CN110323302B - 碳化硅紫外光光电检测器及其制造方法 - Google Patents

碳化硅紫外光光电检测器及其制造方法 Download PDF

Info

Publication number
CN110323302B
CN110323302B CN201910233197.6A CN201910233197A CN110323302B CN 110323302 B CN110323302 B CN 110323302B CN 201910233197 A CN201910233197 A CN 201910233197A CN 110323302 B CN110323302 B CN 110323302B
Authority
CN
China
Prior art keywords
region
epitaxial layer
edge
photodetector
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910233197.6A
Other languages
English (en)
Other versions
CN110323302A (zh
Inventor
A·桑坦格罗
M·C·马兹罗
S·卡西诺
G·郎戈
A·休托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SRL
Original Assignee
STMicroelectronics SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SRL filed Critical STMicroelectronics SRL
Priority to CN202310305109.5A priority Critical patent/CN116207180A/zh
Publication of CN110323302A publication Critical patent/CN110323302A/zh
Application granted granted Critical
Publication of CN110323302B publication Critical patent/CN110323302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Glass Compositions (AREA)

Abstract

本公开涉及碳化硅紫外光光电检测器及其制造方法。一种光电检测器形成在由N型的第一外延层和P型的第二外延层形成的碳化硅主体中。第一和第二外延层布置在彼此上,并且形成包括突出部分、倾斜侧部和边缘部分的主体表面。绝缘边缘区域在倾斜侧部和边缘部分之上延伸。阳极区域由第二外延层形成并且由突出部分和倾斜侧部界定。第一外延层在阳极区域下方形成阴极区域。具有高于第一外延层的掺杂水平的N型的掩埋区域在与倾斜侧部以及边缘区域相距一定距离处在突出部分下方在阳极和阴极区域之间延伸。

Description

碳化硅紫外光光电检测器及其制造方法
技术领域
本公开涉及一种碳化硅紫外光光电检测器及其制造方法。
背景技术
众所周知,在光子检测领域,人们感到需要具有能够在100至400nm的光谱区域内对紫外(UV)光进行高灵敏度检测的装置。具体地,检测太阳光范围外的非常微弱且超快的信号是各种应用所需的,诸如,火焰检测、UV天文学、化学和生物分析的执行以及喷射发动机和导弹羽流的检测。这些应用需要非常灵敏且具有高信噪比的装置。
针对这种应用,通常使用光电倍增管(PMT),但是它们的大尺寸、脆性和相关联的成本使得固态检测器更具吸引力。
其中,商用硅雪崩光电二极管在不可见波长下具有适中的量子效率,但是需要昂贵的光学滤波器来获得太阳光子的高抑制比,因为它们的响应在整个可见波长范围内延伸。
基于氮化镓的二极管光电检测器在不可见光的区域内展示了高灵敏度和良好的增益,但是由于这种类型的半导体具有较高的缺陷密度,所以存在暗电流较高的问题。
由于其较低的热生成,基于碳化硅的雪崩二极管具有较低的暗电流密度,因此代表了UV光光电检测器的有利选择,也考虑到了更成熟的工艺技术和对可见光的良好的本征不透明度。
美国专利申请US20170098730,对应于意大利专利申请10201500058764,描述了一种用于检测具有全平面结构的紫外辐射的碳化硅雪崩光电二极管。该雪崩光电二极管具有通过在不同剂量和能量下注入铝而获得的有源区和边缘环。该结构可以使有源区周围的死区最小化,减小击穿电压,并且提高整个UV范围内的检测效率。因此获得在雪崩倍增条件下测量得到的可观增益(达到102至105的程度)。
然而,该解决方案可以在暗电流方面得到改进,特别是在某些频率下,这可能是由于在击穿之前从装置外围开始注入大量泄漏电流并且触发期望的雪崩过程而导致的表面注入过程和软击穿(即,不够迅速的击穿)。实际上,假设电场对光电检测器的有源区的限制并不总是很高,并且电场也横向延伸,从而导致大面积的击穿。
上述效应对器件在被照射时在单光子条件(所谓的单光子雪崩二极管(SPAD)或盖革模式雪崩二极管(GM-APD)操作条件)下操作产生了负面影响。类似的考虑适用于雪崩光电二极管(APD)的操作,因为后者以类似于SPAD的方式操作,除了在击穿电压下具有线性操作范围以及更有限的增益之外。
发明内容
本公开的一个或多个实施例提供了一种克服现有技术的缺点的碳化硅紫外光光电检测器。
根据本公开,提供了一种碳化硅紫外光光电检测器及其制造过程。
附图说明
为了更好地理解,现在参照附图仅将该光电检测器的一些实施例描述为非限制性示例,其中:
图1是该光电检测器的实施例的横截面;
图1A示出了沿着平行于笛卡尔轴Z的中心轴A截取的图1的光电检测器的掺杂轮廓;
图2至图8是图1的光电检测器在连续制造步骤期间的示意性横截面;
图9至图11是该光电检测器的其它实施例的横截面;
图12至图14是图11的光电检测器在连续制造步骤期间的示意性横截面;
图15是该光电检测器的再一实施例的横截面;
图16和图17是图15的光电检测器在连续制造步骤期间的示意性横截面;
图18是图1、图9至图11和图15所图示类型的光电检测器阵列的示意性透视图;以及
图19示出了包括图18所图示类型的光电检测器阵列的系统的框图。
具体实施方式
图1示出了碳化硅APD类型的光电检测器1的实施例,但是光电检测器1也可以在SPAD操作条件下操作。
图1的光电检测器1具有中心轴A。具体地,光电检测器1可以具有圆对称性,使得中心轴A是对称轴。可替代地,光电检测器1可以具有多边形形状,例如,在俯视图中是正方形。
光电检测器1可以与多个其它光电检测器1集成在管芯2中以形成阵列500,诸如,图18所图示的一个阵列。
管芯2包括碳化硅(SiC)主体3,其由N++型的衬底4、N-型的第一外延层6和P+型的第二外延层8彼此堆叠而形成。主体3具有由第一外延层6和第二外延层8的部分限定的非平面顶表面3A以及平面底表面3B。具体地,例如,顶表面3A具有:突出部分3A1,例如具有平面圆形;倾斜侧部3A2,例如,具有截头圆锥形状;以及边缘部分3A3,此处为平面的,如在下文中阐明的。而且,平面底表面3B平行于笛卡尔参考系XYZ的平面XY,其中,沿着轴Z测量主体3的厚度(在下文中也称为厚度方向)。在图1中,第一外延层6和第二外延层8形成界面7,其是平面的并且平行于平面XY。衬底4和第一外延层6掺杂有,例如,氮,并且第二外延层8掺杂有,例如,硼。
N+型的并且掺杂有例如磷的掩埋区域10在第一外延层6内延伸,此外针对界面7的一部分与第二外延层相邻和邻近。掩埋区域10在厚度方向上(平行于轴Z)具有可变掺杂,掺杂剂种类的浓度从界面7增加到峰值,然后再次降低到第一外延层4的掺杂水平,如图1A所图示的。例如,在峰值处,掩埋区域10具有5·1018cm-3的掺杂水平。
绝缘材料的边缘区域11在顶表面3A的一部分上延伸,并且在第二外延层8中横向界定阳极区域12。例如,正硅酸乙酯(TEOS)的边缘区域11包括:内环部11A,在阳极区域12的外围区之上延伸(其中心区因此暴露于外部环境);倾斜环部11B,作为内环部11A的延续,横向包围阳极区域12并且与阳极区域12邻近;以及外部11C,作为倾斜环部11B的延续,在第一外延层6的边缘区上方并且与该边缘区邻近。
边缘区域11的内环部11A可能缺失。边缘区域11的倾斜环部11B具有从内环部11A增加到外部11C的厚度,以一定距离包围掩埋区域10,并且形成边缘区域11的倾斜外围表面11’(对应于主体3的顶表面3A的倾斜侧部3A2)。具体地,掩埋区域10的侧边缘与倾斜外围表面11’之间的距离是至少0.5至1μm。边缘区域11的外部区域11C具有均匀厚度(在1与3μm之间,例如,2μm),并且具有与第一外延层6邻近并在低于界面7的水平处(在厚度方向Z上)延伸的底表面11”(对应于主体3的顶表面3A的边缘部分3A3)。
由于下面阐明的原因,主体3的顶表面3A的倾斜侧部3A2以及因此边缘区域11的外围表面11’相对于界面7的平面成至少45°的角度倾斜,最大高达90°。
边缘区域11在主体3中界定有源区14,在检测期间在其中心区中将获得上面提及的击穿。
例如,硅化镍(Ni2Si)的顶部导电区域15设置在阳极区域12上并与其直接接触,以形成前欧姆接触。由电极16表示的前接触区域35在顶部导电区域15的一部分上延伸,以进行外部连接。例如,顶部导电区域15具有环形形状并且在阳极区域12的外围部分之上。
例如,氮化硅(Si3N4)的钝化层18在边缘区域11之上延伸,并且在顶部和侧面包围顶部导电区域15,除了前接触区域35之外。
例如,硅化镍的底部导电区域20在主体3的平面底表面3B下方延伸,与衬底4接触,并且形成后欧姆接触。底部金属化21设置在底部导电区域20下方,与后者接触。可以通过包括钛、镍和金的三个堆叠层的多层结构来形成底部金属化21。
实际上,第一外延层6具有与本征层等效的电行为。阳极区域12、掩埋区域10和第一外延层6因此形成PN+NI结;第一外延层6因此作为阴极区域操作。光电检测器1可以因此作为APD或SPAD工作,其中,PN+NI结被设计为接收光子并且生成雪崩电流,如在美国专利申请US20170098730中所描述的,其通过引用全部并入本文。
可以如图2至图9所说明并且在下文中详细描述的那样制造图1的光电检测器。
最初,图2,在衬底4上外延生长第一外延层6,例如,厚度为例如350μm并且掺杂水平为例如1·1019cm-3的N型的4H多型体碳化硅(4H-SiC)。第一外延层4具有8至12μm(例如,大约9.5μm)的厚度以及在8·1013与2·1014cm-3之间(例如,1·1014cm-3)的掺杂水平,并因此是准本征的。
然后,未图示,执行清洁,并且形成对齐标记。为此,热生长牺牲氧化物层,选择性地蚀刻牺牲层和第一外延层6的部分以形成零层标记,并且以本身已知的方式去除牺牲氧化物层。
接下来,图3,例如,形成厚度为0.8μm的TEOS氧化物的硬掩模30。通过沉积TEOS层并且使用抗蚀剂掩模(未示出)对其图案化而以已知方式获得的硬掩模30具有窗口31,在窗口31中要形成掩埋区域10。然后,注入掩埋区域10;具体地,例如,利用磷离子执行双注入,首先在300keV的能量执行剂量为1·1013cm-2的注入,然后在350keV的能量执行剂量为1·1014cm-2的注入,如在图3中通过箭头32示意性地表示的。在500℃的温度执行两次注入。因此在窗口31下方形成薄层10’。可替代地,可以通过薄的牺牲氧化层(未示出)执行双注入,其厚度为例如30nm,并且在这种情况下,在450keV的能量下执行第一注入,并且可以在500keV的能量下执行第二注入。在这种情况下,在双注入之后,去除薄的牺牲氧化层。
然后,图4,去除硬掩模30,并且热生长第二外延层8。例如,在两个步骤中在外延反应器中通过化学气相沉积(CVD)来生长4H多型体碳化硅(4H-SiC)。具体地,在氩气环境中在用于激活薄层10’中的磷离子的温度(例如,在1650℃)执行第一步骤30分钟以形成掩埋区域10。通过这种方式,在第二外延生长(下文描述的)之后,掩埋区域10具有可变轮廓,如上面所提及的,其掺杂剂浓度峰值与界面7(仍待形成)相距0.2至0.7μm,例如,0.4μm。通过使用氢气作为载体以及HCl3Si和C2H4作为硅和碳前体,在高于1500℃的温度(例如,在1650℃)执行适当外延生长的第二步骤5分钟。然后生成厚度为0.3至0.7μm(例如,0.5μm)并且掺杂剂量在1·1019cm-3与1·1020cm3之间(例如,5·1019cm-3)的P+型的第二外延层8,以获得主体3。
接下来,图5,例如,通过等离子体增强CVD(PECVD)沉积TEOS介电层(未示出),并且选择性地蚀刻介电层(未示出)以形成用于主体3的后续蚀刻的硬掩模。然后,选择性地蚀刻和去除第二外延层8的部分,贯穿该层的厚度,以限定阳极区域12,并且也选择性地蚀刻和去除第一外延层6的表面部分。例如,执行干蚀刻以获得图5的结构。在该步骤中,限定出主体3的顶表面3A的形状,其具有部分3A1至3A3。
接下来,图6,主体3的顶表面3A由保护层(未示出)保护,并且例如,通过背部的镍溅射形成厚度为200nm的底部导电区域20。在去除保护层(未示出)之后,例如,在氮气环境中在1000℃执行快速热退火(RTA)60s。
然后,图7,沉积场氧化层,旨在形成边缘区域11。例如,通过CVD来沉积TEOS,其厚度为1至3μm,例如,2μm,并且执行场氧化物层的湿蚀刻以将其从阳极区域12去除并且形成边缘区域11。
此后,图8,例如,使用抗蚀剂层(未示出)保护底部导电区域20,并且沉积旨在形成顶部导电区域15的导电材料层。例如,经由溅射沉积厚度为100nm的镍层。然后例如通过掩模湿蚀刻限定导电材料层,并且在去除掩模之后,例如,在氮气环境中在750℃执行快速热退火(RTA)60s以形成顶部导电区域15。
最后,形成前后电极,以获得图1的结构。例如,通过溅射在前表面上沉积金属多层,包括钛(厚度为80nm)以及铝、硅和铜的合金(AlSiCu,厚度为3μm)。然后,通过湿蚀刻对多层图案化以形成前接触35,其在顶部导电区域15上延伸并且与其直接接触。接下来,例如,厚度为200nm的氮化硅的钝化层18沉积在前侧,并且例如,通过干蚀刻选择性地去除,以便释放阳极区域12的中心区和前接触35。
在形成前接触35之前或之后,形成底部金属化21。为此,在底部导电区域20上,例如,通过溅射来沉积由厚度为0.1μm的钛层、厚度为0.4μm的镍层以及厚度为0.05μm的金层形成的金属多层。
在光电检测器1中,掩埋区域10表示第一外延层6内的富集区域,如所提及的,其实际上是本征的,因此更好地限制光电检测器1的有源区14中的电场。
边缘区域11的存在能够进一步限制电场并且增大边缘区11的击穿电压,而不影响光电检测器1的中心区(有源区14)的击穿。实际上,当由于光电检测器1在高于击穿电压的电压偏置并且生成光生初级电荷载流子而激活雪崩电流时,期望将雪崩电流限制在光电检测器1的中心区中,即,击穿不会影响外围区。边缘区域11的存在因此能够将光电检测器1的击穿电压设置为适当值(例如,80至90V),相对于所期望的检测行为是优化的,防止外围区的击穿。具体地,边缘区域11的外围表面11’的倾斜度高于45°使得能够获得特别有效的限制。
利用所描述的过程,并且具体地,通过热生长形成第二外延层8,通过退火和激活掩埋区域10中的掺杂剂,可以在光电检测器1的有源区14中获得缺陷减少,从而获得有效的暗电流减少。
因此,光电检测器在中心有源区中具有非常低的暗电流、较高的填充因数以及非常低的击穿电压。光电检测器1因此可以方便地用于高密度光电检测器阵列中。
如所提及的,尽管图1的结构以可靠方式操作以将光电检测器1的有源区的雪崩倍增保持在大约80V的电压,但是当光电检测器必须在80V与120V之间的击穿电压工作时,可以集成有源区14周围的同心边缘环。
图9因此示出了与图1的光电检测器1相同的光电检测器100,除了边缘区域的形状之外,此处由111指定,使得相同元件由相同数字指定。
详细地,边缘区域111形成朝向主体3的内部突出的一系列边缘环140。彼此同心的边缘环140贯穿第二外延层(此处由108指定)的厚度延伸到阳极区域12和掩埋区域10,直到延伸到第一外延层6的表面部分。
通过在蚀刻第二外延层108时对所使用的硬掩模适当地图案化(同时执行上面参照图5针对图1的光电检测器1引用的蚀刻)来形成边缘环140,在所说明的示例中是两个边缘环140。实际上,在该步骤中,在主体103中,通过去除第二外延层108的选择性部分和下方的第一外延层6的表面部分来获得环形蚀刻或凹陷,其形状与边缘环140互补。
边缘环140具有四边形形状,此处为梯形,其小底部朝下。在这种情况下,边缘环具有相对于中心轴A(和平面XY)倾斜至少45°的侧壁140C。优选地,倾斜度高于45°,高达几乎90°(与该技术兼容),并且在这种情况下,边缘环具有类矩形形状。而且,边缘环140可以在其下侧140A(平行于图9中的轴X并且与第一外延层6接触的一侧)具有小底部,其宽度为至少0.2μm,并且可以隔开至少0.2μm的距离(外围部分140B平行于图9中的轴X并且与第二外延层108接触)。优选地,小底部140A的宽度是0.8μm,并且外围部分140B是2μm。然而,边缘环140可以设置有恒定或可变间距;在后一种情况下,相邻边缘环140之间的外围部分140B不同。
边缘环140具有增大边缘区的击穿电压的功能,这取决于形成边缘区域111的介电层的几何结构和表面电荷,从而确保光电检测器的雪崩击穿发生在光电检测器100的有源区14中,在有源区14中存在掩埋区域10。
边缘区域111包括至少两个边缘环;然而,本申请人所做的模拟已经说明环的数量、其宽度及其间距并不重要。具体地,已经示出了,具有两个边缘环140的图示结构表示光电检测器100的电气特性和性能及其尺寸之间的最佳折衷。
图10示出了不同实施例,其中,光电检测器200具有场分布结构,所谓的场板。详细地,在图10中,与图1相同的部件由相同的附图标记指定,光电检测器200具有:边缘区域211,其被图案化以便具有内环部211A,在阳极区域12的外围之上延伸;环部211B,设置在外部并且作为内环部211A的延续,与阳极区域12的外围表面12A相邻;具有可变厚度的环部211D,设置在外部且作为倾斜环部211B的延续,并且具有从后者增加的厚度;以及外部211C,其具有等于图1的光电检测器1的边缘区域11的外部11C的恒定厚度(例如,2μm)。
例如,倾斜环部211B可以设置为相对于平行于主体3的平面底表面3B的水平平面(笛卡尔参考系XYZ的平面XY)成大约30°的角度,并且具有可变厚度的环部211D的顶表面可以设置为相对于平行于主体3的平面底表面面3B的相同水平平面成大约7°的角度。
通过这种方式,倾斜环部211B和可变厚度环部211D界定具有环形形状的凹陷区241。顶部导电区域215在此处具有在阳极区域12的外围表面之上延伸并且类似于图1的导电区域15的欧姆接触部分215A以及被设置为欧姆接触部分215A的延续,相对于欧姆接触部分215A在外围并且在凹陷区241之上延伸的场板部分215B。
可以通过使用适当的光刻工艺形成边缘区域211,包括对抗蚀剂回流进行掩模。
诸如硅化镍等金属的场板部分215B因此形成电场重分布层,使光电检测器200的结构对于边缘击穿来说更强。具体地,对于本领域技术人员来说显而易见的,可以基于用于限定光电检测器200的制造过程步骤的可变性来校准倾斜环部211B和可变厚度环部211D的倾斜度以及场板部分215B的长度。
图11示出了该光电检测器的不同实施例,其中,掩埋区域不再面向第一外延层6与第二外延层8之间的界面7,而是设置为与该界面相距一定距离处。
详细地,图11示出了光电检测器300,除了第一外延层6和第二外延层8之外,该光电检测器300还包括在第一外延层6与第二外延层8之间延伸并且在掩埋区域310之上的外延缓冲层345。外延缓冲层345因此与第二外延层8形成N型的界面7’,并且在第一外延层6与掩埋区域310之间具有中间掺杂水平。而且,外延缓冲层345具有0.2至0.4μm的厚度。另外,在这种情况下,峰值浓度出现的掩埋区域310的深度在0.3至0.7μm之间,例如,与界面7’相距大约0.4μm。
图11的光电检测器300具有边缘区域311,其具有边缘环140;然而,它可以不具有边缘环140并且其形状如图1所示,或者具有多个边缘环140,如图9所示。
可以如图12至图14所说明的那样制造图11的光电检测器300。
详细地,如图12所示和参照图2描述的,在衬底4上外延生长第一外延层6,例如,厚度为例如350μm并且掺杂水平为例如1·1019cm-3的N型的4H多型体碳化硅(4H-SiC)。第一外延层6掺杂有氮离子,并且具有大约9.5μm的厚度和例如1·1014cm-3的掺杂水平。
在清洁和形成对齐标记之后,如上所述,通过使用硬掩模30在低能量下对N型的掺杂剂离子(例如,磷)执行选择性表面注入,图13。例如,可以在80keV的能量执行剂量为1·1014cm-2的注入,以形成薄层310’,其在与第一外延层6的表面相距大约0.1μm处具有峰值浓度。
在去除硬掩模30之后,图14,在外延反应器中执行热退火和使用CVD工艺的三步外延生长。详细地,例如,首先在1650℃的温度在氩气中30s来激活薄层310’的磷离子;然后,使用氢气作为气体载体以及HCl3Si和C2H4作为硅和碳前体,掺杂氮N来在1650℃的温度生长外延缓冲层345 30s。因此获得掺杂水平为1·1016cm-3并且厚度为0.2至0.4μm的4H-SiC类的外延缓冲层345,如上面所提及的。然后,使用氢气作为载体以及HCl3Si和C2H4作为硅和碳前体,掺杂铝Al来在1650℃执行进一步的外延生长3分钟。因此获得厚度为例如0.2μm并且掺杂剂量包括在1·1019cm-3与1·1020cm-3之间(例如,5·1019cm-3)的P+型的第二外延层8。
该过程继续进行已经参照图5至8描述的步骤,直到图11的最终结构。
在该实施例中,接着是双外延生长(首先是N型,然后是P型)的掩埋层310的低能注入减少了有源区14的损坏。而且,电场几乎完全限制在缓冲层345中和有源区14内,从而降低了外围区的击穿风险。
根据不同的制造过程,掩埋区域可以通过使用高能掩埋注入而设置在距离第二外延层8一定距离处并且嵌入到第一外延层6内,如参照图15至17所描述的。
详细地,图15示出了光电检测器400,其中,第一外延层6和第二外延层8彼此相邻且邻近,并且形成界面7,如图1所示。掩埋区域(此处由410指定)在与界面7相距较短的距离处延伸,使得同时在这种情况下,最大浓度区设置为与界面7相距大约0.2至0.7μm。实际上,第一外延层6的极薄的缓冲部分(由450指定)设置在掩埋区域410与界面7之间,并且类似于图11的缓冲区域345操作。
可以如图16和图17所说明的那样制造光电检测器400。
详细地,图16,最初在参照图2描述的衬底4上生长第一外延层6。衬底4和第一外延层6的厚度、材料和掺杂水平可以与参照图2所描述的那些相同。然后,在第一外延层6上执行P+型外延生长,其厚度小于0.2μm,例如,0.1μm,并且其掺杂水平是例如5·1019cm-3。硼可以用作掺杂剂离子种类。因此获得图16的结构。
接下来,通过未说明的方式,执行清洁,并且形成对齐标记,如上面针对图2至图8的实施例所描述的。
然后,图17,例如,形成厚度为0.8μm的TEOS的硬掩模430。通过沉积TEOS层(例如,通过PECVD)并且使用抗蚀剂掩模(未示出)进行图案化以已知方式获得的硬掩模430具有窗口431,在窗口431中期望形成掩埋区域410。通过使用掩模430(例如,具有磷离子)利用一定能量来注入掩埋区域410,以将掺杂剂原子深度限制在距离第一外延层6的顶表面一定距离处。例如,执行双注入,首先在420keV的能量执行剂量为1·1013cm-2的注入,然后在490keV的能量执行剂量为1·1014cm-2的注入,两者都是在500℃的温度,如图17中通过箭头432示意性地表示的。因此在窗口431下方形成掩埋区域410。
然后,接着是已经参照5至8所描述的步骤,直到图15的最终结构。
也许,如本领域技术人员所清楚的,可以执行额外退火以减少在有源区14中对掩埋区域410的高能注入而造成的缺陷。
利用图15至图17的解决方案,在掩埋区域410与阳极区域12之间形成准本征N型的薄缓冲层450,虽然在反向偏置情况下将击穿电压保持在100V之下,但是有助于限制电场。
根据另一替代方案,在执行P+型的第二外延生长以形成第二外延层之前执行掩埋区域410的深度注入。
图18示出了集成在单个管芯2中的光电检测器1、100、200、300、400的阵列500。阵列500可以包括任何数量的相同的光电检测器1、100、200、300、400。在使用中,阵列500的光电检测器1、100、200、300、400被设置为面向适用于发出紫外辐射的外部光源560。
如图19所图示的,在通用系统600中可以使用光电检测器1、100、200、300、400的阵列500,其中,阵列500耦合至微控制器561,微控制器561又耦合至控制显示器563的计算机562。微控制器561处理阵列500的输出信号,并且将处理后的信号提供给计算机562;因此,计算机562可以分析处理后的信号并且在显示器563上显示相关联的信息。
最后,很明显,可以对本文描述和图示的光电检测器及其制造过程进行修改和变更,而不会因此偏离本公开的范围。例如,可以组合所描述的各种实施例以提供另外的解决方案。
可以组合上述各种实施例以提供另外的实施例。鉴于上述描述,可以对实施例进行这些和其它改变。通常,在以下权利要求书中,所使用的术语不应被视为将权利要求项限制于本说明书和权利要求书中所公开的特定实施例,而是应被视为包括所有可能的实施例,连同这种权利要求书有权享有的等同的全部范围。因此,权利要求书不受本公开的限制。

Claims (22)

1.一种半导体紫外光光电检测器,包括:
碳化硅的主体,包括具有第一导电类型的第一外延层以及具有第二导电类型并且被设置在所述第一外延层顶部的第二外延层;所述主体具有非平面主体表面,包括突出部分、倾斜侧部和边缘部分;
介电材料的边缘区域,在所述主体表面的所述倾斜侧部和所述边缘部分之上延伸;
阳极区域,具有所述第二导电类型并且由所述第二外延层形成,所述阳极区域由所述主体表面的所述突出部分和所述倾斜侧部界定并且被配置为接收紫外光;
阴极区域,具有所述第一导电类型和第一掺杂水平,由在所述阳极区域下方的所述第一外延层形成;以及
掩埋区域,具有所述第一导电类型和高于所述第一掺杂水平的第二掺杂水平,在所述阳极区域与所述阴极区域之间延伸,所述掩埋区域位于所述主体表面的所述突出部分下方并且与所述主体表面的所述倾斜侧部以及所述边缘部分隔开。
2.根据权利要求1所述的光电检测器,其中所述掩埋区域是在垂直于所述主体表面的厚度方向上具有可变轮廓掺杂的注入区域,所述注入区域在所述掩埋区域的中间深度处具有最大值。
3.根据权利要求1所述的光电检测器,其中所述掩埋区域具有面向所述阳极区域的平面顶表面,并且所述边缘区域具有外部部分,所述外部部分在所述主体表面的所述边缘部分之上并且至少部分地在低于所述掩埋区域的所述平面顶表面的水平处延伸。
4.根据权利要求1所述的光电检测器,其中所述第一外延层和所述第二外延层是彼此邻近的并限定出界面,并且所述掩埋区域在所述第一外延层中从所述界面延伸。
5.根据权利要求1所述的光电检测器,其中所述第一外延层和所述第二外延层是彼此邻近的并限定出界面,所述掩埋区域与所述界面隔开、在所述第一外延层中延伸,并且所述第一外延层形成在所述掩埋区域与所述第二外延层之间延伸的缓冲区域。
6.根据权利要求1所述的光电检测器,进一步包括外延缓冲层,所述外延缓冲层具有所述第一导电类型以及高于所述第一掺杂水平且低于所述第二掺杂水平的第三掺杂水平,其中所述第一外延层和所述第二外延层通过所述外延缓冲层彼此隔开,并且所述掩埋区域在所述外延缓冲层下方延伸。
7.根据权利要求1所述的光电检测器,其中所述掩埋区域具有面向所述阳极区域的平面顶表面,并且所述主体表面的所述倾斜侧部相对于所述掩埋区域的所述平面顶表面形成至少45°的角度。
8.根据权利要求1所述的光电检测器,其中所述主体表面的所述边缘部分形成多个凹陷,所述多个凹陷容纳由所述边缘区域形成并且朝向所述第一外延层突出的对应的多个边缘环,所述边缘环与所述阳极区域同心并且通过所述第一外延层和所述第二外延层的部分彼此隔开。
9.根据权利要求8所述的光电检测器,其中所述边缘环在横截面中具有梯形形状,具有与所述第一外延层接触的小底部;所述边缘环具有至少0.2μm的小底部宽度,彼此隔开至少0.2μm,并且具有相对于所述掩埋区域的面向所述阳极区域的平面顶表面形成至少45°的角度的斜壁。
10.根据权利要求1所述的光电检测器,其中所述边缘区域具有形成凹陷区的顶表面以及在所述凹陷区之上的所述边缘区域的所述顶表面上延伸并且与所述边缘区域的所述顶表面接触的场板导电区域。
11.根据权利要求1所述的光电检测器,其中所述第一外延层是N型并具有被包括在8·1013cm-3与2·1014cm-3之间的掺杂水平,所述第二外延层是P型并具有被包括在1·1019cm-3与1·1020cm-3之间的掺杂水平,并且所述掩埋区域是N型。
12.根据权利要求1所述的光电检测器,其中所述第一外延层具有8μm至12μm的厚度,所述第二外延层具有0.3μm至0.7μm的厚度,所述掩埋区域具有被设置为与所述第一外延层和所述第二外延层之间的边界区相距0.2μm至0.7μm的峰值浓度部分,并且所述边缘区域在所述主体表面的所述边缘部分上方具有1μm至3μm的厚度。
13.一种半导体紫外光光电检测器系统,包括:
处理单元;以及
光电检测器的光电检测器阵列,被耦合至所述处理单元,所述光电检测器阵列包括碳化硅的主体,所述主体包括具有第一导电类型的第一外延层以及具有第二导电类型并且被设置在所述第一外延层顶部的第二外延层,所述主体具有包括多个突出部分、多个倾斜侧部和多个边缘部分的非平面主体表面,每个光电检测器包括:
所述突出部分中的一个相应的突出部分、所述倾斜侧部中的一个相应的倾斜侧部以及所述边缘部分中的一个相应的边缘部分;
介电材料的边缘区域,在所述主体表面的所述相应的倾斜侧部和所述相应的边缘部分上延伸;
阳极区域,具有所述第二导电类型并且由所述第二外延层形成,所述阳极区域由所述主体表面的所述相应的突出部分和所述相应的倾斜侧部界定并且被配置为接收紫外光;
阴极区域,具有所述第一导电类型和第一掺杂水平,由在所述阳极区域下方的所述第一外延层形成;以及
掩埋区域,具有所述第一导电类型和高于所述第一掺杂水平的第二掺杂水平,在所述阳极区域与所述阴极区域之间延伸,所述掩埋区域位于所述主体表面的所述相应的突出部分下方并且与所述主体表面的所述相应的倾斜侧部以及所述相应的边缘部分隔开。
14.根据权利要求13所述的半导体紫外光光电检测器系统,其中所述第一外延层和所述第二外延层是彼此邻近的并限定出界面,并且每个掩埋区域在所述第一外延层中从所述界面延伸。
15.一种用于制造半导体紫外光光电检测器的方法,包括:
外延生长具有第一导电类型和第一掺杂水平的碳化硅的第一外延层;
在所述第一外延层内注入掩埋区域,所述掩埋区域具有所述第一导电类型和高于所述第一掺杂水平的第二掺杂水平,所述第一外延层的在所述掩埋区域下方的一部分形成阴极区域;
在所述第一外延层上外延生长具有第二导电类型的碳化硅的第二外延层,所述第二外延层具有厚度,所述第一外延层和所述第二外延层限定出碳化硅主体;
选择性地去除所述第二外延层的部分和下方的所述第一外延层的表面部分,从而限定出第二掩埋层中的阳极区域并且形成主体表面,所述主体表面包括所述阳极区域之上的突出部分、横向界定所述阳极区域并且与所述掩埋区域隔开的倾斜侧部以及在所述第一外延层的外围部分上的边缘部分;以及
形成与所述主体表面的所述倾斜侧部和所述边缘部分接触的介电材料的边缘区域。
16.根据权利要求15所述的方法,其中外延生长所述第二外延层包括在至少1500℃的温度执行退火以减少缺陷。
17.根据权利要求15所述的方法,其中选择性地去除所述第二外延层的部分和下方的所述第一外延层的表面部分包括在所述主体表面的所述边缘部分中形成位于所述阳极区域外部的多个同心凹陷,并且形成边缘区域包括填充所述凹陷,以形成朝向所述第一外延层突出的多个边缘环,所述边缘环与所述阳极区域同心并且通过所述第一外延层和所述第二外延层的部分彼此隔开。
18.根据权利要求15所述的方法,其中形成边缘区域包括形成具有凹陷区的顶表面,所述方法进一步包括在所述凹陷区之上的所述边缘区域的所述顶表面上形成场板导电区域。
19.根据权利要求15所述的方法,包括在所述掩埋区域与所述阳极区域之间形成缓冲层,所述缓冲层具有所述第一导电类型。
20.根据权利要求19所述的方法,其中形成所述缓冲层包括:在注入所述掩埋区域之后以及在外延生长所述第二外延层之前,外延生长所述缓冲层,所述缓冲层具有高于所述第一掺杂水平且低于所述第二掺杂水平的第三掺杂水平。
21.根据权利要求19所述的方法,其中注入所述掩埋区域包括利用一定能量注入第一类型的掺杂剂离子,以形成与所述第一外延层的顶表面隔开的所述掩埋区域,以在所述掩埋区域与所述第一外延层的所述顶表面之间形成所述缓冲层。
22.根据权利要求21所述的方法,其中注入所述掩埋区域在外延生长所述第二外延层之后且在选择性地去除所述第二外延层的所述部分和所述第一外延层的表面部分之前执行。
CN201910233197.6A 2018-03-30 2019-03-26 碳化硅紫外光光电检测器及其制造方法 Active CN110323302B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310305109.5A CN116207180A (zh) 2018-03-30 2019-03-26 碳化硅紫外光光电检测器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT102018000004149 2018-03-30
IT102018000004149A IT201800004149A1 (it) 2018-03-30 2018-03-30 Fotorivelatore di luce ultravioletta di carburo di silicio e suo processo di fabbricazione

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310305109.5A Division CN116207180A (zh) 2018-03-30 2019-03-26 碳化硅紫外光光电检测器及其制造方法

Publications (2)

Publication Number Publication Date
CN110323302A CN110323302A (zh) 2019-10-11
CN110323302B true CN110323302B (zh) 2023-04-11

Family

ID=62530512

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201920390597.3U Withdrawn - After Issue CN209804690U (zh) 2018-03-30 2019-03-26 半导体紫外光光电检测器和紫外辐射检测系统
CN202310305109.5A Pending CN116207180A (zh) 2018-03-30 2019-03-26 碳化硅紫外光光电检测器及其制造方法
CN201910233197.6A Active CN110323302B (zh) 2018-03-30 2019-03-26 碳化硅紫外光光电检测器及其制造方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201920390597.3U Withdrawn - After Issue CN209804690U (zh) 2018-03-30 2019-03-26 半导体紫外光光电检测器和紫外辐射检测系统
CN202310305109.5A Pending CN116207180A (zh) 2018-03-30 2019-03-26 碳化硅紫外光光电检测器及其制造方法

Country Status (4)

Country Link
US (2) US11335823B2 (zh)
EP (1) EP3547375B1 (zh)
CN (3) CN209804690U (zh)
IT (1) IT201800004149A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800004149A1 (it) * 2018-03-30 2019-09-30 St Microelectronics Srl Fotorivelatore di luce ultravioletta di carburo di silicio e suo processo di fabbricazione
CN111933740B (zh) * 2020-07-22 2022-11-29 中国电子科技集团公司第十三研究所 紫外光电二极管及其制备方法
CN113252205B (zh) * 2021-04-07 2022-05-20 中山德华芯片技术有限公司 一种适用于晶格失配外延材料的rt探测器及其应用
WO2023244975A2 (en) * 2022-06-13 2023-12-21 Regents Of The University Of Minnesota Photodetectors for measuring real-time optical irradiance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586067A (en) * 1984-04-10 1986-04-29 Rca Inc. Photodetector with isolated avalanche region
DE3921028A1 (de) * 1989-06-27 1991-01-10 Siemens Ag Avalanche-photodiode und herstellungsverfahren
US7863647B1 (en) * 2007-03-19 2011-01-04 Northrop Grumman Systems Corporation SiC avalanche photodiode with improved edge termination
CN104882510A (zh) * 2015-06-04 2015-09-02 镇江镓芯光电科技有限公司 一种新型小倾角半台面结构的碳化硅雪崩光电二极管
CN104882509A (zh) * 2015-04-05 2015-09-02 北京工业大学 一种波导对接耦合型吸收倍增分离雪崩二极管
CN209804690U (zh) * 2018-03-30 2019-12-17 意法半导体股份有限公司 半导体紫外光光电检测器和紫外辐射检测系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3607385B2 (ja) * 1995-11-24 2005-01-05 浜松ホトニクス株式会社 シリコンアバランシェフォトダイオード
US6693308B2 (en) * 2002-02-22 2004-02-17 Semisouth Laboratories, Llc Power SiC devices having raised guard rings
DE10252878A1 (de) * 2002-11-12 2004-06-03 X-Fab Semiconductor Foundries Ag In BiCMOS-Technologie monolithisch integrierte verbesserte vertikale pin-Fotodiode
US6838741B2 (en) * 2002-12-10 2005-01-04 General Electtric Company Avalanche photodiode for use in harsh environments
ITTO20080045A1 (it) * 2008-01-18 2009-07-19 St Microelectronics Srl Schiera di fotodiodi operanti in modalita' geiger reciprocamente isolati e relativo procedimento di fabbricazione
IT1393781B1 (it) * 2009-04-23 2012-05-08 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile ad effetto jfet, schiera di fotodiodi e relativo procedimento di fabbricazione
US8779543B2 (en) * 2011-09-19 2014-07-15 Technion Research And Development Foundation Ltd. Device having an avalanche photo diode and a method for sensing photons
ITUB20154111A1 (it) 2015-10-06 2017-04-06 St Microelectronics Srl Fotodiodo a valanga in carburo di silicio per la rilevazione di radiazione ultravioletta e relativo procedimento di fabbricazione
JP6485382B2 (ja) * 2016-02-23 2019-03-20 株式会社デンソー 化合物半導体装置の製造方法および化合物半導体装置
FR3052297A1 (fr) * 2016-06-06 2017-12-08 St Microelectronics Crolles 2 Sas Capteur d'image de type a obturation globale
ITUA20164571A1 (it) * 2016-06-21 2017-12-21 St Microelectronics Srl Dispositivo optoelettronico multibanda per applicazioni colorimetriche e relativo metodo di fabbricazione
IT201800004621A1 (it) * 2018-04-17 2019-10-17 Dispositivo optoelettronico ad elevata sensibilita' per la rilevazione di specie chimiche e relativo metodo di fabbricazione
IT201800004622A1 (it) * 2018-04-17 2019-10-17 Fotorilevatore includente un fotodiodo a valanga operante in modalita' geiger e un resistore integrato e relativo metodo di fabbricazione

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586067A (en) * 1984-04-10 1986-04-29 Rca Inc. Photodetector with isolated avalanche region
DE3921028A1 (de) * 1989-06-27 1991-01-10 Siemens Ag Avalanche-photodiode und herstellungsverfahren
US7863647B1 (en) * 2007-03-19 2011-01-04 Northrop Grumman Systems Corporation SiC avalanche photodiode with improved edge termination
CN104882509A (zh) * 2015-04-05 2015-09-02 北京工业大学 一种波导对接耦合型吸收倍增分离雪崩二极管
CN104882510A (zh) * 2015-06-04 2015-09-02 镇江镓芯光电科技有限公司 一种新型小倾角半台面结构的碳化硅雪崩光电二极管
CN209804690U (zh) * 2018-03-30 2019-12-17 意法半导体股份有限公司 半导体紫外光光电检测器和紫外辐射检测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王丽玉等.碳化硅紫外探测器的研究.《中国科学技术大学学报》.2003,(第06期), *

Also Published As

Publication number Publication date
CN116207180A (zh) 2023-06-02
IT201800004149A1 (it) 2019-09-30
US20190305159A1 (en) 2019-10-03
US20220238738A1 (en) 2022-07-28
EP3547375A1 (en) 2019-10-02
CN209804690U (zh) 2019-12-17
CN110323302A (zh) 2019-10-11
US11335823B2 (en) 2022-05-17
EP3547375B1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
CN110323302B (zh) 碳化硅紫外光光电检测器及其制造方法
US8471293B2 (en) Array of mutually insulated Geiger-mode avalanche photodiodes, and corresponding manufacturing process
US9236519B2 (en) Geiger-mode avalanche photodiode with high signal-to-noise ratio, and corresponding manufacturing process
US8106422B2 (en) SiC avalanche photodiode with improved edge termination
US20090184384A1 (en) Array of mutually isolated, geiger-mode, avalanche photodiodes and manufacturing method thereof
CN106711253B (zh) 一种iii族氮化物半导体雪崩光电二极管探测器
US7560791B2 (en) Front lit PIN/NIP diode having a continuous anode/cathode
US11239382B2 (en) Semiconductor photomultiplier
US8648437B2 (en) Trench sidewall contact Schottky photodiode and related method of fabrication
US11961933B2 (en) Low noise Geiger-mode avalanche photodiode and manufacturing process
US10290760B2 (en) Process of manufacturing an avalanche diode
CN114975657A (zh) Spad器件结构、spad探测器及spad器件结构制备方法
JP2012174783A (ja) フォトダイオードおよびフォトダイオードアレイ
US20160035928A1 (en) Photodiode
US20230207719A1 (en) Semiconductor device including germanium region disposed in semiconductor substrate
CN110690314B (zh) 吸收层与倍增层为分离结构的紫外探测器及其制备方法
US11967664B2 (en) Photodiodes with serpentine shaped electrical junction
CN113678267B (zh) 雪崩光电探测器(变型)及其制造方法(变型)
US20230042681A1 (en) Spad pixel for a backside illuminated image sensor
KR102078316B1 (ko) 2차원 도핑 기술을 이용한 수광소자 및 그 제조방법
KR20230124289A (ko) 광대역 포토다이오드 및 그 제조방법
CN117393634A (zh) 一种雪崩二极管及其制备方法
CN115084305A (zh) 一种硅基短波近红外单光子雪崩二极管及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191112

Address after: Italy Agra Brianza

Applicant after: STMicroelectronics S.R.L.

Address before: Luo Ma

Applicant before: Consiglio Nazionale Delle Ricerche

Applicant before: STMicroelectronics S.R.L.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant