CN110306187A - 一种双硬磁主相混合磁体的制备方法 - Google Patents

一种双硬磁主相混合磁体的制备方法 Download PDF

Info

Publication number
CN110306187A
CN110306187A CN201910723448.9A CN201910723448A CN110306187A CN 110306187 A CN110306187 A CN 110306187A CN 201910723448 A CN201910723448 A CN 201910723448A CN 110306187 A CN110306187 A CN 110306187A
Authority
CN
China
Prior art keywords
main phase
preparation
hard magnetic
phase hybrid
double hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910723448.9A
Other languages
English (en)
Inventor
泮敏翔
吴琼
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910723448.9A priority Critical patent/CN110306187A/zh
Publication of CN110306187A publication Critical patent/CN110306187A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明公开了一种双硬磁主相混合磁体的制备方法,属于磁性材料技术领域。该制备方法包括:将锰铋快淬带进行高能球磨制成超微粉末后,加入含有纳米稀土氟化物的丙酮溶液,再混合搅拌制成糊状液体;将烧结钐钴磁体切成薄片,并进行酸洗以去除磁体薄片表面的氧化膜;将糊状纳米晶液体均匀涂敷在钐钴磁体表面,经干燥箱烘干处理后,进行激光加热熔覆处理,然后进行强磁场辅助氮气保护下热处理,实现MnBi相渗透和稀土原子扩散,获得具有高磁性能的双硬磁主相混合磁体。同时,本发明方法工艺简单,工艺成本低,耗能小,有利于高性能双硬磁主相混合磁体在更多永磁器件中的应用,以满足市场需求。

Description

一种双硬磁主相混合磁体的制备方法
技术领域
本发明涉及磁性材料技术领域,尤其涉及一种双硬磁主相混合磁体的制备方法。
背景技术
永磁材料主要为稀土材料,是新一代信息技术、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、节能与新能源汽车、先进轨道交通装备、电力装备等领域的关键基础功能材料, 在提升制造业层次和核心竞争力方面,将显示出极强的技术变革推动力, 是实现“中国制造2025”的有力保障, 其发展水平备受人们的关注。面对稀土资源短缺与环境污染的巨大压力,世界各国纷纷将“节能、环保、可持续发展”作为本世纪材料领域发展的主题。高性能无稀土或低稀土永磁材料的制备及性能研究是近期永磁材料领域研究的热点。要想获得一种高性能低稀土或无稀土永磁材料,必须要在材料体系与关键制备技术方面取得突破与自主创新。MnBi无稀土永磁材料,具有价格低、耐腐蚀性好、机械强度高等优点,特别是这类合金在某温度范围内矫顽力呈正温度系数,备受磁学研究者的关注。将低熔点MnBi合金扩散到钐钴磁体的晶界中,通过两硬磁性相的交换耦合作用,可以有效提升SmCo/MnBi双硬磁相磁体的综合磁性能。
激光熔覆技术是以激光束作为热源,在工件表面上涂覆一层金属或合金粉末,使它形成与基体材料性能完全不同的表面熔覆层,熔覆层与基体形成冶金结合的一种表面处理技术。它成功地将熔覆金属的延性、高强度和陶瓷相的高熔点、高硬度、较好的化学稳定性结合起来,构成一种新型的复合材料,从而提高材料或构件表面的性能,达到提高工件使用寿命的目的。因此,本发明将锰铋超微粉末和纳米稀土氟化物的糊状液体涂敷在钐钴磁体的表面,并通过激光加热熔覆处理,制得激光熔覆层,在后续的热处理过程中,有效促使锰铋相和稀土原子在钐钴晶界相中的扩散,从而显著提升双硬磁主相磁体的磁性能。
发明内容
针对现有技术中存在的问题,本发明目的在于提供一种双硬磁主相混合磁体的制备方法。
本发明的双硬磁主相混合磁体的制备方法,包括如下步骤:
(1)纳米晶涂覆材料的制备:将Mn100-aBia(30≤a≤70)快淬带进行高能球磨制成超微粉末后,加入含有纳米稀土氟化物的丙酮溶液,再混合搅拌制成糊状液体备用;
(2)钐钴磁体表面处理工艺:将烧结钐钴磁体切成薄片,并进行酸洗以去除磁体薄片表面的氧化膜;
(3)磁体表面激光涂敷处理:将步骤(1)获得的糊状纳米晶液体均匀涂敷在步骤(2)获得的钐钴磁体表面,经干燥箱烘干处理后,进行激光加热熔覆处理,制得激光熔覆层;
(4)热处理:将步骤(3)获得的具有熔覆层的烧结钐钴磁体薄片进行强磁场辅助氮气保护下,实现MnBi相渗透和稀土原子扩散,获得具有高磁性能的双硬磁主相混合磁体。
进一步的,步骤(1)中所述的高能球磨时间为5~30小时。
进一步的,步骤(1)中所述的纳米稀土氟化物为Sm、Nd、La、Lu、Pr、Ce、Ho氟化物中的一种或多种。
进一步的,步骤(2)中所述的磁体薄片的厚度为50~150 μm。
进一步的,步骤(3)中所述的涂覆层厚度为0.5~2.5 mm,干燥温度为40~100 ℃,干燥时间为30~200 min。
进一步的,步骤(3)中所述的激光加热熔覆工艺的激光功率为500~800 W,扫描速度2-25 mm/s,扫描时间为扫描时间为1 h~5 h。
进一步的,步骤(4)中所述的强磁场辅助真空热处理的具体工艺参数为:磁场强度为10 T~ 20 T,真空度优于5×10-4 Pa,退火温度为300~700 ℃,退火时间为1~4 h。
与现有的技术相比,本发明具有如下优点和有益效果:(1)本发明通过在钐钴磁体中,引入非稀土的硬磁相和纳米稀土氟化物以提高材料的综合磁性能,并且通过激光加热熔覆工艺和强磁场热处理技术有效促使液态锰铋合金进入磁体的晶界相,增强了两硬磁相之间的耦合作用;(2)由于锰铋合金在一定温度范围内矫顽力呈正的温度系数特性,通过该非稀土硬磁相的扩散,进一步有效提升了钐钴磁体的高温特性;(3)本发明方法工艺简单,工艺成本低,耗能小,适合批量生产。
具体实施方式
下面将结合实施例对本发明做进一步的详细说明,但本发明并不仅仅局限于以下实施例。
实施例1
(1)纳米晶涂覆材料的制备:将Mn30Bi70快淬带进行高能球磨5 h制成超微粉末后,加入含有纳米Dy氟化物的丙酮溶液,再混合搅拌制成糊状液体备用;
(2)钐钴磁体表面处理工艺:将牌号为26H的烧结钐钴磁体切成厚度为50 μm的薄片,并进行酸洗以去除磁体薄片表面的氧化膜;
(3)磁体表面激光涂敷处理:将步骤(1)获得的糊状纳米晶液体均匀涂敷在步骤(2)获得的钐钴磁体表面,涂覆层厚度为0.5 mm,经温度为60 ℃、时间为30 min的干燥箱烘干处理后,进行激光加热熔覆处理,激光功率为650 W,扫描速度5 mm/s,扫描时间为2 h;
(4)热处理:将步骤(3)获得的具有熔覆层的烧结钐钴磁体薄片进行强磁场辅助氮气保护下热处理,磁场强度为12 T,真空度为4×10-4 Pa,退火温度为500 ℃,退火时间为2h,实现MnBi相渗透和稀土原子扩散,获得具有高矫顽力的钐钴磁体。
采用本发明制备的双硬磁主相混合磁体经磁性能测量,矫顽力为2100 kA/m,磁能积为27.2 MGOe。
实施例2
(1)纳米晶涂覆材料的制备:将Mn40Bi60快淬带进行高能球磨10 h制成超微粉末后,加入含有纳米Sm氟化物的丙酮溶液,再混合搅拌制成糊状液体备用;
(2)钐钴磁体表面处理工艺:将牌号为28H的烧结钐钴磁体切成厚度为60 μm的薄片,并进行酸洗以去除磁体薄片表面的氧化膜;
(3)磁体表面激光涂敷处理:将步骤(1)获得的糊状纳米晶液体均匀涂敷在步骤(2)获得的钐钴磁体表面,涂覆层厚度为1 mm,经温度为60 ℃、时间为30 min的干燥箱烘干处理后,进行激光加热熔覆处理,激光功率为700 W,扫描速度10 mm/s,扫描时间为3 h;
(4)热处理:将步骤(3)获得的具有熔覆层的烧结钐钴磁体薄片进行强磁场辅助氮气保护下热处理,磁场强度为15 T,真空度为4×10-4 Pa,退火温度为550 ℃,退火时间为2h,实现MnBi相渗透和稀土原子扩散,获得具有高矫顽力的钐钴磁体。
采用本发明制备的双硬磁主相混合磁体经磁性能测量,矫顽力为2248 kA/m,磁能积为28.8 MGOe。
实施例3
(1)纳米晶涂覆材料的制备:将Mn50Bi50快淬带进行高能球磨15 h制成超微粉末后,加入含有纳米Ce氟化物的丙酮溶液,再混合搅拌制成糊状液体备用;
(2)钐钴磁体表面处理工艺:将牌号为30 M的烧结钐钴磁体切成厚度为70 μm的薄片,并进行酸洗以去除磁体薄片表面的氧化膜;
(3)磁体表面激光涂敷处理:将步骤(1)获得的糊状纳米晶液体均匀涂敷在步骤(2)获得的钐钴磁体表面,涂覆层厚度为1.5 mm,经温度为60 ℃、时间为30 min的干燥箱烘干处理后,进行激光加热熔覆处理,激光功率为750 W,扫描速度15 mm/s,扫描时间为5 h;
(4)热处理:将步骤(3)获得的具有熔覆层的烧结钐钴磁体薄片进行强磁场辅助氮气保护下热处理,磁场强度为20 T,真空度为4×10-4 Pa,退火温度为550 ℃,退火时间为2h,实现MnBi相渗透和稀土原子扩散,获得具有高矫顽力的钐钴磁体。
采用本发明制备的双硬磁主相混合磁体经磁性能测量,矫顽力为1387 kA/m,磁能积为32.6 MGOe。

Claims (7)

1.一种双硬磁主相混合磁体的制备方法,其特征在于包括如下步骤:
(1)纳米晶涂覆材料的制备:将Mn100-aBia(30≤a≤70)快淬带进行高能球磨制成超微粉末后,加入含有纳米稀土氟化物的丙酮溶液,再混合搅拌制成糊状液体备用;
(2)钐钴磁体表面处理工艺:将烧结钐钴磁体切成薄片,并进行酸洗以去除磁体薄片表面的氧化膜;
(3)磁体表面激光涂敷处理:将步骤(1)获得的糊状纳米晶液体均匀涂敷在步骤(2)获得的钐钴磁体表面,经干燥箱烘干处理后,进行激光加热熔覆处理,制得激光熔覆层;
(4)热处理:将步骤(3)获得的具有熔覆层的烧结钐钴磁体薄片进行强磁场辅助氮气保护下热处理,实现MnBi相渗透和稀土原子扩散,获得具有高磁性能的双硬磁主相混合磁体。
2.根据权利要求1 所述的一种双硬磁主相混合磁体的制备方法,其特征在于:步骤(1)中所述的高能球磨时间为5~30小时。
3.根据权利要求1 所述的一种双硬磁主相混合磁体的制备方法,其特征在于:步骤(1)中所述的纳米稀土氟化物为Sm、Nd、La、Lu、Pr、Ce、Ho氟化物中的一种或多种。
4.根据权利要求1 所述的一种双硬磁主相混合磁体的制备方法,其特征在于:步骤(2)中所述的磁体薄片的厚度为50~150 μm。
5.根据权利要求1 所述的一种双硬磁主相混合磁体的制备方法,其特征在于:步骤(3)中所述的涂覆层厚度为0.5~2.5 mm,干燥温度为40~100 ℃,干燥时间为30~200 min。
6.根据权利要求1 所述的一种双硬磁主相混合磁体的制备方法,其特征在于:步骤(3)中所述的激光加热熔覆工艺的激光功率为500~800 W,扫描速度2-25 mm/s,扫描时间为1 h~5 h。
7.根据权利要求1 所述的一种双硬磁主相混合磁体的制备方法,其特征在于:步骤(4)中所述的强磁场辅助真空热处理的具体工艺参数为:磁场强度为10 T~ 20 T,真空度优于5×10-4 Pa,退火温度为300~700 ℃,退火时间为1~4 h。
CN201910723448.9A 2019-08-07 2019-08-07 一种双硬磁主相混合磁体的制备方法 Pending CN110306187A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910723448.9A CN110306187A (zh) 2019-08-07 2019-08-07 一种双硬磁主相混合磁体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910723448.9A CN110306187A (zh) 2019-08-07 2019-08-07 一种双硬磁主相混合磁体的制备方法

Publications (1)

Publication Number Publication Date
CN110306187A true CN110306187A (zh) 2019-10-08

Family

ID=68083291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910723448.9A Pending CN110306187A (zh) 2019-08-07 2019-08-07 一种双硬磁主相混合磁体的制备方法

Country Status (1)

Country Link
CN (1) CN110306187A (zh)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
吴圆: "MnBi永磁合金的制备、组织及其性能调控", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
宋刚: "烧结钕铁硼磁体的晶界改性及其性能调控", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
曹俊: "MnBi永磁合金的微结构及磁特性研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
杜世举等: "烧结钕铁硼晶界扩散技术及其研究进展", 《金属功能材料》 *
杨洋: "MnBi永磁合金的制备及其磁化行为研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
JP6803462B2 (ja) R−Fe−B系希土類焼結磁石の粒界拡散方法
CN102822912B (zh) 稀土类烧结磁铁以及其制造方法、马达以及汽车
JP5687621B2 (ja) NdFeB焼結磁石及びその製造方法
CN110400691A (zh) 一种提高钕铁硼磁体矫顽力和耐高温性的制备方法
JP4867632B2 (ja) 低損失磁石とそれを用いた磁気回路
US20090200885A1 (en) Self starting permanent magnet synchronous motor
CN106409497A (zh) 一种钕铁硼磁体晶界扩散的方法
CN106191856B (zh) 一种高耐蚀、高矫顽力烧结钕铁硼磁体及制备方法
TWI626320B (zh) 鐵基軟磁非晶合金塊材與製備方法及其應用
JP2010080799A (ja) 焼結磁石及びそれを用いた回転機
CN106920669B (zh) 一种R-Fe-B系烧结磁体的制备方法
US20240013975A1 (en) Samarium cobalt and neodymium iron boride magnets and methods of manufacturing same
CN105895358A (zh) 一种钕铁硼磁体晶界扩渗的制备方法
CN104505247A (zh) 一种改善钕铁硼磁体性能的固体扩散工艺
CN101964236B (zh) 一种多极磁环的制造方法
CN113544800A (zh) 增材制造磁铁阵列
WO2019058589A1 (en) MAGNETIC MATERIAL, PERMANENT MAGNET, ROTATING ELECTRIC MACHINE AND VEHICLE
CN110306187A (zh) 一种双硬磁主相混合磁体的制备方法
CN104103414A (zh) 一种制备高矫顽力各向异性纳米晶钕铁硼永磁体的方法
JP2005310975A (ja) 焼結ネオジム磁石および製造方法、回転電機
CN103280289B (zh) 一种高温钴基永磁材料的制备方法
CN112635187A (zh) 一种叠片稀土永磁器件的制造方法
CN107231044A (zh) 稀土类磁铁及电动机
CN109065315A (zh) 一种新能源汽驱动电机用钕铁硼磁性材料及制备方法
US20220172889A1 (en) Production Method of Self-Magnetised Net-Shape Permanent Magnets by Additive Manufacturing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191008

WD01 Invention patent application deemed withdrawn after publication