CN110325878A - Vcsel窄发散度接近度传感器 - Google Patents

Vcsel窄发散度接近度传感器 Download PDF

Info

Publication number
CN110325878A
CN110325878A CN201780087162.5A CN201780087162A CN110325878A CN 110325878 A CN110325878 A CN 110325878A CN 201780087162 A CN201780087162 A CN 201780087162A CN 110325878 A CN110325878 A CN 110325878A
Authority
CN
China
Prior art keywords
optical sensor
sensor module
vcsel
substrate
fluorescence detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780087162.5A
Other languages
English (en)
Other versions
CN110325878B (zh
Inventor
丘尼·高希
吉恩-弗朗索瓦·瑟林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Princeton Optoelectronics Ltd By Share Ltd
Original Assignee
Princeton Optoelectronics Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Princeton Optoelectronics Ltd By Share Ltd filed Critical Princeton Optoelectronics Ltd By Share Ltd
Publication of CN110325878A publication Critical patent/CN110325878A/zh
Application granted granted Critical
Publication of CN110325878B publication Critical patent/CN110325878B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • H01S3/08068Holes; Stepped surface; Special cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18388Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18383Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with periodic active regions at nodes or maxima of light intensity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Plasma & Fusion (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开一种接近度传感器,所述接近度传感器将来自垂直腔面发射激光器(VCSEL)的极窄发散光束用于照明源。可达成在0.5度到10度的范围内的窄发散光束以在小占据面积组件中提供高接近度感测准确度。一种减小光束发散度的方法是使用外部第三镜增加VCSEL谐振腔的长度。第二实施方式通过修改DBR镜和增益区域来延长VCSEL腔的长度。光学微透镜可与所述VCSEL耦合以准直输出光束并且减小所述光束发散度。这些光学微透镜可为单独光学元件或通过修改基板输出表面轮廓或添加透明层以与所述VCEL集成在一起。这些光束发散度减小方法并入到各种实施方式配置中以产生适用于移动电话和平板计算机的微型接近度传感器。

Description

VCSEL窄发散度接近度传感器
相关申请的交叉引用
本申请要求2017年1月6日提交的美国临时专利申请号62,443,402的权益,所述美国临时专利申请的内容以全文引用的方式并入本文中。
技术领域
本发明涉及使用包括与一个或多个光学检测器耦合的极低发散度垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser;VCSEL)的光照源,改进和小型化接近度感测和元件识别装置。
背景技术
用于对象的接近度或距离检测的典型方法涉及用例如LED的光源照亮对象,并且测量反射回到位于所述光源附近的检测器的光的强度。检测器处的反射光强度随着物体移动远离光源和检测器而减小。所述方法依赖于来自强准直光源的良好对象照明以及对象的已知反射率。对象的反射率以及甚至形状的差异往往会改变检测到的光,从而产生距离测量值误差。现用的具合理成本的源具有低强度和/或高发散度,这由于反射强度在较大距离下为低并且变得低于检测器的检测极限或无法与环境光级区别开而限制可准确测量的距离。
已通过使用复杂光学系统实现改进的灵敏度,所述复杂光学系统使用多个透镜或多个源波长和滤光片。另一方法使用脉冲源以便可在脉冲之间的居间时段期间测量环境噪声级。这显著限制传感器的时间响应。这些改进给接近度传感器带来主要的成本和复杂性。
移动电话和类似的平板计算机的出现引起对相机自动聚焦应用和其他类似系统的准确距离感测的需求。传感器必须小型化以符合移动电话的紧凑性。这因为将光学检测器置于靠近光源处而产生问题。对于发散源,来自保护窗的反射可传播回到检测器,这严重限制传感器的对象距离检测极限。移动电话相机系统的增加的复杂性需要更准确的接近度传感器,同时需维持或甚至进一步减小微型占据面积。
发明内容
本公开描述接近度传感器,其将来自垂直腔面发射激光器(VCSEL)的极窄发散光束用于照明源。VCSEL与发光二极管或其他非相干源相比产生较低发散光束。已开发改进的接近度传感器,其利用VCSEL输出光束的减小的发散度。然而,标准VCSEL的发散度通常是15度半最大值全宽,且这可限制这类接近度传感器的灵敏度。
根据一个方面,本公开描述一种光学传感器模块,其包括光源,其包括可操作以产生穿过窗朝向对象引导的窄发散度源光束的VCSEL装置,所述窄发散度源光束具有不大于10度的半最大值全宽光束发散度。所述模块另外包括光学检测器,其用以感测从被所述窄发散度源光束照亮的所述对象反射回的光;和计算装置,其可操作以至少部分地基于来自所述光学检测器的信号确定到所述对象的距离或所述对象的物理特性。
本发明的实施方式提供在0.5度到10度的范围内的窄得多的发散光束以在较小占据面积组件中提供高得多的接近度感测准确度。一些实施方式使用外部第三镜获得VCSEL谐振腔的延长。增加的腔长在较少的较大直径横向模式中产生较高功率,从而显著减小输出光束发散度。第三镜可为单独元件或与VCSEL装置基板集成在一起。
其他实施方式描述通过修改DBR镜和增益区域延长VCSEL腔的长度的其他方法。光学微透镜可与VCSEL耦合以准直输出光束,因此减小光束发散度。这些光学微透镜可为单独光学元件或通过修改基板输出表面轮廓或添加透明层以与VCEL集成在一起。
这些光束发散度减小方法并入到接近度传感器的各个配置中。这些方法中的一种是VCSEL与检测器定位成紧密相邻以使得来自上方的保护窗的任何反射归因于极低光束发散度而不会落在检测器上。使检测器定位成靠近VCSEL光束的轴与检测器远离VCSEL光束的轴的情况相比产生较高反射强度,这是由于来自对象的最高反射强度往往是直接往回反射(和遵循朗伯定律的往回散射光)。
其他实施方式使得检测器能够置于甚至更靠近VCSEL处,并入竖直挡板以阻挡从窗往回反射到检测器上的任何光。
虽然已进行关于用于例如相机的自动聚焦和其他运动检测的应用的对象接近度感测的详细描述,但存在所述技术的其他应用。极低发散度VCSEL源光束也可通过测量血液和组织的血流量、心脉率和化学成分等用于健康监测。在这些应用中,将源光束引导于样本或对象处,且检测器测量一个或多个波长下的反射光的量或与脉动效应有关的反射光的波动。
本公开还描述一种包括窗和光学传感器模块的手持型计算装置(例如,智能手机或平板计算机)。所述模块包括光源,其包括VCSEL装置,所述VCSEL装置可操作以产生穿过所述窗朝向在所述手持型计算装置外部的对象引导的窄发散度源光束,所述窄发散度源光束具有不大于10度的半最大值全宽光束发散度。所述模块还包括光学检测器,其用以感测从被所述窄发散度源光束照亮的所述对象反射回的光;和计算装置,其可操作以至少部分地基于来自所述光学检测器的信号确定到所述对象的距离或所述对象的物理特性。
将从以下详细描述、附图和权利要求书显而易见其他方面、特征和优点。
附图说明
图1示出使用具有标准发散性质的光源的最新技术接近度传感器。
图2描述从对象散射和反射的光的光学特性,其指示最大强度通常是在靠近针对镜面反射率的入射光的法线的往回方向(back direction)上。来自漫散射或粗糙表面的反射光遵循朗伯(Lambertian)定律,其规定光强度与距入射光的法线的角度的余弦成比例。
图3描述两种主要类型的VCSEL结构,即其中VCSEL结构处于基板的顶部的顶部发射,以及VCSEL结构处于底部且输出光束传输穿过基板的底部发射。
图4示出用于通过增加增益区域的长度来增加VCSEL中的腔长的方法。
图5描述用于使用外部或延伸配置中的第三镜来增加VCSEL腔长的技术。
图6是使用窄光束发散VCSEL源的接近度传感器的光学示意图。其示出检测器靠近VCSEL并且不受来自VCSEL光束的窗反射影响。
图7示出其中使用挡板进一步改进检测器隔离从而允许检测器移动到甚至更靠近VCSEL源处的接近度传感器。
图8描述使用具有VCSEL的微透镜准直输出光束,从而获得极低发散度。
图9示出集成并制造于同一基板上的VCSEL和检测器。
图10描述使检测器与VCSEL源一起组合或集成到单个模块中的四个实施方式,(a)示出VCSEL和检测器安装于共同基座上,(b)示出底部发射VCSEL和检测器制造于同一共同基板中,(c)给出制造于共同基板中的顶部发射VCSEL和检测器的布局。(b)和(d)中的检测器制造于基板的底侧且光传输穿过基板,(c)示出顶部发射VCSEL和制造于共同基板的底侧的检测器的布局,其中蚀刻穿过基板的通孔或沟槽以用于将原本会被基板吸收的辐射传输到检测器。
图11描述如何将集成式VCSEL和检测器制造成可安装于陶瓷基座或印刷电路板上的单个表面安装芯片。
具体实施方式
将使用在不同图形中表示的示例性实施方式描述本公开的表示原则的宽泛框架的各个方面。为了清楚和便于描述起见,每一实施方式仅包括数个方面。然而,可单独地或以不同组合方式实践每一实施方式中呈现的不同方面。在本说明书中呈现的广泛框架内的代表性实施方式的多种不同组合和子组合对于本领域技术人员可为显而易见的但不进行明确展示或描述,且不应视为被排除在外。
图1中的图式示出使用标准VCSEL源101或其他发光元件的接近度传感器的光学布局。输出光束104具有15度或更大的典型半最大值全宽(full width half maximum)发散度105。输出光束行进到场景中且特定距离处的对象反射108光。此光可取决于对象的表面性质而多个方向上散射。此光108的一部分反射回到与源一起安装于共同基座103上的光学检测器102上。检测器信号发送给计算装置,所述计算装置基于反射光的强度来确定对象距传感器的距离。计算机还监测源参数以使得可用源功率校准来自检测器的信号,从而提供最大传感器准确度。应注意,源可取决于特定应用而以连续波(CW)操作或呈脉冲式。
窗107置于VCSEL和检测器上方以保护部件免受环境影响。传感器通常在室内或室外环境中使用且所述窗保护部件免受来自对象和液体等的损坏。通常将抗反射涂层施涂到所述窗,然而,所述涂层并非完美的,且将从所述涂层镜面反射106VCSEL光束的某一部分。此反射光束将落到检测器上,从而产生信号。此信号将加入由反射光束108产生的信号并且在距离确定中产生误差。可通过使检测器移动远离VCSEL并且提供单独窗来缓解此问题。然而,这将在很大程度上增加接近度传感器的大小和复杂性。
使检测器与传感器分离通常还将减小来自对象的往回反射光的强度,因此减小接近度传感器的灵敏度。在图2中对此进行解释。对象具有不确定的表面211,其可取决于特定对象而在高度反射到漫反射之间变化并且包括高度反射与漫反射之间的所有组合和变化。入射光束212将入射于对象上并且通常大到足以覆盖面向传感器的对象表面的大部分。将在不同方向上以不同强度发生光束从所述表面的反射。通常,对于大部分表面,在往回方向213上的反射具有最高强度。在其他方向上的反射214、215通常具有较低强度。因此,为了获得最高灵敏度和准确度,需要将检测器定位成捕获大部分往回散射光。
在图3a中示出典型标准顶部发射VCSEL 333的设计。VCSEL结构322在基板321上以外延方式生长。VCSEL谐振腔形成于两个DBR镜323与324之间。包括多量子阱群组的激光增益区段位于325DBR镜之间。通过将电流应用于电极327和328来激活所述增益区段。孔口形成于增益区域中以将电流局限在中心区域,从而增加电流密度以获得高增益。这造成镜之间的激光振荡,且使顶部DBR镜在为部分透射的,从而产生沿向上方向上的输出光束329。
