CN110317050A - 一种陶瓷基板的低温烧结方法 - Google Patents

一种陶瓷基板的低温烧结方法 Download PDF

Info

Publication number
CN110317050A
CN110317050A CN201910449717.7A CN201910449717A CN110317050A CN 110317050 A CN110317050 A CN 110317050A CN 201910449717 A CN201910449717 A CN 201910449717A CN 110317050 A CN110317050 A CN 110317050A
Authority
CN
China
Prior art keywords
temperature
powder
low
ceramic
temperature sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910449717.7A
Other languages
English (en)
Inventor
余国海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuyang Chuangqi Crafts Co Ltd
Original Assignee
Fuyang Chuangqi Crafts Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuyang Chuangqi Crafts Co Ltd filed Critical Fuyang Chuangqi Crafts Co Ltd
Priority to CN201910449717.7A priority Critical patent/CN110317050A/zh
Publication of CN110317050A publication Critical patent/CN110317050A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering

Abstract

本发明公开了一种陶瓷基板的低温烧结方法,包括如下步骤:(1)原料称取、(2)增强添加剂制备、(3)混合浆料制备、(4)陶瓷生坯制备和加工、(5)低温烧结处理。本发明方法整体工艺步骤简单,便于推广应用,制得的陶瓷基板尺寸稳定,导热率好,抗压强度大,且制备时烧结的温度较低,生产成本得以有效控制,具有很好的经济效益和市场竞争力。

Description

一种陶瓷基板的低温烧结方法
技术领域
本发明涉及一种陶瓷的制备方法,具体涉及一种陶瓷基板的低温烧结方法。
背景技术
低温共烧陶瓷(Low Temperature Co-fired Ceramics ,LTCC)技术是一种多学科交叉技术,能够应用于高频多层电子基板和被动器件的制造领域,为电子元器件的封装和集成提供了良好的解决途径。低温共烧陶瓷技术通常包括浆料制备、流延坯片、形状剪切、丝网印刷、叠层、共烧等步骤,其中叠层和共烧是最为重要的两个步骤,其结果直接影响到产品的最终质量。由于坯片收缩、不同介质材料层间在烧结温度、烧结致密化速率、烧结收缩率及热膨胀速率等方面的失配以及叠层压力的不均匀等因素,往往容易产生层裂、翘曲和裂纹等缺陷。
对此现有技术对烧结的方法进行了改进处理,如申请号为:CN201310257327.2公开了一种控制低温共烧陶瓷基板烧结收缩及变形的工艺,其中通过加压和控制升温速率等方式提升了基板的稳定性和平整性。但此方法制得的基板在强度和导热性能上的品质仍有待增强,且烧结的温度较高,不利于生产成本的的降低。
发明内容
本发明的目的是针对现有的问题,提供了一种陶瓷基板的低温烧结方法。
本发明是通过以下技术方案实现的:
一种陶瓷基板的低温烧结方法,包括如下步骤:
(1)原料称取:
按对应重量份称取下列原料备用:25~30份陶瓷粉体、10~12份聚丙烯酸钠溶液、4~7份聚乙二醇溶液、35~40份聚乙烯醇溶液、20~25份超纯水;
(2)增强添加剂制备:
将三氧化二铝粉末、钾长石粉、纳米银粉和炭黑粉末共同投入到球磨机内进行球磨处理,1~1.5h后取出,然后再放于氮气气氛中高温煅烧反应处理3~5h,完成后再将其取出放入到温度为750~780℃的干燥空气中脱碳处理2~2.5h,最后取出自然冷却至室温后得增强添加剂备用;
(3)混合浆料制备:
将步骤(1)称取的陶瓷粉体、聚丙烯酸钠溶液、聚乙二醇溶液、聚乙烯醇溶液、超纯水共同混合投入到搅拌罐内,然后再向搅拌罐内加入其总质量3~5%的步骤(2)制得的增强添加剂,高速搅拌处理1.5~2h后得混合浆料备用;
(4)陶瓷生坯制备和加工:
对步骤(3)制得的混合浆料采用水基流延法流延陶瓷生坯,然后对此陶瓷生坯进行打孔和形状裁切处理,最后对处理后的陶瓷生坯进行施压叠层处理后制成半成品陶瓷生坯备用;
(5)低温烧结处理:
将步骤(4)制得的半成品陶瓷生坯先放入到干燥炉内,然后对干燥炉进行加热处理,待干燥炉内温度升至100~105℃后保温处理5~7min,随后将半成品陶瓷生坯取出放入到微波烧结炉内进行低温烧结处理,完成后取出冷却即可。
进一步的,步骤(1)中所述的陶瓷粉体为堇青石陶瓷粉体;所述的聚丙烯酸钠溶液中丙烯酸纳的质量浓度为3~4%;所述的聚乙二醇溶液中聚乙二醇的体积浓度为12~14%;所述的聚乙烯醇溶液中聚乙烯醇的体积浓度为6~8%。
进一步的,步骤(2)中所述的增强添加剂制备方法具体是:将三氧化二铝粉末、钾长石粉、纳米银粉和炭黑粉末对应按照重量比25~28:8~10:0.5~1:5~8进行混合共同投入到球磨机内进行球磨处理,1~1.5h后取出,再加入其总质量3~6%的氧化钙混合均匀,然后再放于氮气气氛中高温煅烧反应处理3~5h,期间控制高温煅烧的温度为1600~1650℃,完成后再将其取出放入到温度为750~780℃的干燥空气中脱碳处理2~2.5h,最后取出自然冷却至室温后即可。
进一步的,所述三氧化二铝粉末、钾长石粉的颗粒大小均为500~600目;所述的纳米银粉的颗粒大小为30~50nm;所述的炭黑粉末的颗粒大小为40~60nm。
进一步的,所述干燥空气内的相对湿度不大于35%。
进一步的,步骤(3)中所述的高速搅拌处理时控制搅拌的转速为2000~2500转/分钟。
进一步的,步骤(5)中所述的对干燥炉进行加热处理时控制加热升温的速度为6~8℃/min。
进一步的,步骤(5)中所述的低温烧结处理时控制微波烧结炉内的温度为700~770℃,烧结的时长控制为3~5h。
基板在烧制的过程中会出现横向和经向上的收缩,导致成品尺寸会发生变化,与设计的尺寸存在一定误差,会影响使用的精度和效果,现有技术中使用加压、控温等方式进行改善,取得了一定的效果,但过高的温度不仅提升了生产成本,还会促使上述收缩的增加。对此本发明对其制备方法进行了特殊的改进处理,尤其是在原料成分里添加了一种特制的增强添加剂,此成分用以调节和改善整体的制备工艺,一方面此增强添加剂能够改善和提升陶瓷基板的理化性能,另一方面还能促使优化整体的制作工艺,本增强添加剂是一种以三氧化二铝粉末为铝源,氧化钙为催化剂,加工而成的复合有纳米银粉及少量氧化硅的改性氮化铝复合粉末成分,此成分在后续制备中有效的填充分散于混合浆料中,形成了陶瓷基板的一种填充骨料,后续烧结时,增强添加剂能够熔融填充提升莫来石相的生成,进而提高了力学品质,同时其内添加的纳米银粉能够分散填于陶瓷基板内部晶粒之间,降低了空隙率,提升了介电性能,同时在微波的作用下还能通过自摩擦发热,降低了整体的烧结温度,提高了烧结的效率和效果,实现了在不高于800℃的低温环境下就能烧结完成,并因烧结温度的下降,基板的尺寸稳定性增强,收缩变化率进一步下降。
本发明相比现有技术具有以下优点:
本发明方法整体工艺步骤简单,便于推广应用,制得的陶瓷基板尺寸稳定,导热率好,抗压强度大,且制备时烧结的温度较低,生产成本得以有效控制,具有很好的经济效益和市场竞争力。
具体实施方式
实施例1
一种陶瓷基板的低温烧结方法,包括如下步骤:
(1)原料称取:
按对应重量份称取下列原料备用:25份陶瓷粉体、10份聚丙烯酸钠溶液、4份聚乙二醇溶液、35份聚乙烯醇溶液、20份超纯水;
(2)增强添加剂制备:
将三氧化二铝粉末、钾长石粉、纳米银粉和炭黑粉末共同投入到球磨机内进行球磨处理,1h后取出,然后再放于氮气气氛中高温煅烧反应处理3h,完成后再将其取出放入到温度为750℃的干燥空气中脱碳处理2h,最后取出自然冷却至室温后得增强添加剂备用;
(3)混合浆料制备:
将步骤(1)称取的陶瓷粉体、聚丙烯酸钠溶液、聚乙二醇溶液、聚乙烯醇溶液、超纯水共同混合投入到搅拌罐内,然后再向搅拌罐内加入其总质量3%的步骤(2)制得的增强添加剂,高速搅拌处理1.5h后得混合浆料备用;
(4)陶瓷生坯制备和加工:
对步骤(3)制得的混合浆料采用水基流延法流延陶瓷生坯,然后对此陶瓷生坯进行打孔和形状裁切处理,最后对处理后的陶瓷生坯进行施压叠层处理后制成半成品陶瓷生坯备用;
(5)低温烧结处理:
将步骤(4)制得的半成品陶瓷生坯先放入到干燥炉内,然后对干燥炉进行加热处理,待干燥炉内温度升至100℃后保温处理5min,随后将半成品陶瓷生坯取出放入到微波烧结炉内进行低温烧结处理,完成后取出冷却即可。
进一步的,步骤(1)中所述的陶瓷粉体为堇青石陶瓷粉体;所述的聚丙烯酸钠溶液中丙烯酸纳的质量浓度为3%;所述的聚乙二醇溶液中聚乙二醇的体积浓度为12%;所述的聚乙烯醇溶液中聚乙烯醇的体积浓度为6%。
进一步的,步骤(2)中所述的增强添加剂制备方法具体是:将三氧化二铝粉末、钾长石粉、纳米银粉和炭黑粉末对应按照重量比25:8:0.5:5进行混合共同投入到球磨机内进行球磨处理,1h后取出,再加入其总质量3%的氧化钙混合均匀,然后再放于氮气气氛中高温煅烧反应处理3h,期间控制高温煅烧的温度为1600℃,完成后再将其取出放入到温度为750℃的干燥空气中脱碳处理2h,最后取出自然冷却至室温后即可。
进一步的,所述三氧化二铝粉末、钾长石粉的颗粒大小均为500~600目;所述的纳米银粉的颗粒大小为30~50nm;所述的炭黑粉末的颗粒大小为40~60nm。
进一步的,所述干燥空气内的相对湿度不大于35%。
进一步的,步骤(3)中所述的高速搅拌处理时控制搅拌的转速为2000转/分钟。
进一步的,步骤(5)中所述的对干燥炉进行加热处理时控制加热升温的速度为6℃/min。
进一步的,步骤(5)中所述的低温烧结处理时控制微波烧结炉内的温度为700℃,烧结的时长控制为3h。
实施例2
一种陶瓷基板的低温烧结方法,包括如下步骤:
(1)原料称取:
按对应重量份称取下列原料备用:28份陶瓷粉体、11份聚丙烯酸钠溶液、6份聚乙二醇溶液、37份聚乙烯醇溶液、23份超纯水;
(2)增强添加剂制备:
将三氧化二铝粉末、钾长石粉、纳米银粉和炭黑粉末共同投入到球磨机内进行球磨处理,1.2h后取出,然后再放于氮气气氛中高温煅烧反应处理4h,完成后再将其取出放入到温度为770℃的干燥空气中脱碳处理2.3h,最后取出自然冷却至室温后得增强添加剂备用;
(3)混合浆料制备:
将步骤(1)称取的陶瓷粉体、聚丙烯酸钠溶液、聚乙二醇溶液、聚乙烯醇溶液、超纯水共同混合投入到搅拌罐内,然后再向搅拌罐内加入其总质量4%的步骤(2)制得的增强添加剂,高速搅拌处理1.8h后得混合浆料备用;
(4)陶瓷生坯制备和加工:
对步骤(3)制得的混合浆料采用水基流延法流延陶瓷生坯,然后对此陶瓷生坯进行打孔和形状裁切处理,最后对处理后的陶瓷生坯进行施压叠层处理后制成半成品陶瓷生坯备用;
(5)低温烧结处理:
将步骤(4)制得的半成品陶瓷生坯先放入到干燥炉内,然后对干燥炉进行加热处理,待干燥炉内温度升至102℃后保温处理6min,随后将半成品陶瓷生坯取出放入到微波烧结炉内进行低温烧结处理,完成后取出冷却即可。
进一步的,步骤(1)中所述的陶瓷粉体为堇青石陶瓷粉体;所述的聚丙烯酸钠溶液中丙烯酸纳的质量浓度为3.5%;所述的聚乙二醇溶液中聚乙二醇的体积浓度为13%;所述的聚乙烯醇溶液中聚乙烯醇的体积浓度为7%。
进一步的,步骤(2)中所述的增强添加剂制备方法具体是:将三氧化二铝粉末、钾长石粉、纳米银粉和炭黑粉末对应按照重量比27:9:0.8:7进行混合共同投入到球磨机内进行球磨处理,1.3h后取出,再加入其总质量5%的氧化钙混合均匀,然后再放于氮气气氛中高温煅烧反应处理4h,期间控制高温煅烧的温度为1620℃,完成后再将其取出放入到温度为770℃的干燥空气中脱碳处理2.4h,最后取出自然冷却至室温后即可。
进一步的,所述三氧化二铝粉末、钾长石粉的颗粒大小均为500~600目;所述的纳米银粉的颗粒大小为30~50nm;所述的炭黑粉末的颗粒大小为40~60nm。
进一步的,所述干燥空气内的相对湿度不大于30%。
进一步的,步骤(3)中所述的高速搅拌处理时控制搅拌的转速为2200转/分钟。
进一步的,步骤(5)中所述的对干燥炉进行加热处理时控制加热升温的速度为7℃/min。
进一步的,步骤(5)中所述的低温烧结处理时控制微波烧结炉内的温度为740℃,烧结的时长控制为4h。
实施例3
一种陶瓷基板的低温烧结方法,包括如下步骤:
(1)原料称取:
按对应重量份称取下列原料备用:30份陶瓷粉体、12份聚丙烯酸钠溶液、7份聚乙二醇溶液、40份聚乙烯醇溶液、25份超纯水;
(2)增强添加剂制备:
将三氧化二铝粉末、钾长石粉、纳米银粉和炭黑粉末共同投入到球磨机内进行球磨处理,1.5h后取出,然后再放于氮气气氛中高温煅烧反应处理5h,完成后再将其取出放入到温度为780℃的干燥空气中脱碳处理2.5h,最后取出自然冷却至室温后得增强添加剂备用;
(3)混合浆料制备:
将步骤(1)称取的陶瓷粉体、聚丙烯酸钠溶液、聚乙二醇溶液、聚乙烯醇溶液、超纯水共同混合投入到搅拌罐内,然后再向搅拌罐内加入其总质量5%的步骤(2)制得的增强添加剂,高速搅拌处理2h后得混合浆料备用;
(4)陶瓷生坯制备和加工:
对步骤(3)制得的混合浆料采用水基流延法流延陶瓷生坯,然后对此陶瓷生坯进行打孔和形状裁切处理,最后对处理后的陶瓷生坯进行施压叠层处理后制成半成品陶瓷生坯备用;
(5)低温烧结处理:
将步骤(4)制得的半成品陶瓷生坯先放入到干燥炉内,然后对干燥炉进行加热处理,待干燥炉内温度升至105℃后保温处理7min,随后将半成品陶瓷生坯取出放入到微波烧结炉内进行低温烧结处理,完成后取出冷却即可。
进一步的,步骤(1)中所述的陶瓷粉体为堇青石陶瓷粉体;所述的聚丙烯酸钠溶液中丙烯酸纳的质量浓度为4%;所述的聚乙二醇溶液中聚乙二醇的体积浓度为14%;所述的聚乙烯醇溶液中聚乙烯醇的体积浓度为8%。
进一步的,步骤(2)中所述的增强添加剂制备方法具体是:将三氧化二铝粉末、钾长石粉、纳米银粉和炭黑粉末对应按照重量比28:10:1:8进行混合共同投入到球磨机内进行球磨处理,1.5h后取出,再加入其总质量6%的氧化钙混合均匀,然后再放于氮气气氛中高温煅烧反应处理5h,期间控制高温煅烧的温度为1650℃,完成后再将其取出放入到温度为780℃的干燥空气中脱碳处理2.5h,最后取出自然冷却至室温后即可。
进一步的,所述三氧化二铝粉末、钾长石粉的颗粒大小均为500~600目;所述的纳米银粉的颗粒大小为30~50nm;所述的炭黑粉末的颗粒大小为40~60nm。
进一步的,所述干燥空气内的相对湿度不大于35%。
进一步的,步骤(3)中所述的高速搅拌处理时控制搅拌的转速为2500转/分钟。
进一步的,步骤(5)中所述的对干燥炉进行加热处理时控制加热升温的速度为8℃/min。
进一步的,步骤(5)中所述的低温烧结处理时控制微波烧结炉内的温度为770℃,烧结的时长控制为5h。
对照实验例1
一种陶瓷基板的低温烧结方法,包括如下步骤:
(1)原料称取:
按对应重量份称取下列原料备用:28份陶瓷粉体、11份聚丙烯酸钠溶液、6份聚乙二醇溶液、37份聚乙烯醇溶液、23份超纯水;
(2)增强添加剂制备:
将三氧化二铝粉末、钾长石粉和炭黑粉末共同投入到球磨机内进行球磨处理,1.2h后取出,然后再放于氮气气氛中高温煅烧反应处理4h,完成后再将其取出放入到温度为770℃的干燥空气中脱碳处理2.3h,最后取出自然冷却至室温后得增强添加剂备用;
(3)混合浆料制备:
将步骤(1)称取的陶瓷粉体、聚丙烯酸钠溶液、聚乙二醇溶液、聚乙烯醇溶液、超纯水共同混合投入到搅拌罐内,然后再向搅拌罐内加入其总质量4%的步骤(2)制得的增强添加剂,高速搅拌处理1.8h后得混合浆料备用;
(4)陶瓷生坯制备和加工:
对步骤(3)制得的混合浆料采用水基流延法流延陶瓷生坯,然后对此陶瓷生坯进行打孔和形状裁切处理,最后对处理后的陶瓷生坯进行施压叠层处理后制成半成品陶瓷生坯备用;
(5)低温烧结处理:
将步骤(4)制得的半成品陶瓷生坯先放入到干燥炉内,然后对干燥炉进行加热处理,待干燥炉内温度升至102℃后保温处理6min,随后将半成品陶瓷生坯取出放入到微波烧结炉内进行低温烧结处理,完成后取出冷却即可。
本对照实验例1与上述实施例2相比,区别在于步骤(2)增强添加剂制备中,省去了纳米银粉的添加应用,除此外的方法步骤均相同。结合实践和后续试验可以看出,省去了纳米银粉的添加,陶瓷基板的性能明显降低,可见本纳米银粉的添加对于陶瓷基板及方法的优化上有着明显的增强作用效果,但此纳米银粉的添加量不宜过多,太多会提供自由电子改变了陶瓷基板的绝缘等性能,同时不能直接添加于混合浆料中,需复合于增强添加剂内,否则会产生上述类似问题。
对照实验例2
一种陶瓷基板的低温烧结方法,包括如下步骤:
(1)原料称取:
按对应重量份称取下列原料备用:28份陶瓷粉体、11份聚丙烯酸钠溶液、6份聚乙二醇溶液、37份聚乙烯醇溶液、23份超纯水;
(2)增强添加剂制备:
将三氧化二铝粉末、钾长石粉、纳米银粉和炭黑粉末共同投入到球磨机内进行球磨处理,1.2h后取出,然后再放于氮气气氛中高温煅烧反应处理4h,完成后再将其取出放入到温度为770℃的干燥空气中脱碳处理2.3h,最后取出自然冷却至室温后得增强添加剂备用;
(3)混合浆料制备:
将步骤(1)称取的陶瓷粉体、聚丙烯酸钠溶液、聚乙二醇溶液、聚乙烯醇溶液、超纯水共同混合投入到搅拌罐内,然后再向搅拌罐内加入其总质量4%的步骤(2)制得的增强添加剂,高速搅拌处理1.8h后得混合浆料备用;
(4)陶瓷生坯制备和加工:
对步骤(3)制得的混合浆料采用水基流延法流延陶瓷生坯,然后对此陶瓷生坯进行打孔和形状裁切处理,最后对处理后的陶瓷生坯进行施压叠层处理后制成半成品陶瓷生坯备用;
(5)低温烧结处理:
将步骤(4)制得的半成品陶瓷生坯先放入到干燥炉内,然后对干燥炉进行加热处理,待干燥炉内温度升至102℃后保温处理6min,随后将半成品陶瓷生坯取出放入到微波烧结炉内进行低温烧结处理,完成后取出冷却即可。
进一步的,步骤(5)中所述的低温烧结处理时控制微波烧结炉内的温度为940℃,烧结的时长控制为4h。
本对照实验例2与上述实施例2相比,区别在于步骤(5)中低温烧结处理时温度的变化,提升了烧结的温度至940℃,
除此外的方法步骤均相同。结合实践和后续试验可以看出,提高了烧结的温度会降低材料的性能,还提高了材料的收缩率及生产成本,主要原因是过强的自摩擦运动改变了内部的组织结构,损伤了强度等品质。
对照实验例3
申请号为:CN201310257327.2公开的一种控制低温共烧陶瓷基板烧结收缩及变形的工艺,具体选择其中的实施例2方案。
本发明方法中对于导电浆料的印刷选择在陶瓷基板成型后再进行,与对照实验例3中的导电浆料的处理工序不同。为了有效的表征本发明效果,省去了对照实验例3中导电浆料的施加处理,对上述实施例2、对照实验例1、对照实验例2、对照实验例3对应制得的陶瓷基板进行性能测试,具体对比数据如下表1所示:
表1
注:上表1中所述的各性能参数均按照本领域常规标准进行测定。
由上表1可以看出,本发明方法能够明显的提升陶瓷基板的综合使用品质,极具市场竞争力和推广应用价值。

Claims (8)

1.一种陶瓷基板的低温烧结方法,其特征在于,包括如下步骤:
(1)原料称取:
按对应重量份称取下列原料备用:25~30份陶瓷粉体、10~12份聚丙烯酸钠溶液、4~7份聚乙二醇溶液、35~40份聚乙烯醇溶液、20~25份超纯水;
(2)增强添加剂制备:
将三氧化二铝粉末、钾长石粉、纳米银粉和炭黑粉末共同投入到球磨机内进行球磨处理,1~1.5h后取出,然后再放于氮气气氛中高温煅烧反应处理3~5h,完成后再将其取出放入到温度为750~780℃的干燥空气中脱碳处理2~2.5h,最后取出自然冷却至室温后得增强添加剂备用;
(3)混合浆料制备:
将步骤(1)称取的陶瓷粉体、聚丙烯酸钠溶液、聚乙二醇溶液、聚乙烯醇溶液、超纯水共同混合投入到搅拌罐内,然后再向搅拌罐内加入其总质量3~5%的步骤(2)制得的增强添加剂,高速搅拌处理1.5~2h后得混合浆料备用;
(4)陶瓷生坯制备和加工:
对步骤(3)制得的混合浆料采用水基流延法流延陶瓷生坯,然后对此陶瓷生坯进行打孔和形状裁切处理,最后对处理后的陶瓷生坯进行施压叠层处理后制成半成品陶瓷生坯备用;
(5)低温烧结处理:
将步骤(4)制得的半成品陶瓷生坯先放入到干燥炉内,然后对干燥炉进行加热处理,待干燥炉内温度升至100~105℃后保温处理5~7min,随后将半成品陶瓷生坯取出放入到微波烧结炉内进行低温烧结处理,完成后取出冷却即可。
2.根据权利要求1所述的一种陶瓷基板的低温烧结方法,其特征在于,步骤(1)中所述的陶瓷粉体为堇青石陶瓷粉体;所述的聚丙烯酸钠溶液中丙烯酸纳的质量浓度为3~4%;所述的聚乙二醇溶液中聚乙二醇的体积浓度为12~14%;所述的聚乙烯醇溶液中聚乙烯醇的体积浓度为6~8%。
3.根据权利要求1所述的一种陶瓷基板的低温烧结方法,其特征在于,步骤(2)中所述的增强添加剂制备方法具体是:将三氧化二铝粉末、钾长石粉、纳米银粉和炭黑粉末对应按照重量比25~28:8~10:0.5~1:5~8进行混合共同投入到球磨机内进行球磨处理,1~1.5h后取出,再加入其总质量3~6%的氧化钙混合均匀,然后再放于氮气气氛中高温煅烧反应处理3~5h,期间控制高温煅烧的温度为1600~1650℃,完成后再将其取出放入到温度为750~780℃的干燥空气中脱碳处理2~2.5h,最后取出自然冷却至室温后即可。
4.根据权利要求3所述的一种陶瓷基板的低温烧结方法,其特征在于,所述三氧化二铝粉末、钾长石粉的颗粒大小均为500~600目;所述的纳米银粉的颗粒大小为30~50nm;所述的炭黑粉末的颗粒大小为40~60nm。
5.根据权利要求3所述的一种陶瓷基板的低温烧结方法,其特征在于,所述干燥空气内的相对湿度不大于35%。
6.根据权利要求1所述的一种陶瓷基板的低温烧结方法,其特征在于,步骤(3)中所述的高速搅拌处理时控制搅拌的转速为2000~2500转/分钟。
7.根据权利要求1所述的一种陶瓷基板的低温烧结方法,其特征在于,步骤(5)中所述的对干燥炉进行加热处理时控制加热升温的速度为6~8℃/min。
8.根据权利要求1所述的一种陶瓷基板的低温烧结方法,其特征在于,步骤(5)中所述的低温烧结处理时控制微波烧结炉内的温度为700~770℃,烧结的时长控制为3~5h。
CN201910449717.7A 2019-05-28 2019-05-28 一种陶瓷基板的低温烧结方法 Withdrawn CN110317050A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910449717.7A CN110317050A (zh) 2019-05-28 2019-05-28 一种陶瓷基板的低温烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910449717.7A CN110317050A (zh) 2019-05-28 2019-05-28 一种陶瓷基板的低温烧结方法

Publications (1)

Publication Number Publication Date
CN110317050A true CN110317050A (zh) 2019-10-11

Family

ID=68119361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910449717.7A Withdrawn CN110317050A (zh) 2019-05-28 2019-05-28 一种陶瓷基板的低温烧结方法

Country Status (1)

Country Link
CN (1) CN110317050A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592342A (zh) * 2020-05-27 2020-08-28 西北工业大学 一种氧化铝陶瓷粉料、氧化铝陶瓷及其制备方法
CN112869248A (zh) * 2021-01-13 2021-06-01 深圳陶陶科技有限公司 一种陶瓷雾化芯的制备方法
CN113072366A (zh) * 2021-03-04 2021-07-06 中国地质大学(北京) 一种利用铝矾土尾矿和钾长石低温烧结制备莫来石质复相陶瓷的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592342A (zh) * 2020-05-27 2020-08-28 西北工业大学 一种氧化铝陶瓷粉料、氧化铝陶瓷及其制备方法
CN112869248A (zh) * 2021-01-13 2021-06-01 深圳陶陶科技有限公司 一种陶瓷雾化芯的制备方法
CN113072366A (zh) * 2021-03-04 2021-07-06 中国地质大学(北京) 一种利用铝矾土尾矿和钾长石低温烧结制备莫来石质复相陶瓷的方法

Similar Documents

Publication Publication Date Title
CN110317050A (zh) 一种陶瓷基板的低温烧结方法
CN104630527B (zh) 一种制备铜基金刚石复合材料的方法
CN105272269B (zh) 一种氮化硅/六方氮化硼纳米复相陶瓷的制备方法
CN108947542A (zh) 陶瓷粉末原料直接闪烧成型制备方法
CN109836141B (zh) 一种高热导率低温共烧陶瓷材料及其制备方法
CN106467396B (zh) 一种不易变形的大尺寸氮化铝陶瓷基板的制备方法
CN107200588B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
JP2024500914A (ja) 高熱伝導性窒化ケイ素セラミックス絶縁板及びその製造方法
CN110092645A (zh) 一种复合陶瓷基板及其制备方法
CN103935084B (zh) 氧化锆三明治复合承烧板及其制备方法
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN107311666A (zh) 低温共烧陶瓷基板的成型与烧结方法
CN110028324A (zh) 一种氮化物陶瓷的制备方法
CN109627014A (zh) 一种高强度、高导热性的Si3N4陶瓷材料及其制备方法
CN115028460A (zh) 一种高导热氮化硅陶瓷基片的制备方法
CN102531396A (zh) 一种低温共烧玻璃陶瓷复合材料及其制备方法
CN107867828A (zh) 一种Al2O3陶瓷材料的制备方法及其作为微波陶瓷窗材料的应用
CN112209714A (zh) 一种一次成型烧结铝基石榴石型发光陶瓷的制备技术
CN103693946B (zh) 一种高热导率的含TiO2衰减瓷及其制备方法
CN102276152B (zh) 一种氧化铝陶瓷表面金属化的组合物
CN103539457A (zh) 一种微电子封装用AlN陶瓷基板的制备方法
CN114853347A (zh) 一种高导热低温共烧玻璃陶瓷基片及其制备方法
CN107034379A (zh) 一种高体积分数氧化铝陶瓷增强铝复合材料的制备方法
CN105801127A (zh) 一种集成电路封装用的高热导率氮化铝陶瓷基板制备方法
CN112759401A (zh) 一种利用微波烧结制备高熵硼陶瓷表面材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20191011