达广义孔径合成方法
CN113514808A (zh) * 2021-04-14 2021-10-19 中国民用航空飞行学院 一种用于判定小型无人机目标个数的智能辨识方法
CN113567978A (zh) * 2021-07-29 2021-10-29 电子科技大学 一种多基分布式雷达协同成像方法
CN113625272A (zh) * 2021-08-12 2021-11-09 电子科技大学 一种分布式雷达空间谱相参融合成像方法
CN113656913A (zh) * 2021-08-19 2021-11-16 电子科技大学 一种分布式前视雷达几何构型优化设计方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967858A (zh) * 2012-11-14 2013-03-13 电子科技大学 雷达前视超分辨成像方法
CN109613532A (zh) * 2019-01-02 2019-04-12 电子科技大学 一种机载雷达实时多普勒波束锐化超分辨成像方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967858A (zh) * 2012-11-14 2013-03-13 电子科技大学 雷达前视超分辨成像方法
CN109613532A (zh) * 2019-01-02 2019-04-12 电子科技大学 一种机载雷达实时多普勒波束锐化超分辨成像方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张永超: "载雷达前视虚拟阵列超分辨成像方法研究", 《中国博士学位论文全文数据库 信息科技辑》 *
徐浩: "基于空间谱理论和时空两维随机辐射场的雷达成像研究", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110954883A (zh) * 2019-11-12 2020-04-03 西安电子科技大学 基于非参数迭代自适应的捷变频雷达目标重构方法
CN110954883B (zh) * 2019-11-12 2023-08-11 西安电子科技大学 基于非参数迭代自适应的捷变频雷达目标重构方法
CN112083417A (zh) * 2020-09-18 2020-12-15 电子科技大学 基于波数域拼接的分布式雷达成像拓扑设计方法
CN112083417B (zh) * 2020-09-18 2022-02-01 电子科技大学 基于波数域拼接的分布式雷达成像拓扑设计方法
CN113514808A (zh) * 2021-04-14 2021-10-19 中国民用航空飞行学院 一种用于判定小型无人机目标个数的智能辨识方法
CN113238201A (zh) * 2021-05-26 2021-08-10 深圳成谷科技有限公司 一种超分辨雷达定位方法、系统、设备及存储介质
CN113391311A (zh) * 2021-06-21 2021-09-14 电子科技大学 一种分布式雷达广义孔径合成方法
CN113567978A (zh) * 2021-07-29 2021-10-29 电子科技大学 一种多基分布式雷达协同成像方法
CN113567978B (zh) * 2021-07-29 2023-04-25 电子科技大学 一种多基分布式雷达协同成像方法
CN113625272A (zh) * 2021-08-12 2021-11-09 电子科技大学 一种分布式雷达空间谱相参融合成像方法
CN113625272B (zh) * 2021-08-12 2023-06-30 电子科技大学 一种分布式雷达空间谱相参融合成像方法
CN113656913A (zh) * 2021-08-19 2021-11-16 电子科技大学 一种分布式前视雷达几何构型优化设计方法

Similar Documents

Publication Publication Date Title
CN110346793A (zh) 一种分布式阵列雷达迭代自适应高分辨成像方法
JP6472370B2 (ja) 3次元(3d)シーン画像を生成するシステム及び方法
CN109143237B (zh) 适用于任意平台轨迹的双基聚束sar的pfa波前弯曲校正方法
CN107678028B (zh) 低信噪比条件下的微波凝视关联成像方法
CN105589058B (zh) 一种天线装置及三维雷达系统
CN110346794B (zh) 一种资源优化配置的分布式雷达成像方法
CN105137424B (zh) 一种杂波背景下实波束扫描雷达角超分辨方法
CN111856461B (zh) 基于改进pfa的聚束sar成像方法及其dsp实现
NL9201060A (nl) Volumetrische en terreinbeeldsonar.
CN106291489B (zh) 适用于多种发射信号波形的合成孔径雷达回波仿真方法
CN103592647A (zh) 阵列三维sar数据获取方法
CN109709549A (zh) 一种前视雷达超分辨率成像方法
CN108226925A (zh) 一种适用于弹载大前斜视时变参数sar的重叠子孔径算法
CN108872980B (zh) 一种基于窄带系统的自适应穿墙成像方法
CN103605113A (zh) 多发多收干涉合成孔径雷达空时二维信号波形设计方法
CN103605112A (zh) 多发多收干涉合成孔径雷达时频二维信号波形设计方法
CN110879391B (zh) 基于电磁仿真和弹载回波仿真的雷达图像数据集制作方法
JP2004198275A (ja) 合成開口レーダ装置および画像再生方法
CN108132466A (zh) 一种机载阵列天线下视三维成像方法和系统
CN113064169B (zh) 多输入多输出频率分集阵列合成孔径雷达三维成像方法
CN111665501B (zh) 基于改进cbp的mimo雷达二维成像方法
CN103217677A (zh) 一种基于联合检测量的单通道sar动目标检测方法
CN112596037A (zh) 一种分布式sar抗干扰效能评估方法及系统
CN103869312A (zh) 一种连续场景的稀疏阵列sar侧视三维成像方法
CN110658502A (zh) 一种幅相误差校正方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191018

RJ01 Rejection of invention patent application after publication