在图3b中描述VCSEL 334的底部发射版本的设计。在此布局中,VCSEL结构在基板上生长,其中部分反射DBR 331位于基板侧面。在此情况下,通过基板329传输输出光束。在任一配置中,腔长为短,且仅数个波长为长,并且由通常为半波长的DBR镜与DBR结构之间的距离来确定所述腔长。因此,在给定通常为15度FWHM的相对大发散度光束的情况下,激光发射模式直径为小。可通过增加孔径来增加光束直径并且产生更多功率,然而这引起多模工作且发散度不会变低。
存在数种通过修改VCSEL配置或者通过添加光学元件以修改光束特性来减小VCSEL输出光束的发散度的方法。在图4中示出一种修改VCEL配置并增加其腔长的方法。在此VCSEL结构422中,通过使用多个增益区段437而非多量子阱的仅一个增益区段群组来增加增益区段435的长度。每一增益区段通过隧道结二极管436与彼此隔开。每一增益区段置于谐振腔驻波的最大强度点处,使得腔长在半波长上增加达所添加增益区段的数目。可在美国专利申请号20150311673A1中获悉关于使用多个增益区段的更多细节,所述美国专利申请由Q.Wang等人创作并且在2015年10月29日发表,且为NJ Mercerville的PrincetonOptronics Inc.所共同拥有。所述描述以引用方式并入本文中。使用此结构所得的VCSEL装置由于较长腔而具有较低发散光束,并且由于来自多个增益区段的较高增益而具有较高强度。
在一种方法中,可通过减小制成DBR镜的两种材料的带隙差异而使用镜447之间的较低对比度,增加DBR堆叠424中的DBR镜446的数目,从而延长腔长422。例如在GaAs/GaAlAsDBR中,减小Al浓度将需要较大数目的镜对(mirror pair)447来获得所要反射率,且因此将增加腔长。腔长的增加将减小高阶模的数目并且因此减小发散角。在一些实施方式中,VCSEL装置包括具有在6-15μm的范围内的长度的DBR镜堆叠。另外,在一些情况下,DBR镜堆叠包括多个DBR镜对,所述DBR镜对由具有在1%-7%的范围内的折射率差异的不同材料的交替层组成。
在图5a和b中描述通过增加VCSEL腔长来减小光束发散度的其他方法。图5a示出在VCSEL顶部发射结构522外部使用第三镜543。减小VCSEL输出DBR镜反射率,使得VCSEL当被激活时不发射激光。使具有部分反射涂层540的第三镜543与VCSEL腔对齐,并且通过与输出DBR镜的此额外组合式反射率,VCSEL开始发射激光。现在由VCSEL底部镜与外部镜涂层540之间的腔长来限定VCSEL激光腔。此方法可使光束发散度542显著地减小为0.5度或更小的FWHM值。
在图5b中描述第三镜腔的更集成版本。在此布置中,通过在基板521的相对侧上沉积第三镜涂层545来使第三镜距离延伸到VCSEL结构530。在此底部发射VCSEL结构530中,减小基板侧面的底部镜的反射率,以使得在没有第三镜的情况下,所述底部镜不发射激光。借助于增加有效VCSEL谐振腔长度来获得光束发散度544的再次显著减小。可通过使用上面生长外延晶片的较厚半导体材料例如GaAs来增加基板的厚度或通过粘合另一透明材料例如玻璃等来增加基板的厚度。
在图6中示出为接近度传感器应用低光束发散度VCSEL源。使VCSEL650与检测器651紧靠在一起安装于610共同基板653上。VCSEL光束通过窗607传播出并且从对象反射和散射。往回散射辐射608通过窗返回并且被检测器651捕获。使用来自检测器的信号强度确定对象距传感器的距离。VCSEL光束发散度小到足以使来自窗607的镜面反射652在靠近VCSEL处返回并且不落在检测器上。因此,此反射不添加会修改被检测器接收的往回散射信号的噪声信号且因此不会使距离确定降级。
使用来自VCSEL的低发散度光束获得额外益处。照射在对象的光束较小,因此产生高得多的入射功率密度。因而,散射和反射功率成比例地较高。这通过较短脉冲以及测量较长距离的能力产生改进的距离测量分辨率。这全部是在小占据面积中实现的,原因是可维持VCSEL与检测器之间的小距离。
存在需要接近度传感器具有甚至更小的占据面积的应用。一种达成此的方法是在VCSEL与检测器之间添加挡板部件以阻挡来自检测器的VCSEL光束的任何镜面反射。图7给出为此目的使用挡板760的实例。挡板760安装在VCSEL 750与检测器751之间。来自窗707的镜面反射752被阻挡并且不会到达检测器751。现在可将VCSEL与检测器放置成更加靠近710在一起,以获得较小占据面积。挡板不干扰从对象到达检测器的往回散射辐射708并且因此不会折损传感器分辨率和距离测量能力。
用于减小来自VCSEL 850的光束的发散度的另一方法是如图8中所示在前面安装会聚微透镜。微透镜870会聚来自VCSEL的发散光束829并且将其准直为极低发散度872准直束871。微透镜可为单独元件或如图中所示可与VCSEL集成在一起。一种方法是在VCSEL上沉积透明层并且在其中形成以VCSEL轴为中心的球形凸面轮廓形状或衍射元件。更适于底部发射VCSEL的另一方法是在基板中形成与VCSEL输出光束对齐的凸透镜轮廓或衍射结构。可在美国专利#_6,888,871中获悉关于在VCSEL基板中使用集成式透镜的更多细节,所述美国专利由Kaiyan Zhang等人创作并且在2005年5月3日发表,且为NJ Mercerville的Princeton Optronics Inc.所共同拥有。所述描述以引用方式并入本文中。使用此方法,可形成充分准直VCSEL光束,且来自窗的镜面反射保持极为靠近VCSEL。检测器可安装在极为靠近VCSEL处且不会遇到窗反射,从而产生极为紧凑的接近度传感器模块
开发这些用于产生紧凑传感器的各种方法使得能够考虑将VCSEL和检测器集成在同一基板中。这在图9中进行描述。在共同基板980中制造VCSEL结构981和检测器结构982。由于VCSEL和检测器可定位成靠近在一起,因此实现小的低成本半导体芯片。此半导体芯片接着可安装在陶瓷基座上或甚至直接安装在印刷电路板983上。使两个部件集成为单个部件简化传感器模块组件,甚至进一步减小占据面积并且产生主要成本节约。
在图10中示出用于集成VCSEL和检测器的若干方法。在一种方法(a)中,VCSEL可为安装于基板1053上的底部发射VCSEL 1034并且发射穿过其基板的窄光束1029。检测器1051可安装于基板1053上以检测返回辐射1008。在另一配置(b)中,检测器1082可以单片方式制造于VCSEL基板1080的底部。在此配置中,窄VCSEL光束通过基板1080输出1029并且在穿过基板1080之后检测到返回辐射1008。
在第三配置(c)中,VCSEL 1033可为顶部发射的,但检测器1082可制造在基板1080的另一侧,且可通过钻取贯通孔1038来使返回辐射1008穿过基板传输到检测器。作为另外一种选择,选择波长以使得返回辐射1008通过基板传输到检测器1082,如(d)中所示。在此情况下,可通过将VCSEL和检测器保持在不同高度来阻挡来自窗的镜面反射。
使接近度传感器的组件更简单并且减小制造成本的另一实施方式是制造使所有电触点处于同一底侧的VCSEL和检测器芯片。在此配置中,可使用标准表面安装制造过程将芯片以表面安装方式焊接到印刷电路板上。在图10中描述以此方式制造的集成式VCSEL和检测器芯片的设计。应注意,已在美国专利8675706B2中公开用于设计和制造表面安装VCSEL和VCSEL阵列的方法,所述美国专利由Jean F Seurin等人创作并且在2014年3月18日发行,且为NJ Mercerville的Princeton Optronics Inc.所共同拥有。所述描述以引用方式并入本文中。
在图11中详细示出用于并入集成式VCSEL和检测器芯片的此表面安装技术的扩展。在共同基板1185中制造VCSEL 1186和检测器1187。在基板中形成槽孔1190并且通过穿过沟槽到达基板的底侧的触点垫1201的导电引线为VCSEL的顶部触点1188选定路线。在触点引线与基板之间沉积钝化层1189以提供所述触点引线与基板之间的电绝缘。这在基板的同一底侧提供VCSEL触点1201和1191两者。这些VCSEL触点可用以使用表面安装过程粘结到PCB 1192上的电衬垫1193和1194。
以类似方式,在基板中在检测器1187旁边形成槽孔1196,并且通过穿过沟槽到达基板的底侧的触点垫1202的导电引线来为检测器1194的顶部触点选定路线。在触点引线与基板之间沉积钝化层1195以提供所述触点引线与基板之间的电绝缘。这在基板的同一底侧提供检测器触点1202和1197两者。这些检测器触点可用以使用表面安装过程粘结到PCB1192上的电衬垫1198和1199。
已在此部分进行关于用于例如相机的自动聚焦的应用和其他运动检测应用的对象接近度感测的详细描述,然而存在所述技术的其他应用。极低发散度VCSEL源光束也可通过测量血流量、心脉率和化学成分等用于健康监测。在这些应用中,将源光束引导于样本或对象处,且检测器测量一个或多个波长下的反射光的量或与心跳的脉动效应有关的反射光的波动。在这些其他应用中同样重要的是,VCSEL同样具有已在前述段落的各图和描述中详述的极低发散性质。同样地通过并入本公开的特征和元件来改进这些应用的灵敏度。
虽然参考数个优选实施方式描述本公开的宽泛框架,但可取决于特定接近度检测或图像应用而应用本文中描述的元件的组合和子组合来配置其他实施方式。不同实施方式的变化和修改对本领域技术人员将是显而易见。因此,其他实施方式在权利要求书的范围内。

Claims (26)

1.一种光学传感器模块,所述光学传感器模块包括:
光源,所述光源包括可操作以产生穿过窗朝向对象引导的窄发散度源光束的VCSEL装置,所述窄发散度源光束具有不大于10度的半最大值全宽光束发散度;
光学检测器,所述光学检测器用以感测从被所述窄发散度源光束照亮的所述对象反射回的光;和
计算装置,所述计算装置可操作以至少部分地基于来自所述光学检测器的信号确定到所述对象的距离或所述对象的物理特性。
2.如权利要求1所述的光学传感器模块,其中所述光学检测器被设置成使得从所述窗镜面反射的光不入射于所述光学检测器上。
3.如权利要求2所述的光学传感器模块,其进一步包括设置在所述VCSEL装置与所述光学检测器之间的挡板。
4.如权利要求1-3中任一项所述的光学传感器模块,其中所述VCSEL装置包括具有通过相应隧道结二极管彼此隔开的多个增益段的增益区段。
5.如权利要求4所述的光学传感器模块,其中所述增益区段中的每一个设置在对应于所述VCSEL装置的谐振腔驻波的相应最大强度点的位置处。
6.如权利要求4所述的光学传感器模块,其中所述增益区段中的每一个被设置成使得每一VCSEL装置的谐振腔长度根据增益区段的数目在半波长上增加。
7.如权利要求1-3中任一项所述的光学传感器模块,其中所述VCSEL装置包括在第一DBR镜与第二DBR镜之间具有激光增益区段的腔,所述VCSEL装置另外包括在所述腔外部的第三镜,其中所述第一DBR镜和第二DBR镜具有使得所述VCSEL装置在没有所述第三镜的情况下不会发射激光的反射率。
8.如权利要求7所述的光学传感器模块,其中所述第三镜包括部分反射涂层。
9.如权利要求8所述的光学传感器模块,所述光学传感器模块具有小于5度的半最大值全宽光束发散度。
10.如权利要求1-3中任一项所述的光学传感器模块,其中所述VCSEL装置安装于基板的第一侧,所述VCSEL装置包括在第一DBR镜与第二DBR镜之间具有激光增益区段的相应腔,所述基板具有在所述基板的与所述第一侧相对的第二侧上的第三镜。
11.如权利要求1-3中任一项所述的光学传感器模块,其中所述VCSEL装置上面包括会聚微透镜。
12.如权利要求1所述的光学传感器模块,其中所述VCSEL装置与光学检测器处于共同基板上。
13.如权利要求12所述的光学传感器模块,其中所述VCSEL装置被设置成使得所述窄发散度源光束穿过所述基板,且其中所述光学检测器被设置成使得从所述对象反射回的光在穿过所述基板之后被所述光学检测器检测到。
14.如权利要求12所述的光学传感器模块,其中所述VCSEL装置处于所述基板的第一侧,且所述光学检测器处于所述基板的第二相对侧。
15.如权利要求14所述的光学传感器模块,所述光学传感器模块被配置成使得在从所述对象反射回的光穿过所述基板之后,所述光学检测器检测到所述反射光。
16.如权利要求14所述的光学传感器模块,所述光学传感器模块被配置成使得在从所述对象反射回的光穿过所述基板中的贯通孔之后,所述光学检测器检测到所述反射光。
17.如权利要求1-16中任一项所述的光学传感器模块,其中所述模块是可操作以检测到所述对象的距离的接近度传感器。
18.如权利要求1-16中任一项所述的光学传感器模块,其中所述模块可操作以监测所述对象的血流量或心脉率。
19.如权利要求1-16中任一项所述的光学传感器模块,其中所述模块可操作以确定所述对象的化学成分。
20.如前述权利要求中任一项所述的光学传感器模块,所述光学传感器模块包括上面具有至少一个光衰减涂层的透明盖板,所述模块被配置成使得在从所述对象反射回的光穿过所述至少一个光衰减涂层之后,所述光学检测器检测到所述反射光。
21.如前述权利要求中任一项所述的光学传感器模块,其中所述VCSEL装置与所述光学检测器集成在共同基板中,所述共同基板包括沟槽馈通以使得用于所述VCSEL装置和所述光学检测器的所有触点都处于用于表面安装组件的同一侧。
22.如权利要求1所述的光学传感器模块,其中所述窄发散度源光束具有介于0.5度与10度之间的半最大值全宽光束发散度。
23.如权利要求1所述的光学传感器模块,其中所述光学检测器被设置成与所述VCSEL装置产生的所述窄发散度源光束的轴相邻。
24.如权利要求1所述的光学传感器模块,其中所述VCSEL装置包括具有在6-15μm的范围内的长度的DBR镜堆叠。
25.如权利要求24所述的光学传感器模块,其中所述DBR镜堆叠包括多个DBR镜对,所述DBR镜对由具有在1%-7%的范围内的折射率差异的不同材料的交替层组成。
26.一种手持型计算装置,所述手持型计算装置包括:
窗;和
光学传感器模块,所述光学传感器模块包括:
光源,所述光源包括VCSEL装置,所述VCSEL装置可操作以产生穿过所述窗朝向在所述手持型计算装置外部的对象引导的窄发散度源光束,所述窄发散度源光束具有不大于10度的半最大值全宽光束发散度;
光学检测器,所述光学检测器用以感测从被所述窄发散度源光束照亮的所述对象反射回的光;和
计算装置,所述计算装置可操作以至少部分地基于来自所述光学检测器的信号确定到所述对象的距离或所述对象的物理特性。
CN201780087162.5A 2017-01-06 2017-12-28 Vcsel窄发散度接近度传感器 Active CN110325878B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762443402P 2017-01-06 2017-01-06
US62/443,402 2017-01-06
PCT/US2017/068714 WO2018128904A1 (en) 2017-01-06 2017-12-28 Vcsel narrow divergence proximity sensor

Publications (2)

Publication Number Publication Date
CN110325878A true CN110325878A (zh) 2019-10-11
CN110325878B CN110325878B (zh) 2023-07-11

Family

ID=62791372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780087162.5A Active CN110325878B (zh) 2017-01-06 2017-12-28 Vcsel窄发散度接近度传感器

Country Status (5)

Country Link
US (1) US11394175B2 (zh)
EP (1) EP3566075B1 (zh)
CN (1) CN110325878B (zh)
TW (1) TWI759400B (zh)
WO (1) WO2018128904A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526532A (zh) * 2020-11-23 2021-03-19 深圳赛意法微电子有限公司 一种保护装置、传感器、光学测距镜头及保护装置的制造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018156412A1 (en) * 2017-02-24 2018-08-30 Princeton Optronics, Inc. Eye safe vcsel illuminator package
US11303355B2 (en) 2018-05-30 2022-04-12 Apple Inc. Optical structures in directional free-space optical communication systems for portable electronic devices
US11125689B2 (en) * 2018-07-13 2021-09-21 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Highly stable semiconductor lasers and sensors for III-V and silicon photonic integrated circuits
WO2020046202A1 (en) * 2018-08-30 2020-03-05 Ams Sensors Asia Pte. Ltd Vcsels including a sub-wavelength grating for wavelength locking
TWI701882B (zh) * 2018-11-08 2020-08-11 晶智達光電股份有限公司 雷射元件
DE112019006249T5 (de) * 2018-12-17 2021-08-26 Ams International Ag Lichtemittierendes modul mit verbesserter augensicherheitsfunktion
EP3687010A1 (en) * 2019-01-23 2020-07-29 Koninklijke Philips N.V. Optical component, light source device, optical sensor device and method of manufacturing an optical component
TWI781445B (zh) * 2019-09-24 2022-10-21 全新光電科技股份有限公司 高功率垂直共振腔表面放射雷射二極體(vcsel)
US11909175B2 (en) * 2021-01-13 2024-02-20 Apple Inc. Horizontal cavity surface-emitting laser (HCSEL) monolithically integrated with a photodetector
NL2027690B1 (nl) * 2021-03-03 2022-09-22 Phyco Trading B V De uitvinding heeft betrekking op een transportmiddel, voorzien van een lichtdetectie- en emissiesysteem, alsmede printplaat en werkwijze

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711203B1 (en) * 2000-09-22 2004-03-23 Blueleaf, Inc. Optical transmitter comprising a stepwise tunable laser
US6741629B1 (en) * 2000-09-22 2004-05-25 Blueleaf, Inc. Optical transmitter having optically pumped vertical external cavity surface emitting laser
CN101682169A (zh) * 2007-05-07 2010-03-24 皇家飞利浦电子股份有限公司 用于探测距离增加的自混合干涉测量术的激光传感器
JP2013130422A (ja) * 2011-12-20 2013-07-04 Sanyo Electric Co Ltd レーザレーダ
GB201316965D0 (en) * 2013-09-24 2013-11-06 Dev Ltd Improvements in or relating to proximity sensors
EP2827175A2 (en) * 2013-07-12 2015-01-21 Princeton Optronics, Inc. 2-D planar VCSEL source for 3-D imaging
CN104737305A (zh) * 2012-10-05 2015-06-24 株式会社村田制作所 光传感器
US20150311673A1 (en) * 2014-04-29 2015-10-29 Princeton Optronics Inc. Polarization Control in High Peak Power, High Brightness VCSEL
WO2016010481A1 (en) * 2014-07-14 2016-01-21 Heptagon Micro Optics Pte. Ltd. Optoelectronic modules operable to distinguish between signals indicative of reflections from an object of interest and signals indicative of a spurious reflection
CN105379034A (zh) * 2013-07-12 2016-03-02 佳能株式会社 表面发射激光器和光学相干断层扫描装置
WO2016092449A1 (en) * 2014-12-09 2016-06-16 Basf Se Optical detector
JP2017003785A (ja) * 2015-06-11 2017-01-05 株式会社リコー 光走査装置、物体検出装置及びセンシング装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001046A1 (en) * 2002-07-01 2004-01-01 Chen Shu-Fen Optical mouse
US20070071056A1 (en) * 2005-09-09 2007-03-29 Ye Chen Laser ranging with large-format VCSEL array
US8743923B2 (en) * 2012-01-31 2014-06-03 Flir Systems Inc. Multi-wavelength VCSEL array to reduce speckle
JP6300442B2 (ja) * 2013-01-18 2018-03-28 オリンパス株式会社 光伝送モジュールおよび撮像装置
US9268012B2 (en) 2013-07-12 2016-02-23 Princeton Optronics Inc. 2-D planar VCSEL source for 3-D imaging
US10749312B2 (en) 2015-05-28 2020-08-18 Vixar, Inc. VCSELs and VCSEL arrays designed for improved performance as illumination sources and sensors
US10591600B2 (en) * 2015-11-30 2020-03-17 Luminar Technologies, Inc. Lidar system with distributed laser and multiple sensor heads

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741629B1 (en) * 2000-09-22 2004-05-25 Blueleaf, Inc. Optical transmitter having optically pumped vertical external cavity surface emitting laser
US6711203B1 (en) * 2000-09-22 2004-03-23 Blueleaf, Inc. Optical transmitter comprising a stepwise tunable laser
CN101682169A (zh) * 2007-05-07 2010-03-24 皇家飞利浦电子股份有限公司 用于探测距离增加的自混合干涉测量术的激光传感器
US20100134803A1 (en) * 2007-05-07 2010-06-03 Koninklijke Philips Electronics N.V. Laser sensor for self-mixing interferometry with increased detection range
JP2013130422A (ja) * 2011-12-20 2013-07-04 Sanyo Electric Co Ltd レーザレーダ
CN104737305A (zh) * 2012-10-05 2015-06-24 株式会社村田制作所 光传感器
US20150212208A1 (en) * 2012-10-05 2015-07-30 Murata Manufacturing Co., Ltd. Optical sensor
EP2827175A2 (en) * 2013-07-12 2015-01-21 Princeton Optronics, Inc. 2-D planar VCSEL source for 3-D imaging
US20150260830A1 (en) * 2013-07-12 2015-09-17 Princeton Optronics Inc. 2-D Planar VCSEL Source for 3-D Imaging
CN105379034A (zh) * 2013-07-12 2016-03-02 佳能株式会社 表面发射激光器和光学相干断层扫描装置
GB201316965D0 (en) * 2013-09-24 2013-11-06 Dev Ltd Improvements in or relating to proximity sensors
US20150311673A1 (en) * 2014-04-29 2015-10-29 Princeton Optronics Inc. Polarization Control in High Peak Power, High Brightness VCSEL
WO2016010481A1 (en) * 2014-07-14 2016-01-21 Heptagon Micro Optics Pte. Ltd. Optoelectronic modules operable to distinguish between signals indicative of reflections from an object of interest and signals indicative of a spurious reflection
WO2016092449A1 (en) * 2014-12-09 2016-06-16 Basf Se Optical detector
JP2017003785A (ja) * 2015-06-11 2017-01-05 株式会社リコー 光走査装置、物体検出装置及びセンシング装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
VAN-CAO NGUYEN ET AL.: "Optically pumped lasing in single crystals of organometal halide perovskites prepared by cast-capping method", APPLIED PHYSICS LETTERS *
戚晓东 等: "面发射分布反馈半导体激光器及光栅耦合半导体激光器", 中国光学与应用光学 *
李保志 等: "可调谐垂直腔面发射激光器", 激光技术 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526532A (zh) * 2020-11-23 2021-03-19 深圳赛意法微电子有限公司 一种保护装置、传感器、光学测距镜头及保护装置的制造方法

Also Published As

Publication number Publication date
US20200127441A1 (en) 2020-04-23
CN110325878B (zh) 2023-07-11
EP3566075B1 (en) 2023-10-25
EP3566075A4 (en) 2020-04-15
TWI759400B (zh) 2022-04-01
EP3566075A1 (en) 2019-11-13
US11394175B2 (en) 2022-07-19
WO2018128904A1 (en) 2018-07-12
TW201840999A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
CN110325878A (zh) Vcsel窄发散度接近度传感器
US9268012B2 (en) 2-D planar VCSEL source for 3-D imaging
EP2827175B1 (en) 2-D planar VCSEL source for 3-D imaging
JP5816183B2 (ja) 導波路構造を有する自己混合干渉デバイス
JP5753686B2 (ja) 光センサ・モジュール及びその製造方法
US9535157B2 (en) Proximity sensor including reference detector for stray radiation detection
TWI357191B (en) Self-monitoring light emitting apparatus
CN106998982B (zh) 可自主行进的清洁设备
CN115143999B (zh) 使用平面内传感器的混合干涉测量和散射测量感测
CN101341421A (zh) 测量相对运动的器件和方法
JP2018517133A (ja) オプトエレクトロニクス装置および深さ測定システム
KR20150077302A (ko) 파장 중심 검출 기반 센서 장치 및 방법
CN208654455U (zh) 光电模组、深度获取装置及终端
GB2326760A (en) Optical emission device
US11239398B2 (en) Optoelectronic semiconductor component and biometric sensor
US11474039B2 (en) Chemical sensing device using fluorescent sensing material
CN101897089A (zh) 具有集成光电晶体管的半导体激光器
TWI805824B (zh) 低發散垂直空腔表面發射雷射及結合其之模組及主裝置
US20210399529A1 (en) Semiconductor laser
CN208569286U (zh) 光电模组、深度撷取装置及电子设备
CN111665511A (zh) 测距装置
US20230060584A1 (en) Optical machine of smoke detector
CN113138468B (zh) 透射分束器
CN207798379U (zh) 一种监测光学元件完整性的装置
JP2015216231A (ja) 受発光装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant