CN110310984A - 等温共发射区横向SiGe异质结双极晶体管 - Google Patents

等温共发射区横向SiGe异质结双极晶体管 Download PDF

Info

Publication number
CN110310984A
CN110310984A CN201910575002.6A CN201910575002A CN110310984A CN 110310984 A CN110310984 A CN 110310984A CN 201910575002 A CN201910575002 A CN 201910575002A CN 110310984 A CN110310984 A CN 110310984A
Authority
CN
China
Prior art keywords
emitter region
transistor
sige
sub
transverse direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910575002.6A
Other languages
English (en)
Other versions
CN110310984B (zh
Inventor
金冬月
郭斌
张万荣
那伟聪
陈蕊
杨邵萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201910575002.6A priority Critical patent/CN110310984B/zh
Publication of CN110310984A publication Critical patent/CN110310984A/zh
Application granted granted Critical
Publication of CN110310984B publication Critical patent/CN110310984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • H01L29/0808Emitter regions of bipolar transistors of lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/735Lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开了一种等温共发射区横向SiGe异质结双极晶体管。所述晶体管仅具有一个Si发射区(24)以及多个数量相等的Si集电区(22)和SiGe基区(23)来构成多个子晶体管共用一个发射区的晶体管。各子晶体管的Si集电区(22)与SiGe基区(23)均以Si发射区(24)为对称中心呈中心对称分布,将有利于减小各子晶体管之间的热耦合,改善各子晶体管的散热能力,进而降低各子晶体管的热阻,实现所述晶体管等温分布的目的。与常规的横向SiGe异质结双极晶体管相比,在相同的环境温度、工作电压以及总集电极电流情况下,所述晶体管中各子晶体管的热阻更小,峰值结温更低,且所述晶体管的温度分布和电流分布更加均匀,从而有利于所述晶体管的热稳定工作。

Description

等温共发射区横向SiGe异质结双极晶体管
技术领域
本发明涉及横向硅锗(SiGe)异质结双极晶体管(HBT),特别是应用于无线通信、雷达与电子对抗、军事装备以及医疗电子等微波功率器件领域的等温共发射区横向SiGeHBT。
背景技术
绝缘体上硅(SOI)SiGe HBT具有衬底寄生电容小、漏电流低、高频特性好等优点,特别是采用SOI技术的横向SiGe HBT,还具有工艺简单、且与现有的SOI CMOS工艺相兼容等优势,将在微波功率领域中扮演越来越重要的角色。
横向SiGe HBT通常采用多个子晶体管并联(即多个Si发射区、SiGe基区和Si集电区交替排列)结构来获得较大的电流处理能力。图1示例了具有四个子晶体管的常规横向SiGe HBT的俯视和剖面结构示意图,其中包括Si衬底(10),SiO2埋氧层(11),以及位于SiO2埋氧层(11)上方的Si集电区(12)、SiGe基区(13)、Si发射区(14);所述SiO2埋氧层(11)位于Si衬底(10)正上方;所述Si集电区(12)和Si发射区(14)分列SiGe基区(13)的两侧,并且Si发射区(14)与Si集电区(12)沿器件横向方向交替排列;多晶硅层(15)位于所述SiGe基区(13)的正上方,且两侧由SiO2侧墙(16)包围;集电极电极(17)位于Si集电区(12)的正上方;基极电极(18)位于多晶硅层(15)的正上方;发射极电极(19)位于Si发射区(14)的正上方。
众所周知,SOI SiGe HBT工作时热量主要产生于集电结处,对于传统SOI SiGeHBT,热量将通过SiO2埋氧层经由Si衬底散出。然而,对于采用SOI技术的横向SiGe HBT,作为热源的集电结与作为散热通道的Si衬底呈垂直分布,不利于热量通过Si衬底散出。因此,横向SiGe HBT的热阻较大,结温较高。此外,由于横向SiGe HBT多个集电结之间存在热耦合作用,将造成器件的温度分布不均匀,进一步加剧了器件的热问题,造成器件性能退化。
可见,设计出一种结温更低、可有效改善器件整体温度分布的等温共发射区横向SiGe HBT具有重要的理论和实际意义。
发明内容
1、等温共发射区横向SiGe异质结双极晶体管,其特征在于:
包括Si衬底(20),SiO2埋氧层(21),以及位于SiO2埋氧层(21)上方的Si集电区(22)、SiGe基区(23)和Si发射区(24);所述SiO2埋氧层(21)位于Si衬底(20)正上方,多晶硅层(25)位于所述SiGe基区(23)的正上方,并且两侧由SiO2侧墙(26)包围,集电极电极(27)位于Si集电区(22)的正上方;基极电极(28)位于多晶硅层(25)的正上方;发射极电极(29)位于Si发射区(24)的正上方;
所述等温共发射区横向SiGe异质结双极晶体管仅具有一个Si发射区(24)以及多个Si集电区(22)和多个SiGe基区(23),且Si集电区(22)和SiGe基区(23)数量相等;
所述Si发射区(24)位于SiO2埋氧层(21)正上方,所述Si集电区(22)呈中心对称分布;所述SiGe基区(23)与Si集电区(22)和Si发射区(24)相邻且以Si发射区(24)为对称中心呈中心对称分布;
2、进一步,所述SiO2埋氧层(21)厚度介于20nm到30nm之间;
3、进一步,所述Si集电区(22)、SiGe基区(23)、Si发射区(24)厚度相等,均介于20nm到30nm之间;
4、进一步,所述多晶硅层(25)宽度介于18nm到40nm之间,厚度介于5nm到10nm之间;
5、进一步,所述Si发射区(24)宽度介于50nm到80nm之间;
6、进一步,所述Si集电区(22)宽度介于50nm到80nm之间;
7、进一步,所述SiGe基区(23)宽度介于22nm到50nm之间。
所述晶体管引入的以Si发射区为对称中心的中心对称分布结构不局限于具有四个子晶体管的横向SiGe HBT,还适用于具有多个子晶体管的横向SiGe HBT。
所述晶体管采用以Si发射区为对称中心的中心对称分布结构,不仅可以减小各子晶体管之间的热耦合,改善各子晶体管的散热能力,还可有效降低各子晶体管的热阻,改善器件的整体温度分布,从而实现所述晶体管等温分布的目的。
与常规的横向SiGe HBT相比,本发明所述的等温共发射区横向SiGe HBT结温更低,器件的温度分布更加均匀,有利于器件的热稳定工作。
附图说明
结合附图所进行的下列描述,可进一步理解本发明的目的和优点。在这些附图中:
图1示例了具有四个子晶体管的常规横向SiGe HBT的俯视和剖面结构示意图;
图2示例了本发明实施例1的俯视和剖面结构示意图;
图3示例了具有六个子晶体管的常规横向SiGe HBT的俯视和剖面结构示意图;
图4示例了本发明实施例2的俯视和剖面结构示意图;
图5示例了具有四个子晶体管的常规横向SiGe HBT的温度分布;
图6示例了本发明实施例1的温度分布;
图7示例了本发明实施例1对各子晶体管热阻分布的改善;
图8示例了本发明实施例1对各子晶体管集电极电流分布的改善;
图9示例了具有六个子晶体管的常规横向SiGe HBT的温度分布;
图10示例了本发明实施例2的温度分布;
图11示例了本发明实施例2对各子晶体管热阻分布的改善;
图12示例了本发明实施例2对各子晶体管集电极电流分布的改善。
具体实施方式
本发明实施例分别以具有四个子晶体管和六个子晶体管的横向SiGe HBTs为例,对本发明内容进行具体表述。本发明涉及领域并不限制于此。
实施例1:
图2示例了具有四个子晶体管的共发射区横向SiGe HBT的俯视和剖面结构示意图,其中包括Si衬底(20)、SiO2埋氧层(21),以及位于SiO2埋氧层(21)上方的Si集电区(22)、SiGe基区(23)、Si发射区(24);所述SiO2埋氧层(21)位于Si衬底(20)正上方,厚度为20nm;所述Si集电区(22)呈中心对称分布,各子晶体管对应的集电区宽度(WC)为65nm;所述Si发射区(24)各子晶体管对应的发射区宽度(WE)为50nm;所述SiGe基区(23)与Si集电区(22)和Si发射区(24)相邻且以Si发射区(24)为对称中心呈中心对称分布,各子晶体管对应的基区宽度(WB)为22nm。同时,所述Si发射区(24)、SiGe基区(23)、Si集电区(22)厚度相等,均为20nm。多晶硅层(25)位于所述SiGe基区(23)的正上方,两侧由SiO2侧墙(26)包围,且多晶硅层(25)的宽度为18nm,厚度为5nm;集电极电极(27)位于Si集电区(22)的正上方;基极电极(28)位于多晶硅层(25)的正上方;所述发射极电极(29)位于Si发射区(24)的正上方。
本发明所述的等温共发射区横向SiGe HBT不仅适用于具有四个子晶体管的器件,还可根据应用需要,设计出具有多个子晶体管的横向SiGe HBT。本发明进一步以具有六个子晶体管的横向SiGe HBT为例,给出了具有多个子晶体管的等温共发射区横向SiGe HBT的设计方案。
实施例2:
图4示例了具有六个子晶体管的等温共发射区横向SiGe HBT的俯视和剖面结构示意图,其中包括Si衬底(40)、SiO2埋氧层(41),以及位于SiO2埋氧层(41)正上方的Si集电区(42)、SiGe基区(43)和Si发射区(44);所述SiO2埋氧层(41)位于Si衬底(40)正上方,厚度为20nm;所述Si集电区(42)呈中心对称分布,各子晶体管对应的集电区宽度(WC)为65nm;所述Si发射区(44)各子晶体管对应的发射区宽度(WE)为86.6nm;所述SiGe基区(43)与Si集电区(42)和Si发射区(44)相邻且以Si发射区(44)为对称中心呈中心对称分布,各子晶体管对应的基区宽度(WB)为22nm。同时,所述Si发射区(44)、SiGe基区(43)和Si集电区(42)厚度相等,均为20nm;多晶硅层(45)位于所述SiGe基区(43)的正上方,两侧由SiO2侧墙(46)包围,且多晶硅层(45)的宽度为18nm,厚度为5nm;集电极电极(47)位于Si集电区(42)的正上方;基极电极(48)位于多晶硅层(45)的正上方;发射极电极(49)位于Si发射区(42)的正上方。
为了更好地展现本发明晶体管的性能,以具有四个子晶体管和六个子晶体管的器件为例,分别比较了本发明实施例和常规横向SiGeHBT的温度分布、热阻分布和集电极电流分布。
图5和图6分别示例了具有四个子晶体管的常规横向SiGe HBT和本发明实施例1的温度分布。可以看出,常规横向SiGe HBT的峰值结温主要位于器件中心区域两个子晶体管的集电结处;而本发明实施例1的峰值结温均匀分布在四个子晶体管的集电结处。进一步地,当环境温度为300K、工作电压为5V、总集电极电流为12μA时,常规横向SiGe HBT的峰值结温高达413.53K;而本发明实施例1的峰值结温仅为394.41K,且各子晶体管具有相同的峰值结温。
图7示例了本发明实施例1对各子晶体管热阻分布的改善情况,并与常规横向SiGeHBT各子晶体管热阻分布进行了比较。当环境温度为300K、工作电压为5V、总集电极电流为12μA时,常规横向SiGeHBT中心处子晶体管的热阻高达7568.67K/mW,各子晶体管间的热阻相差达110K/mW;而本发明实施例1中各子晶体管具有相同的热阻值,仅为6294K/mW。
图8示例了本发明实施例1对各子晶体管集电极电流分布的改善情况,并与常规横向SiGe HBT各子晶体管集电极电流分布的进行比较。当环境温度为300K、工作电压为5V、总集电极电流为12μA时,常规横向SiGe HBT中心处子晶体管的集电极电流高达3.2μA,各子晶体管间的集电极电流相差达0.4μA;而本发明实施例1中各子晶体管具有相同的集电极电流,仅为3μA。
进一步地,图9和图10分别示例了具有六个子晶体管的常规横向SiGe HBT和本发明实施例2的温度分布。可以看出,常规横向SiGe HBT的峰值结温依然位于器件中心区域两个子晶体管的集电结处;而本发明实施例2的峰值结温却均匀分布在六个子晶体管的集电结处。进一步地,当环境温度为300K、工作电压为5V、总集电极电流为18μA时,与常规横向SiGe HBT相比,本发明实施例2的峰值结温降低了28.75K,改善了6.89%,同时各子晶体管依然保持了相同的峰值结温。
图11示例了本发明实施例2对各子晶体管热阻分布的改善情况,并与常规横向SiGe HBT各子晶体管热阻分布进行了比较。当环境温度为300K、工作电压为5V、总集电极电流为18μA时,常规横向SiGe HBT中心处子晶体管的热阻高达7799.33K/mW,各子晶体管间的热阻相差达1399.33K/mW;而本发明实施例2中各子晶体管具有相同的热阻值,仅为5882.67K/mW。
图12示例了本发明实施例2对各子晶体管集电极电流分布的改善情况,并与常规横向SiGe HBT各子晶体管集电极电流分布的进行比较。当环境温度为300K、工作电压为5V、总集电极电流为18μA时,常规横向SiGe HBT中心处子晶体管的集电极电流高达4.2μA,各子晶体管间的集电极电流相差达3.2μA;而本发明实施例2中各子晶体管具有相同的集电极电流,仅为3μA。
上述结果均显示了本发明实施例的优越性,本发明对设计和制造等温的横向SiGeHBT具有重要的理论和实际意义。

Claims (7)

1.一种等温共发射区横向SiGe异质结双极晶体管,其特征在于:
包括Si衬底(20),SiO2埋氧层(21),以及位于SiO2埋氧层(21)上方的Si集电区(22)、SiGe基区(23)和Si发射区(24);所述SiO2埋氧层(21)位于Si衬底(20)正上方,多晶硅层(25)位于所述SiGe基区(23)的正上方,并且两侧由SiO2侧墙(26)包围,集电极电极(27)位于Si集电区(22)的正上方;基极电极(28)位于多晶硅层(25)的正上方;发射极电极(29)位于Si发射区(24)的正上方;
所述等温共发射区横向SiGe异质结双极晶体管仅具有一个Si发射区(24)以及多个Si集电区(22)和多个SiGe基区(23),且Si集电区(22)和SiGe基区(23)数量相等;
所述Si发射区(24)位于SiO2埋氧层(21)正上方,所述Si集电区(22)呈中心对称分布;所述SiGe基区(23)与Si集电区(22)和Si发射区(24)相邻且以Si发射区(24)为对称中心呈中心对称分布。
2.根据权利要求1所述的等温共发射区横向SiGe异质结双极晶体管,其特征在于:
所述SiO2埋氧层(21)厚度介于20nm到30nm之间。
3.根据权利要求1所述的等温共发射区横向SiGe异质结双极晶体管,其特征在于:
所述Si集电区(22)、SiGe基区(23)、Si发射区(24)厚度相等,均介于20nm到30nm之间。
4.根据权利要求1所述的等温共发射区横向SiGe异质结双极晶体管,其特征在于:
所述多晶硅层(25)宽度介于18nm到40nm之间,厚度介于5nm到10nm之间。
5.根据权利要求1所述的等温共发射区横向SiGe异质结双极晶体管,其特征在于:
所述Si发射区(24)宽度介于50nm到80nm之间。
6.根据权利要求1所述的等温共发射区横向SiGe异质结双极晶体管,其特征在于:
所述Si集电区(22)宽度介于50nm到80nm之间。
7.根据权利要求1所述的等温共发射区横向SiGe异质结双极晶体管,其特征在于:
所述SiGe基区(23)宽度介于22nm到50nm之间。
CN201910575002.6A 2019-06-28 2019-06-28 等温共发射区横向SiGe异质结双极晶体管 Active CN110310984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910575002.6A CN110310984B (zh) 2019-06-28 2019-06-28 等温共发射区横向SiGe异质结双极晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910575002.6A CN110310984B (zh) 2019-06-28 2019-06-28 等温共发射区横向SiGe异质结双极晶体管

Publications (2)

Publication Number Publication Date
CN110310984A true CN110310984A (zh) 2019-10-08
CN110310984B CN110310984B (zh) 2022-07-15

Family

ID=68077840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910575002.6A Active CN110310984B (zh) 2019-06-28 2019-06-28 等温共发射区横向SiGe异质结双极晶体管

Country Status (1)

Country Link
CN (1) CN110310984B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081702A (zh) * 2019-11-18 2020-04-28 北京工业大学 一种等温分布的介质槽隔离结构SiGeHBT阵列

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717241A (en) * 1993-12-09 1998-02-10 Northern Telecom Limited Gate controlled lateral bipolar junction transistor
US20030151066A1 (en) * 2002-02-14 2003-08-14 Rockwell Technologies, Llc Heterojunction bipolar transistor with inGaAs contact and etch stop layer for InP sub-collector
US20070105301A1 (en) * 2005-10-31 2007-05-10 Shuo-Mao Chen High-gain vertex lateral bipolar junction transistor
CN101814433A (zh) * 2009-02-20 2010-08-25 联发科技股份有限公司 横向双极结型晶体管及其制造方法
US20120313216A1 (en) * 2011-06-12 2012-12-13 International Business Machines Corporation Complementary bipolar inverter
US20140147985A1 (en) * 2012-11-29 2014-05-29 Freescale Semiconductor, Inc. Methods for the fabrication of semiconductor devices including sub-isolation buried layers
US20160133732A1 (en) * 2013-07-10 2016-05-12 Murata Manufacturing Co., Ltd. Semiconductor device
CN109616516A (zh) * 2017-09-15 2019-04-12 株式会社村田制作所 双极晶体管以及高频功率放大器模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717241A (en) * 1993-12-09 1998-02-10 Northern Telecom Limited Gate controlled lateral bipolar junction transistor
US20030151066A1 (en) * 2002-02-14 2003-08-14 Rockwell Technologies, Llc Heterojunction bipolar transistor with inGaAs contact and etch stop layer for InP sub-collector
US20070105301A1 (en) * 2005-10-31 2007-05-10 Shuo-Mao Chen High-gain vertex lateral bipolar junction transistor
CN101814433A (zh) * 2009-02-20 2010-08-25 联发科技股份有限公司 横向双极结型晶体管及其制造方法
US20120313216A1 (en) * 2011-06-12 2012-12-13 International Business Machines Corporation Complementary bipolar inverter
US20140147985A1 (en) * 2012-11-29 2014-05-29 Freescale Semiconductor, Inc. Methods for the fabrication of semiconductor devices including sub-isolation buried layers
US20160133732A1 (en) * 2013-07-10 2016-05-12 Murata Manufacturing Co., Ltd. Semiconductor device
CN109616516A (zh) * 2017-09-15 2019-04-12 株式会社村田制作所 双极晶体管以及高频功率放大器模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081702A (zh) * 2019-11-18 2020-04-28 北京工业大学 一种等温分布的介质槽隔离结构SiGeHBT阵列
CN111081702B (zh) * 2019-11-18 2022-05-31 北京工业大学 一种等温分布的介质槽隔离结构SiGeHBT阵列

Also Published As

Publication number Publication date
CN110310984B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN103794647B (zh) 一种双向igbt器件及其制作方法
CN103269205B (zh) 一种功率放大器
CN103219944A (zh) 一种基于低维半导体结构的倍频器
CN110310984A (zh) 等温共发射区横向SiGe异质结双极晶体管
CN103489908A (zh) 一种能消除负阻效应的rc-igbt
CN106169498B (zh) 高热稳定性超结应变Si/SiGe异质结双极晶体管
CN107425056A (zh) 一种绝缘栅双极型晶体管器件
CN208077983U (zh) 4H-SiC的绝缘栅双极型晶体管
CN103094347B (zh) 一种双材料欠叠异质栅结构的碳纳米管场效应管
CN206574717U (zh) 一种横向高压双极结型晶体管
CN103178116B (zh) 一种改良栅结构的晶体管
CN104465737B (zh) 体硅双栅绝缘隧穿基极双极晶体管及其制造方法
CN104409508B (zh) Soi衬底双向击穿保护双栅绝缘隧穿增强晶体管及制造方法
CN106960867A (zh) 一种绝缘栅双极型晶体管器件
CN208674127U (zh) 逆导型绝缘栅双极型晶体管、智能功率模块和空调器
CN109920840A (zh) 一种具有L型SiO2隔离层的复合型RC-LIGBT器件
CN104241349A (zh) 一种逆导型绝缘栅双极型晶体管
CN206672940U (zh) 一种沟槽栅金属氧化物场效应晶体管
CN108389899A (zh) Rc-igbt器件及其工艺方法
CN107517579A (zh) 一种功率放大器的散热器
CN104282744B (zh) 一种igbt器件结构
CN108010962B (zh) 具有高特征频率-击穿电压优值的SOI SiGe异质结双极晶体管
CN102254935A (zh) 绝缘栅双极晶体管
CN205992533U (zh) 一种具有三维结构的半导体晶圆
CN104282752B (zh) 漏电极辅控l形栅型无结晶体管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant