CN110282970B - 一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备方法 - Google Patents

一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN110282970B
CN110282970B CN201910683552.XA CN201910683552A CN110282970B CN 110282970 B CN110282970 B CN 110282970B CN 201910683552 A CN201910683552 A CN 201910683552A CN 110282970 B CN110282970 B CN 110282970B
Authority
CN
China
Prior art keywords
energy storage
ceramic material
barium titanate
storage density
high energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910683552.XA
Other languages
English (en)
Other versions
CN110282970A (zh
Inventor
杨海波
田佳豪
刘晓钰
林营
王通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Jinzhao Technology Co.,Ltd.
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201910683552.XA priority Critical patent/CN110282970B/zh
Publication of CN110282970A publication Critical patent/CN110282970A/zh
Application granted granted Critical
Publication of CN110282970B publication Critical patent/CN110282970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明提供一种SnO2掺杂钛酸钡基高储能密度陶瓷材料及其制备方法,首先按照化学式(1‑x)(Ba0.65(Bi0.5Na0.5)0.35TiO3‑SrY0.5Nb0.5O3)‑xSnO2进行配料,其中0.05≤x≤0.20;经球磨、干燥、压块后预烧,再粉碎、球磨,获得原料粉体;原料粉体压制成型,于1150~1250℃下烧结成瓷,得到无铅高储能密度陶瓷材料。本发明的陶瓷材料制备工艺简单、稳定,适合工业化生产,其储能特性优良。基于电滞回线计算,该陶瓷材料在室温下的储能密度可达2.94J/cm3

Description

一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备 方法
技术领域
本发明属于储能陶瓷领域,具体是一种SnO2掺杂钛酸钡基高储能密度陶瓷材料及其制备方法。
背景技术
众所周知,全球能源危机以及化石能源污染进一步促进了人们对可再生能源的开发和研究,同时也大大促进了能量存储技术的繁荣发展。在新型能源的开发以及应用的过程中,超级电容器、电介质电容器以及电池三大类储能器件由于其各自独特的储能特性而得到了广泛的研究。其中,电介质电容器在功率、储能密度和循环寿命等方面相比于锂电池、超级电容器等传统储能设备有着巨大的优势。目前,高储能电容器主要有三种类型:聚合物基电容器、陶瓷-聚合物基电容器和陶瓷电容器。由于聚合物和聚合物基复合材料容易受热变形(150℃左右)而影响其性能。所以,陶瓷电容器的使用范围更加广泛。
传统无铅储能陶瓷储能密度低而导致应用受到极大限制,这是由于陶瓷材料虽然具有高的介电常数,但由于其内部缺陷和晶界的影响,导致它的介电强度和击穿强度低,从而导致储能密度没有理论上的优异。
发明内容
本发明的目的在于克服现有技术中存在的缺陷,提供一种SnO2掺杂钛酸钡基高储能密度陶瓷材料及其制备方法,这种陶瓷材料具有高的击穿强度,使其储能密度和储能效率优异。
本发明是通过以下技术方案来实现:
一种SnO2掺杂钛酸钡基高储能密度陶瓷材料,所述SnO2掺杂钛酸钡基高储能密度陶瓷材料的化学式为:(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2,其中,0.05≤x≤0.20。
优选的,所述SnO2掺杂钛酸钡基高储能密度陶瓷材料在室温下的储能密度为2.50~2.94J/cm3
所述的SnO2掺杂钛酸钡基高储能密度陶瓷材料的制备方法,包括以下步骤:
(1)将SnO2、Na2CO3、BaCO3、Bi2O3、TiO2、SrCO3、Y2O3和Nb2O5混合均匀,压块,然后750~850℃煅烧,得到块状固体,再将块状固体粉碎过筛,得到预烧粉体;
(2)将预烧粉体球磨,得到原料粉体;
(3)将原料粉体压制成型,得到压制样品;
(4)将压制样品于1150~1250℃下烧结成瓷,得到无铅高储能密度陶瓷材料。
优选的,步骤(1)中,混合均匀具有是:以无水乙醇为介质进行球磨,球磨时间为20~24小时,球磨后干燥。
优选的,步骤(1)中,煅烧时间为3~5小时。
优选的,步骤(2)中,球磨采用的介质为无水乙醇,球磨时间为20~24小时。
优选的,步骤(3)具体为:将原料粉体用粉末压片机预压处理,再把预压处理后得到的试样通过冷等静压方式压制成型。
进一步的,冷等静压压强为150-250Mpa,时间为2-5分钟。
优选的,步骤(4)中,于1150~1250℃下保温时间为4~5小时烧结成瓷。
与现有技术相比,本发明具有以下有益的技术效果:
本发明的SnO2掺杂钛酸钡基高储能密度陶瓷材料,通过控制SnO2的掺杂量,使材料内部的空隙被填充,改善了基体内部结构,减少了晶格缺陷,从而提高了材料的致密度,克服了大多数陶瓷介质材料击穿强度较低、储能密度较差的缺点,其最大击穿强度从现有的152kV/cm提高到320kV/cm,在1-400HZ的频率范围内获得了良好的频率稳定性,适用于较宽的频率范围和应用领域。同时,在室温下(25℃)得到了细长、回形面积小的电滞回线,获得了优异的储能密度。此外,本发明材料稳定性好、致密度高,可满足不同应用的需求,实用性高,有望作新一代环境友好的储能陶瓷介质材料。
进一步的,所述材料的储能特性优异,基于电滞回线计算,该陶瓷材料在室温下的储能密度可达2.4J/cm3以上;并且在320kV/cm的电场下,储能密度可达2.94J/cm3,表现出优异的储能特性,适用于较宽的频率范围和应用领域。
本发明方法按照化学式一次性合成(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2粉体,通过混合,压制后在1150~1250℃下烧结,即可得到无铅高储能密度陶瓷材料。本发明方法制备工艺简单、所用原料中不含铅,且所用原料中不含稀土元素和贵金属元素,对环境无污染,所涉及的原料价格便宜,适合工业化生产。
附图说明
图1:实施例1所制备的无铅储能陶瓷材料的XRD图谱;
图2:实施例2所制备的无铅储能陶瓷材料的XRD图谱;
图3:实施例3所制备的无铅储能陶瓷材料的XRD图谱;
图4:实施例4所制备的无铅储能陶瓷材料的XRD图谱;
图5:实施例1所制备的无铅储能陶瓷材料的SEM图;
图6:实施例2所制备的无铅储能陶瓷材料的SEM图;
图7:实施例3所制备的无铅储能陶瓷材料的SEM图;
图8:实施例4所制备的无铅储能陶瓷材料的SEM图;
图9:实施例1所制备的无铅储能陶瓷材料在不同测试频率下的介温图谱;
图10:实施例2所制备的无铅储能陶瓷材料在不同测试频率下的介温图谱;
图11:实施例3所制备的无铅储能陶瓷材料在不同测试频率下的介温图谱;
图12:实施例4所制备的无铅储能陶瓷材料在不同测试频率下的介温图谱;
图13:实施例1所制备的无铅储能陶瓷材料ln(T-Tm)与ln(1/ε-1/εm)的关系图谱;
图14:实施例2所制备的无铅储能陶瓷材料ln(T-Tm)与ln(1/ε-1/εm)的关系图谱;
图15:实施例3所制备的无铅储能陶瓷材料ln(T-Tm)与ln(1/ε-1/εm)的关系图谱;
图16:实施例4所制备的无铅储能陶瓷材料ln(T-Tm)与ln(1/ε-1/εm)的关系图谱;
图17:实施例1所制备的无铅储能陶瓷材料在室温下的电滞回线图(测试频率为10Hz);
图18:实施例2所制备的无铅储能陶瓷材料在室温下的电滞回线图(测试频率为10Hz);
图19:实施例3所制备的无铅储能陶瓷材料在室温下的电滞回线图(测试频率为10Hz);
图20:实施例4所制备的无铅储能陶瓷材料在室温下的电滞回线图(测试频率为10Hz)。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
一种无铅SnO2掺杂钛酸钡基高储能密度陶瓷材料,其化学式为:(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2,其中x表示SnO2的摩尔分数,且0.05≤x≤0.20。
本发明的无铅高储能密度陶瓷材料的制备方法,包括以下步骤:
(1)按化学式(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2将分析纯SnO2、Na2CO3、BaCO3、Bi2O3、TiO2、SrCO3、Y2O3和Nb2O5配料,x表示SnO2的摩尔分数,且0.05≤x≤0.20。以无水乙醇为介质,通过球磨20~24小时混合均匀,然后于90℃下烘干、过120目筛、压块,再经750~850℃预烧3~5小时,得到块状固体,然后将块状固体粉碎后过120目筛,得到(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2预烧粉体;
(2)将步骤(1)中的预烧粉体进行二次球磨。以无水乙醇为介质,球磨20~24小时,然后于90℃下烘干,过120目筛后获得原料粉体;
(3)将步骤(2)获得的原料粉体用粉末压片机预压成直径为12mm,厚度合适的圆片,把经过预压处理后的试样在冷等静压机中以150-250Mpa压制成型,时间为2-5分钟。
(4)将步骤(3)压制成型后的圆片于1150~1250℃下保温4~5小时烧结成瓷,得到无铅高储能密度陶瓷材料;
(6)将制得的无铅储能陶瓷材料进行X射线衍射测试;
(7)将烧结好的样品加工成两面光滑、厚度约为0.2mm的薄片,镀金电极,然后分别在室温下于10Hz的频率下测试其铁电性能,并进行储能特性计算,储能密度(W1)和能量损耗密度(W2)的计算公式为:
Figure GDA0003272370470000061
Figure GDA0003272370470000062
其中W1和W2分别表示储能密度和能量损耗密度,Pmax表示最大极化强度,Pr表示剩余极化强度,E表示电场强度,P表示极化强度。
步骤(1)、步骤(2)中球磨时间均为20~24小时。
通过以下给出的实施例,可以进一步清楚的了解本发明的内容,但其不是对本发明的限定。
实施例1:
本例陶瓷材料的化学式为:(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2,其中x表示SnO2摩尔分数,且x=0.05。
上述无铅高储能密度陶瓷材料的制备方法,包括以下步骤:
(1)按化学式(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2将分析纯SnO2,Na2CO3,BaCO3,Bi2O3,TiO2,SrCO3,Y2O3和Nb2O5配料,x表示SnO2的摩尔分数,且x=0.05。以无水乙醇为介质,通过球磨20小时混合均匀,然后于90℃下烘干、过120目筛、压块,再经750℃预烧3小时,得到块状固体,然后将块状固体粉碎后过120目筛,得到(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2预烧粉体;
(2)将步骤(1)中的预烧粉体进行二次球磨。以无水乙醇为介质,球24小时,然后于90℃下烘干,过120目筛后获得原料粉体;
(3)向步骤(2)获得的原料粉体用粉末压片机预压成直径为12mm,厚度为1.3mm的圆片,把经过预压处理后的试样在冷等静压机中以150Mpa压制成型,时间为2分钟。
(4)将步骤(3)压制成型后的圆片于1250℃下保温4小时烧结成瓷,得到无铅高储能密度陶瓷材料;
(5)将制得的储能介质陶瓷进行X射线衍射测试。如图1,由XRD图谱可以看出本实施例所得到的陶瓷材料为纯钙钛矿结构。图5所示为本实施例所制得介质陶瓷材料的SEM图,可以看出陶瓷材料的结构致密;
(6)将烧结好的样品加工成两面光滑、厚度约为0.2mm的薄片,镀金电极,然后在室温下于10Hz频率下测试其铁电性能,如图17所示为本实施例陶瓷材料在室温下测得的电滞回线,基于电滞回线进行储能特性计算可得,本实施例无铅储能介质陶瓷的储能密度在室温下可达2.89J/cm3。本实施例无铅储能介质陶瓷材料在室温下的介电特性见表1。该储能陶瓷材料在不同测试频率下的介温图谱如图9所示,在-120~120℃的温度范围内,介电常数(εr)拥有较好的温度稳定性和频率稳定性,并且相应的介电损耗(tanδ)在四个不同频率下均小于0.18。如图13所示,储能陶瓷的介电常数的弥散程度较好,γ=1.48。
实施例2:
本例陶瓷材料的化学式为:(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2,其中变量x表示SnO2的摩尔分数,且x=0.10。
上述无铅高储能密度陶瓷材料的制备方法,包括以下步骤:
(1)按化学式(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2将分析纯SnO2,Na2CO3,BaCO3,Bi2O3,TiO2,SrCO3,Y2O3和Nb2O5配料,x表示SnO2的摩尔分数,且x=0.10。以无水乙醇为介质,通过球磨22小时混合均匀,然后于90℃下烘干、过120目筛、压块,再经800℃预烧4小时,得到块状固体,然后将块状固体粉碎后过120目筛,得到(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2粉体;
(2)将步骤(1)中的预烧粉体进行二次球磨。以无水乙醇为介质,球磨24小时,然后于90℃下烘干,过120目筛后获得原料粉体;
(3)向步骤(2)获得的原料粉体用粉末压片机预压成直径为12mm,厚度为1.2mm的圆片,把经过预压处理后的试样在冷等静压机中以200Mpa压制成型,时间为3分钟。
(4)将步骤(3)压制成型后的圆片于1225℃下保温4.5小时烧结成瓷,得到无铅高储能密度陶瓷材料;
(5)将制得的储能介质陶瓷进行X射线衍射测试。如图2,由XRD图谱可以看出本实施例所得到的陶瓷材料为纯钙钛矿结构。图6所示为本实施例所制得介质陶瓷材料的SEM图,可以看出陶瓷材料的结构致密;
(6)将烧结好的样品加工成两面光滑、厚度约为0.2mm的薄片,镀金电极,然后在室温下于10Hz频率下测试其铁电性能,如图18所示为本实施例陶瓷材料在室温下测得的电滞回线,基于电滞回线进行储能特性计算可得,本实施例无铅储能介质陶瓷的储能密度在室温下可达2.94J/cm3。本实施例无铅储能介质陶瓷材料在室温的介电特性见表1。该储能陶瓷材料在不同测试频率下的介温图谱如图10所示,在-120~120℃的温度范围内,介电常数拥有较好的温度稳定性和频率稳定性,并且相应的介电损耗在四个不同频率下均小于0.15。如图14所示,储能陶瓷的介电常数的弥散程度较好,γ=1.57。
实施例3:
本例陶瓷材料的化学式为:(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2,其中变量x表示SnO2的摩尔分数,且x=0.15。
上述无铅高储能密度陶瓷材料的制备方法,包括以下步骤:
(1)按化学式(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2将分析纯SnO2,Na2CO3,BaCO3,Bi2O3,TiO2,SrCO3,Y2O3和Nb2O5配料,x表示SnO2的摩尔分数,且x=0.15。以无水乙醇为介质,通过球磨24小时混合均匀,然后于90℃下烘干、过120目筛、压块,再经825℃预烧4小时,得到块状固体,然后将块状固体粉碎后过120目筛,得到(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2粉体;
(2)将步骤(1)中的预烧粉体进行二次球磨。以无水乙醇为介质,球磨24小时,然后于85℃下烘干,过120目筛后获得原料粉体;
(3)向步骤(2)获得的原料粉体用粉末压片机预压成直径为12mm,厚度为1mm的圆片,把经过预压处理后的试样在冷等静压机中以200Mpa压制成型,时间为3分钟。
(4)将步骤(3)压制成型后的圆片于1200℃下保温4.5小时烧结成瓷,得到无铅高储能密度陶瓷材料;
(5)将制得的储能介质陶瓷进行X射线衍射测试。如图3,由XRD图谱可以看出本实施例所得到的陶瓷材料为钙钛矿结构,有少量的第二相产生。图7所示为本实施例所制得介质陶瓷材料的SEM图,可以看出陶瓷材料的结构致密;
(6)将烧结好的样品加工成两面光滑、厚度约为0.2mm的薄片,镀金电极,然后在室温下于10Hz频率下测试其铁电性能,如图19所示为本实施例陶瓷材料在室温下测得的电滞回线,基于电滞回线进行储能特性计算可得,本实施例无铅储能介质陶瓷的储能密度在室温下可达2.66J/cm3。本实施例无铅储能介质陶瓷材料在室温下的介电特性见表1。该储能陶瓷材料在不同测试频率下的介温图谱如图11所示,在-120~120℃的温度范围内,介电常数拥有较好的温度稳定性和频率稳定性,并且相应的介电损耗在四个不同频率下均小于0.09。如图15所示,储能陶瓷的介电常数的弥散程度较好,γ=1.61。
实施例4:
本例陶瓷材料的化学式为:(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2,其中x表示SnO2摩尔分数,且x=0.20。
上述无铅高储能密度陶瓷材料的制备方法,包括以下步骤:
(1)按化学式(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2将分析纯SnO2,Na2CO3,BaCO3,Bi2O3,TiO2,SrCO3,Y2O3和Nb2O5配料,x表示SnO2的摩尔分数,且x=0.20。以无水乙醇为介质,通过球磨24小时混合均匀,然后于90℃下烘干、过120目筛、压块,再经850℃预烧5小时,得到块状固体,然后将块状固体粉碎后过120目筛,得到(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2粉体;
(2)将步骤(1)中的预烧粉体进行二次球磨。以无水乙醇为介质,球磨24小时,然后于85℃下烘干,过120目筛后获得原料粉体;
(3)向步骤(2)获得的原料粉体用粉末压片机预压成直径为12mm,厚度为1mm的圆片,把经过预压处理后的试样在冷等静压机中以250Mpa压制成型,时间为5分钟。
(4)将步骤(3)压制成型后的圆片于1150℃下保温5小时烧结成瓷,得到无铅高储能密度陶瓷材料;
(5)将制得的储能介质陶瓷进行X射线衍射测试。如图4,由XRD图谱可以看出本实施例所得到的陶瓷材料为钙钛矿结构。图8所示为本实施例所制得介质陶瓷材料的SEM图,可以看出陶瓷材料的结构致密;
(6)将烧结好的样品加工成两面光滑、厚度约为0.2mm的薄片,镀金电极,然后在室温下于10Hz频率下测试其铁电性能,如图20所示为本实施例陶瓷材料在室温下测得的电滞回线,基于电滞回线进行储能特性计算可得,本实施例无铅储能介质陶瓷的储能密度在室温下可达2.50J/cm3。本实施例无铅储能介质陶瓷材料在室温下的介电特性见表1。该储能陶瓷材料在不同测试频率下的介温图谱如图12所示,在-120~120℃的温度范围内,介电常数拥有较好的温度稳定性和频率稳定性,并且相应的介电损耗在四个不同频率下均小于0.13。如图16所示,储能陶瓷的介电常数的弥散程度较好,γ=1.65。
表1实施例无铅储能陶瓷材料在室温下的介电特性
Figure GDA0003272370470000111
由表1可知,随着SnO2固溶量的不断增加,本发明储能陶瓷材料的剩余极化强度和能量损耗密度不断减小,最大击穿强度不断升高,在一定的配比下可以获得较高的储能密度和储能效率,储能密度在室温下可达2.9J/cm3以上。通过以上实施例可以发现,控制SnO2的固溶量,有效的克服了大多数陶瓷介质材料储能密度较低、介电损耗较大的缺点,所制备的储能陶瓷介质材料的介电常数在-120~120℃具有良好的频率稳定性且介电损耗均小于0.20,表现出优异的频率稳定性,适用于较宽的频率范围和应用领域。
通过以上给出的实施例,可以进一步清楚的了解本发明的内容,但其不是对本发明的限定。

Claims (7)

1.一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料,其特征在于,所述二氧化锡掺杂钛酸钡基高储能密度陶瓷材料的化学式为:(1-x)(Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3)-xSnO2,其中,0.05≤x≤0.20;
所述二氧化锡掺杂钛酸钡基高储能密度陶瓷材料在室温下的储能密度为2.50~2.94J/cm3
2.权利要求1所述的二氧化锡掺杂钛酸钡基高储能密度陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)将SnO2、Na2CO3、BaCO3、Bi2O3、TiO2、SrCO3、Y2O3和Nb2O5混合均匀,压块,然后750~850℃煅烧,得到块状固体,再将块状固体粉碎过筛,得到预烧粉体;
(2)将预烧粉体球磨,得到原料粉体;
(3)将原料粉体压制成型,得到压制样品;
(4)将压制样品于1150~1250℃下烧结成瓷,得到无铅高储能密度陶瓷材料;
步骤(4)中,于1150~1250℃下保温时间为4~5小时烧结成瓷。
3.根据权利要求2所述的二氧化锡掺杂钛酸钡基高储能密度陶瓷材料的制备方法,其特征在于,步骤(1)中,混合均匀具体是:以无水乙醇为介质进行球磨,球磨时间为20~24小时,球磨后干燥。
4.根据权利要求2所述的二氧化锡掺杂钛酸钡基高储能密度陶瓷材料的制备方法,其特征在于,步骤(1)中,煅烧时间为3~5小时。
5.根据权利要求2所述的二氧化锡掺杂钛酸钡基高储能密度陶瓷材料的制备方法,其特征在于,步骤(2)中,球磨采用的介质为无水乙醇,球磨时间为20~24小时。
6.根据权利要求2所述的二氧化锡掺杂钛酸钡基高储能密度陶瓷材料的制备方法,其特征在于,步骤(3)具体为:将原料粉体用粉末压片机预压处理,再把预压处理后得到的试样通过冷等静压方式压制成型。
7.根据权利要求6所述的二氧化锡掺杂钛酸钡基高储能密度陶瓷材料的制备方法,其特征在于,冷等静压压强为150-250Mpa,时间为2-5分钟。
CN201910683552.XA 2019-07-26 2019-07-26 一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备方法 Active CN110282970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910683552.XA CN110282970B (zh) 2019-07-26 2019-07-26 一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910683552.XA CN110282970B (zh) 2019-07-26 2019-07-26 一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110282970A CN110282970A (zh) 2019-09-27
CN110282970B true CN110282970B (zh) 2022-03-25

Family

ID=68022681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910683552.XA Active CN110282970B (zh) 2019-07-26 2019-07-26 一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110282970B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039672B (zh) * 2020-01-08 2022-04-12 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
CN113200743B (zh) * 2021-05-20 2022-10-25 聊城大学 一种钛酸钡基弛豫铁电体陶瓷粉体、陶瓷及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556714A (en) * 1978-06-29 1980-01-18 Kck Co Ltd High dielectric porcelain dielectric composition
CN102503409A (zh) * 2011-11-02 2012-06-20 聊城大学 一种锡钛酸钡钙无铅压电陶瓷及其制备工艺
CN104876565A (zh) * 2015-05-13 2015-09-02 武汉理工大学 一种无铅高介电常数储能介质陶瓷材料及其制备方法
CN104961460A (zh) * 2015-07-01 2015-10-07 西北工业大学 锡钛酸钡陶瓷及其制备方法
CN105712715A (zh) * 2016-01-28 2016-06-29 陕西科技大学 一种SnO2掺杂0.55NBT-0.45BCTZ高储能密度陶瓷材料及其制备方法
CN107746273A (zh) * 2017-11-14 2018-03-02 周开珍 一种高储能密度的无铅陶瓷材料及制备方法
CN108751982B (zh) * 2018-06-13 2021-05-07 陕西科技大学 一种无铅高储能密度陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN110282970A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
CN108751982B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN107162583B (zh) 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
CN106915960B (zh) 一种无铅高储能密度和储能效率陶瓷材料及其制备方法
CN102674832B (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN110759729B (zh) 一种具有高储能性能和超快放电速率的陶瓷材料及其制备方法
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN110282970B (zh) 一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN107459350A (zh) 一种介电储能反铁电陶瓷材料及其制备方法
CN107602115B (zh) 一种无铅高储能密度和宽温稳定陶瓷材料及其制备方法
CN107473732B (zh) 一种钛酸锶基高储能密度和低介电损耗陶瓷材料及其制备方法
CN113321506A (zh) 一种无铅弛豫铁电体陶瓷材料及制备方法
CN113024250B (zh) 高储能密度和储能效率的Sb5+掺杂铌酸锶钠银钨青铜铁电陶瓷材料及制备方法
CN113511893B (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN106915964B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN111217604B (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN107445611B (zh) 一种无铅低损耗高储能密度陶瓷材料及其制备方法
CN104030678A (zh) 一种BaTiO3基无铅弛豫型陶瓷电介质材料及其制备方法
CN111153696A (zh) 一种低温烧结的锆钛酸钡钙基无铅高储能效率陶瓷材料
CN115368132A (zh) 一种钛酸钡基陶瓷材料及制备方法
CN112851336A (zh) 一种钛酸铋钠铋层状压电陶瓷的制备方法
CN110423111B (zh) 一种环保型高储能性能无铅陶瓷材料及其制备方法
CN110304916A (zh) 一种抗还原BaTiO3基介质陶瓷及制备方法
Qi et al. Enhanced energy storage performance in Pb-free Na0. 5Bi0. 5TiO3–Sr0. 7Bi0. 2TiO3-based relaxor ferroelectric ceramics through a stepwise optimization strategy
CN116003128B (zh) 一种具有超高储能效率的knn基无铅铁电储能陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230919

Address after: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Patentee after: Shenzhen Wanzhida Technology Co.,Ltd.

Address before: 710021 Shaanxi province Xi'an Weiyang University Park

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231127

Address after: Room 603, No. 539 Dongguanxunli, Tong'an District, Xiamen City, Fujian Province, 361199

Patentee after: Xiamen Jinzhao Technology Co.,Ltd.

Address before: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Patentee before: Shenzhen Wanzhida Technology Co.,Ltd.

TR01 Transfer of patent right