CN107746273A - 一种高储能密度的无铅陶瓷材料及制备方法 - Google Patents

一种高储能密度的无铅陶瓷材料及制备方法 Download PDF

Info

Publication number
CN107746273A
CN107746273A CN201711119141.5A CN201711119141A CN107746273A CN 107746273 A CN107746273 A CN 107746273A CN 201711119141 A CN201711119141 A CN 201711119141A CN 107746273 A CN107746273 A CN 107746273A
Authority
CN
China
Prior art keywords
powder
ball
nbo
milling
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201711119141.5A
Other languages
English (en)
Inventor
周开珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201711119141.5A priority Critical patent/CN107746273A/zh
Publication of CN107746273A publication Critical patent/CN107746273A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种高储能密度的无铅陶瓷材料及制备方法,属于储能陶瓷技术领域。本发明的方法先按照Ba0.56Sr0.44Ti0.93Sn0.07O3和Bi0.18Na0.46NbO3分别进行配料,通过球磨工艺混合均匀后首先进行预烧,然后研磨过筛,接着按照化学式(1‑x)Ba0.56Sr0.44Ti0.93Sn0.07O3·xBi0.18Na0.46NbO3配料和球磨,球磨后造粒,接着在模具中压制成型,再经排胶处理后,利用放电等离子烧结系统进行一次烧结,再经普通高温炉二次烧结后得到所述高储能密度和高储能效率的陶瓷材料。本发明的制备方法简单,所得的无铅陶瓷材料的具有较高的储能密度和储能效率。

Description

一种高储能密度的无铅陶瓷材料及制备方法
【技术领域】
本发明涉及储能陶瓷技术领域,具体涉及一种高储能密度的无铅陶瓷材料及其制备方法。
【背景技术】
近年来,随着信息技术的不断发展,高储能密度介质材料是制作小型、大容量、高效率电容器的关键材料,在各种电子、电力系统中扮演着越来越重要的角色。由于高储能密度陶瓷介质电容器材料具有储能密度高、充放电速度快、抗循环老化、机械强度高、适用于高温高压等极端环境和性能稳定等优点,符合新能源开发和利用的要求,广泛的应用于通讯、电脑、汽车、电子电路设备以及军工等现代众多领域。
目前,用于制备储能电容器的固态高储能密度介质材料的研究主要集中在聚合物、陶瓷-聚合物复合材料以及陶瓷三大类。由于聚合物、陶瓷-聚合物复合材料的聚合物基体在150℃容易发生热分解或变形,因此,陶瓷介质材料成为制备耐高温脉冲电容器的主要候选材料。目前,无铅储能陶瓷材料主要集中在BaTiO3、SrTiO3、CaTiO3和Bi0.5Na0.5Ti03等陶瓷材料上,但是,这些材料的储能密度和储能效率仍然较低,限制了这些材料的实际使用。
【发明内容】
本发明的发明目的在于:针对上述存在的问题,提供一种高储能密度的无铅陶瓷材料及其制备方法,本发明制备所得的无铅陶瓷材料的具有较高的储能密度和效率。
为了实现上述目的,本发明采用的技术方案如下:
一种高储能密度无铅陶瓷材料,该无铅陶瓷材料的化学式为(1-x)Ba0.56Sr0.44Ti0.93Sn0.07O3·xBi0.18Na0.46NbO3,其中x为Bi0.18Na0.46NbO3的摩尔分数,且0.1≤x≤0.3。优选地,该陶瓷材料的化学式为0.88Ba0.56Sr0.44Ti0.93Sn0.07O3·0.12Bi0.18Na0.46NbO3
本发明还提供上述高储能密度和高储能效率的无铅陶瓷材料的制备方法,包括以下步骤:
(1)按化学式Ba0.56Sr0.44Ti0.93Sn0.07O3中的计量比称取原料进行配料;将所称取的原料在球磨机中球磨,然后烘干,得粉料A;将粉料A在900-950℃空气中预烧2-10小时后,研磨过筛,得Ba0.56Sr0.44Ti0.93Sn0.07O3粉料;
(2)按化学式Bi0.18Na0.46NbO3中的计量比称取原料进行配料;将所称取原料在球磨机中球磨,然后烘干,得粉料B,将所述粉料B在700-800℃空气中预烧2-10小时,研磨过筛,得Bi0.18Na0.46NbO3粉料;
(3)将Ba0.56Sr0.44Ti0.93Sn0.07O3粉料和Bi0.18Na0.46NbO3粉料按照化学式(1-x)Ba0.56Sr0.44Ti0.93Sn0.07O3·xBi0.18Na0.46NbO3,其中0.1≤x≤0.3进行配料并混合,研磨过筛得粉料C;
(4)向所述粉料C中加入有机粘结剂造粒;将造粒后的粉料在200-300MPa的压力下干压成型,排胶后得陶瓷坯体;将所述陶瓷坯体利用放电等离子烧结系统在真空环境中1000℃-1050℃进行烧结,制得陶瓷烧结体;
(5)将步骤(4)经处理后的陶瓷烧结体以2-5℃/min的升温速率升温至1130-1250℃,保温3-6小时后,随炉自然冷却,得到致密陶瓷片;
(6)将所得的陶瓷片精修至0.2-0.3cm厚,双面用丝网刷上银浆后,在700-850℃条件下烧渗银电极,得所述陶瓷材料。
本发明中,优选地,步骤(1)中称取的原料为BaCO3、SrCO3、TiO2和SnO2,步骤(2)中称取的原料为Bi2O3、Na2CO3和Nb2O5
本发明中,优选地,步骤(1)、(2)所述球磨采用的是行星式球磨机;所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1:(2-4):(1-3);球磨机转速均为250-300r/min,球磨时间均为10-20小时。
本发明中,优选地,步骤(4)中的有机粘结剂为质量浓度为6-8%的PVA溶液;PVA溶液的加入量为粉料C总质量的8-15%。
本发明中,优选地,步骤(1)、(2)、(3)中所述的过筛为过120目筛。
本发明中,优选地,步骤(4)中的排胶温度为500-650℃,排胶时保温1-2小时。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
本发明按照化学式Ba0.56Sr0.44Ti0.93Sn0.07O3和Bi0.18Na0.46NbO3分别进行配料,通过球磨工艺混合均匀后首先进行预烧,然后研磨过筛,接着按照化学式(1-x)Ba0.56Sr0.44Ti0.93Sn0.07O3·xBi0.18Na0.46NbO3,其中0.1≤x≤0.3配料和进行球磨,球磨后进行造粒,接着在模具中压制成型,再经排胶处理后利用放电等离子烧结系统进行一次烧结,再经普通高温炉二次烧结后得到本发明的高储能密度和高储能效率的陶瓷材料。本发明通过控制各金属元素的相对含量,控制烧结的温度和工艺,所得陶瓷材料兼具有钛酸锶钡基储能陶瓷和铌酸铋钠两种压陶瓷的优点,通过掺入少量Sn元素,进一步改善其介电性能,克服了陶瓷介质材料介电常数温度稳定性较差、介电损耗较大的缺点,所制备的储能陶瓷介质材料的介电常数在110-350℃范围内具有良好的频率稳定性且介电损耗均小于0.09,同时获得了优异的储能密度和储能效率,储能密度达到1.55-1.99J/cm3。此外,本发明所用原料中不含铅,对环境无污染,且所用原料中稀土元素含量少,制备工艺简单、稳定性好、致密度高,可满足不同应用的需求。
【具体实施方式】
为了更清楚地表达本发明,以下通过具体实施例对本发明作进一步说明。
实施例1
无铅陶瓷材料0.90Ba0.56Sr0.44Ti0.93Sn0.07O3·0.10Bi0.18Na0.46NbO3的制备方法,按照以下步骤进行:
(1)按化学式Ba0.56Sr0.44Ti0.93Sn0.07O3中的计量比称取原料BaCO3、SrCO3、TiO2和SnO2,进行配料;将所称取的原料在行星式球磨机中球磨,所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1:2:1;球磨机转速均为250r/min,球磨时间均为10小时。球磨后烘干,得粉料A;将粉料A在900℃空气中预烧10小时后,研磨过120目筛,得Ba0.56Sr0.44Ti0.93Sn0.07O3粉料;
(2)按化学式Bi0.18Na0.46NbO3中的计量比称取原料Bi2O3、Na2CO3和Nb2O5进行配料;将所称取原料在行星式球磨机中球磨,所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1:2:1;球磨机转速均为250r/min,球磨时间均为10小时;然后烘干,得粉料B,将所述粉料B在700℃空气中预烧10小时,研磨过120目筛,得Bi0.18Na0.46NbO3粉料;
(3)将Ba0.56Sr0.44Ti0.93Sn0.07O3粉料和Bi0.18Na0.46NbO3粉料按照化学式0.90Ba0.56Sr0.44Ti0.93Sn0.07O3·0.10Bi0.18Na0.46NbO3进行配料并混合,研磨过120目筛得粉料C;
(4)向所述粉料C中加入质量浓度为6%的PVA溶液造粒,PVA溶液的加入量为粉料C总质量的8%;将造粒后的粉料在200MPa的压力下干压成型,在温度为500℃的条件下排胶,排胶时保温1小时,得陶瓷坯体;将所述陶瓷坯体利用放电等离子烧结系统在真空环境中1000℃℃进行烧结,制得陶瓷烧结体;
(5)将步骤(4)经处理后的陶瓷烧结体以2℃/min的升温速率升温至1130℃,保温6小时后,随炉自然冷却,得到致密陶瓷片;
(6)将所得的陶瓷片精修至0.2-0.3cm厚,双面用丝网刷上银浆后,在700℃条件下烧渗银电极,得所述陶瓷材料。
实施例2
无铅陶瓷材料0.88Ba0.56Sr0.44Ti0.93Sn0.07O3·0.12Bi0.18Na0.46NbO3的制备方法,按照以下步骤进行:
(1)按化学式Ba0.56Sr0.44Ti0.93Sn0.07O3中的计量比称取原料BaCO3、SrCO3、TiO2和SnO2,进行配料;将所称取的原料在行星式球磨机中球磨,所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1:2:2;球磨机转速均为250r/min,球磨时间均为18小时。球磨后烘干,得粉料A;将粉料A在920℃空气中预烧8小时后,研磨过120目筛,得Ba0.56Sr0.44Ti0.93Sn0.07O3粉料;
(2)按化学式Bi0.18Na0.46NbO3中的计量比称取原料Bi2O3、Na2CO3和Nb2O5进行配料;将所称取原料在行星式球磨机中球磨,所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1:2:2;球磨机转速均为250r/min,球磨时间均为18小时。然后烘干,得粉料B,将所述粉料B在720℃空气中预烧8小时,研磨过120目筛,得Bi0.18Na0.46NbO3粉料;
(3)将Ba0.56Sr0.44Ti0.93Sn0.07O3粉料和Bi0.18Na0.46NbO3粉料按照化学式0.88Ba0.56Sr0.44Ti0.93Sn0.07O3·0.12Bi0.18Na0.46NbO3进行配料并混合,研磨过120目筛得粉料C;
(4)向所述粉料C中加入质量浓度为7%的PVA溶液造粒,PVA溶液的加入量为粉料C总质量的10%;将造粒后的粉料在220MPa的压力下干压成型,在温度为520℃的条件下排胶,排胶时保温1.5小时,得陶瓷坯体;将所述陶瓷坯体利用放电等离子烧结系统在真空环境中1020℃进行烧结,制得陶瓷烧结体;
(5)将步骤(4)经处理后的陶瓷烧结体以3℃/min的升温速率升温至1150℃,保温5小时后,随炉自然冷却,得到致密陶瓷片;
(6)将所得的陶瓷片精修至0.2-0.3cm厚,双面用丝网刷上银浆后,在720℃条件下烧渗银电极,得所述陶瓷材料。
实施例3
无铅陶瓷材料0.85Ba0.56Sr0.44Ti0.93Sn0.07O3·0.15Bi0.18Na0.46NbO3的制备方法,按照以下步骤进行:
(1)按化学式Ba0.56Sr0.44Ti0.93Sn0.07O3中的计量比称取原料BaCO3、SrCO3、TiO2和SnO2,进行配料;将所称取的原料在行星式球磨机中球磨,所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1∶3∶1;球磨机转速均为300r/min,球磨时间均为15小时。球磨后烘干,得粉料A;将粉料A在920℃空气中预烧6小时后,研磨过120目筛,得Ba0.56Sr0.44Ti0.93Sn0.07O3粉料;
(2)按化学式Bi0.18Na0.46NbO3中的计量比称取原料Bi2O3、Na2CO3和Nb2O5进行配料;将所称取原料在行星式球磨机中球磨,所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1∶3∶2;球磨机转速均为300r/min,球磨时间均为15小时。然后烘干,得粉料B,将所述粉料B在740℃空气中预烧6小时,研磨过120目筛,得Bi0.18Na0.46NbO3粉料;
(3)将Ba0.56Sr0.44Ti0.93Sn0.07O3粉料和Bi0.18Na0.46NbO3粉料按照化学式0.85Ba0.56Sr0.44Ti0.98Sn0.02O3·0.15Bi0.18Na0.46NbO3进行配料并混合,研磨过120目筛得粉料C;
(4)向所述粉料C中加入质量浓度为7.5%的PVA溶液造粒,PVA溶液的加入量为粉料C总质量的12%;将造粒后的粉料在250MPa的压力下干压成型,在温度为580℃的条件下排胶,排胶时保温1.5小时,得陶瓷坯体;将所述陶瓷坯体利用放电等离子烧结系统在真空环境中1030℃进行烧结,制得陶瓷烧结体;
(5)将步骤(4)经处理后的陶瓷烧结体以4℃/min的升温速率升温至1180℃,保温4小时后,随炉自然冷却,得到致密陶瓷片;
(6)将所得的陶瓷片精修至0.2-0.3cm厚,双面用丝网刷上银浆后,在700-850℃条件下烧渗银电极,得所述陶瓷材料。
实施例4
无铅陶瓷材料0.80Ba0.56Sr0.44Ti0.93Sn0.07O3·0.20Bi0.18Na0.46NbO3的制备方法,按照以下步骤进行:
(1)按化学式Ba0.56Sr0.44Ti0.93Sn0.07O3中的计量比称取原料BaCO3、SrCO3、TiO2和SnO2,进行配料;将所称取的原料在行星式球磨机中球磨,所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1∶4∶1;球磨机转速均为300r/min,球磨时间均为12小时。球磨后烘干,得粉料A;将粉料A在940℃空气中预烧4小时后,研磨过120目筛,得Ba0.56Sr0.44Ti0.93Sn0.07O3粉料;
(2)按化学式Bi0.18Na0.46NbO3中的计量比称取原料Bi2O3、Na2CO3和Nb2O5进行配料;将所称取原料在行星式球磨机中球磨,所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1∶4∶1;球磨机转速均为300r/min,球磨时间均为12小时,然后烘干,得粉料B,将所述粉料B在780℃空气中预烧4小时,研磨过120目筛,得Bi0.18Na0.46NbO3粉料;
(3)将Ba0.56Sr0.44Ti0.93Sn0.07O3粉料和Bi0.18Na0.46NbO3粉料按照化学式0.80Ba0.56Sr0.44Ti0.93Sn0.07O3·0.209Bi0.18Na0.46NbO3进行配料并混合,研磨过120目筛得粉料C;
(4)向所述粉料C中加入质量浓度为7%的PVA溶液造粒,PVA溶液的加入量为粉料C总质量的15%;将造粒后的粉料在280MPa的压力下干压成型,在温度为620℃的条件下排胶,排胶时保温1小时,得陶瓷坯体;将所述陶瓷坯体利用放电等离子烧结系统在真空环境中1040℃进行烧结,制得陶瓷烧结体;
(5)将步骤(4)经处理后的陶瓷烧结体以5℃/min的升温速率升温至1200℃,保温5小时后,随炉自然冷却,得到致密陶瓷片;
(6)将所得的陶瓷片精修至0.2-0.3cm厚,双面用丝网刷上银浆后,在820℃条件下烧渗银电极,得所述陶瓷材料。
实施例5
高储能密度的无铅陶瓷材料0.7Ba0.56Sr0.44Ti0.93Sn0.07O3·0.3Bi0.18Na0.46NbO3的制备方法,按照以下步骤进行:
(1)按化学式Ba0.56Sr0.44Ti0.93Sn0.07O3中的计量比称取原料BaCO3、SrCO3、TiO2和SnO2,进行配料;将所称取的原料在行星式球磨机中球磨,所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1∶4∶1;球磨机转速均为300r/min,球磨时间均为10小时。球磨后烘干,得粉料A;将粉料A在950℃空气中预烧2小时后,研磨过120目筛,得Ba0.56Sr0.44Ti0.93Sn0.07O3粉料;
(2)按化学式Bi0.18Na0.46NbO3中的计量比称取原料Bi2O3、Na2CO3和Nb2O5进行配料;将所称取原料在行星式球磨机中球磨,所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1∶4∶1;球磨机转速均为300r/min,球磨时间均为10小时。然后烘干,得粉料B,将所述粉料B在800℃空气中预烧2小时,研磨过120目筛,得Bi0.18Na0.46NbO3粉料;
(3)将Ba0.56Sr0.44Ti0.93Sn0.07O3粉料和Bi0.18Na0.46NbO3粉料按照化学式0.7Ba0.56Sr0.44Ti0.93Sn0.07O3·0.3Bi0.18Na0.46NbO3进行配料并混合,研磨过120目筛得粉料C;
(4)向所述粉料C中加入质量浓度为8%的PVA溶液造粒,PVA溶液的加入量为粉料C总质量的15%;将造粒后的粉料在300MPa的压力下干压成型,在温度为650℃的条件下排胶,排胶时保温1小时,得陶瓷坯体;将所述陶瓷坯体利用放电等离子烧结系统在真空环境中1050℃进行烧结,制得陶瓷烧结体;
(5)将步骤(4)经处理后的陶瓷烧结体以5℃/min的升温速率升温至1250℃,保温3小时后,随炉自然冷却,得到致密陶瓷片;
(6)将所得的陶瓷片精修至0.2-0.3cm厚,双面用丝网刷上银浆后,在700-850℃条件下烧渗银电极,得所述陶瓷材料。
性能测试:
经过测试,实施例1-5中各样品的电性能如下表1所示,可以看出本发明制备所得无铅陶瓷材料具有较高的储能密度和储能效率。
表1
储能密度/J/cm3 储能效率/% 相对介电常数
实施例1 1.62 82.9 745
实施例2 1.99 89.5 753
实施例3 1.79 84.8 729
实施例4 1.68 81.9 720
实施例5 1.55 80.8 716
上述说明是针对本发明较佳可行实施例的详细说明,但实施例并非用以限定本发明的专利申请范围,凡本发明所提示的技术精神下所完成的同等变化或修饰变更,均应属于本发明所涵盖专利范围。

Claims (8)

1.一种高储能密度的无铅陶瓷材料,其特征在于:所述无铅陶瓷材料的化学式为(1-x)Ba0.56Sr0.44Ti0.93Sn0.07O3·xBi0.18Na0.46NbO3,其中x为Bi0.18Na0.46NbO3的摩尔分数,且0.1≤x≤0.3。
2.根据权利要求1所述的无铅陶瓷材料,其特征在于:所述无铅陶瓷材料的化学式为0.88Ba0.56Sr0.44Ti0.93Sn0.07O3·0.12Bi0.18Na0.46NbO3
3.根据权利要求1或2所述的无铅陶瓷材料的制备方法,其特征在于包括以下步骤:
(1)按化学式Ba0.56Sr0.44Ti0.93Sn0.07O3中的计量比称取原料进行配料;将所称取的原料在球磨机中球磨,然后烘干,得粉料A;将粉料A在900-950℃空气中预烧2-10小时后,研磨过筛,得Ba0.56Sr0.44Ti0.93Sn0.07O3粉料;
(2)按化学式Bi0.18Na0.46NbO3中的计量比称取原料进行配料;将所称取原料在球磨机中球磨,然后烘干,得粉料B,将所述粉料B在700-800℃空气中预烧2-10小时,研磨过筛,得Bi0.18Na0.46NbO3粉料;
(3)将Ba0.56Sr0.44Ti0.93Sn0.07O3粉料和Bi0.18Na0.46NbO3粉料按照化学式(1-x)Ba0.56Sr0.44Ti0.93Sn0.07O3·xBi0.18Na0.46NbO3,其中0.1≤x≤0.3进行配料并混合,研磨过筛得粉料C;
(4)向所述粉料C中加入有机粘结剂造粒;将造粒后的粉料在200-300MPa的压力下干压成型,排胶后得陶瓷坯体;将所述陶瓷坯体利用放电等离子烧结系统在真空环境中1000℃-1050℃进行烧结,制得陶瓷烧结体;
(5)将步骤(4)经处理后的陶瓷烧结体以2-5℃/min的升温速率升温至1130-1250℃,保温3-6小时后,随炉自然冷却,得到致密陶瓷片;
(6)将所得的陶瓷片精修至0.2-0.3cm厚,双面用丝网刷上银浆后,在700-850℃条件下烧渗银电极,得所述陶瓷材料。
4.根据权利要求3所述制备方法,其特征在于:步骤(1)中称取的原料为BaCO3、SrCO3、TiO2和SnO2,步骤(2)中称取的原料为Bi2O3、Na2CO3和Nb2O5
5.根据权利要求3所述的制备方法,其特征在于:步骤(1)、(2)所述球磨采用的是行星式球磨机;所用球磨介质为氧化锆球,分散介质为丙酮,球磨过程中原料:球磨介质:丙酮的重量比均为1:(2-4):(1-3);球磨机转速均为250-300r/min,球磨时间均为10-20小时。
6.根据权利要求3所述的制备方法,其特征在于:步骤(4)中的有机粘结剂为质量浓度为6-8%的PVA溶液;PVA溶液的加入量为粉料C总质量的8-15%。
7.根据权利要求3所述的制备方法,其特征在于:步骤(1)、(2)、(3)中所述的过筛为过120目筛。
8.根据权利要求3所述的制备方法,其特征在于,步骤(4)中的排胶温度为500-650℃,排胶时保温1-2小时。
CN201711119141.5A 2017-11-14 2017-11-14 一种高储能密度的无铅陶瓷材料及制备方法 Withdrawn CN107746273A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711119141.5A CN107746273A (zh) 2017-11-14 2017-11-14 一种高储能密度的无铅陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711119141.5A CN107746273A (zh) 2017-11-14 2017-11-14 一种高储能密度的无铅陶瓷材料及制备方法

Publications (1)

Publication Number Publication Date
CN107746273A true CN107746273A (zh) 2018-03-02

Family

ID=61251323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711119141.5A Withdrawn CN107746273A (zh) 2017-11-14 2017-11-14 一种高储能密度的无铅陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN107746273A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409319A (zh) * 2018-03-06 2018-08-17 同济大学 高储能密度及充放电性能的无铅陶瓷材料及其制备方法
CN110282970A (zh) * 2019-07-26 2019-09-27 陕西科技大学 一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备方法
CN110540409A (zh) * 2018-05-29 2019-12-06 山东工业陶瓷研究设计院有限公司 一种氧化铝陶瓷件的粉料及制备方法
CN111410526A (zh) * 2020-03-27 2020-07-14 广东风华高新科技股份有限公司 一种掺杂钙钛矿锡酸钡材料及其制备方法与应用
CN112919907A (zh) * 2021-02-09 2021-06-08 杭州电子科技大学 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409319A (zh) * 2018-03-06 2018-08-17 同济大学 高储能密度及充放电性能的无铅陶瓷材料及其制备方法
CN108409319B (zh) * 2018-03-06 2021-03-26 同济大学 高储能密度及充放电性能的无铅陶瓷材料及其制备方法
CN110540409A (zh) * 2018-05-29 2019-12-06 山东工业陶瓷研究设计院有限公司 一种氧化铝陶瓷件的粉料及制备方法
CN110540409B (zh) * 2018-05-29 2022-02-01 山东工业陶瓷研究设计院有限公司 一种氧化铝陶瓷件的粉料及制备方法
CN110282970A (zh) * 2019-07-26 2019-09-27 陕西科技大学 一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备方法
CN111410526A (zh) * 2020-03-27 2020-07-14 广东风华高新科技股份有限公司 一种掺杂钙钛矿锡酸钡材料及其制备方法与应用
CN111410526B (zh) * 2020-03-27 2020-12-29 广东风华高新科技股份有限公司 一种掺杂钙钛矿锡酸钡材料及其制备方法与应用
CN112919907A (zh) * 2021-02-09 2021-06-08 杭州电子科技大学 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN107746273A (zh) 一种高储能密度的无铅陶瓷材料及制备方法
CN104926297B (zh) 一种温度稳定、介电常数可调的微波介质陶瓷及制备方法
CN105693241B (zh) 高品质因数锂镁铌系微波介质陶瓷及其制备方法
CN105254299A (zh) 一种低温烧结锂镁铌系微波介质陶瓷
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN113354399A (zh) 低温共烧复合陶瓷材料及制备方法
CN107759217A (zh) 一种高储能密度和高储能效率的无铅陶瓷材料及制备方法
CN102153341A (zh) 一种中介电常数低温共烧陶瓷材料及其制备方法
CN103342558A (zh) 可低温烧结的微波介电陶瓷Ba3Ti2V4O17及其制备方法
CN103214239A (zh) 一种高介电常数x8r型mlcc介质材料
CN106747435B (zh) 一种温度稳定的芯-壳结构微波介质陶瓷的制备方法
CN101172853A (zh) 一种用于温度稳定x9r型多层陶瓷电容器瓷料及其制备方法
CN108218424A (zh) 一种高频微波陶瓷电容器介质材料及其制备方法
CN107602113A (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN104944940A (zh) 一种温度稳定型钛酸镁基微波介质陶瓷及其制备方法
CN109251028A (zh) 一种低介高q锂镁铌系微波介质陶瓷及其制备方法
CN107555986B (zh) 一种低损耗岩盐矿结构微波介质陶瓷及制备方法
CN109437887A (zh) 一种阴离子取代低温烧结锂镁钛系微波介质陶瓷
CN112851347A (zh) 一种低温烧结低损耗氟氧化物微波介质陶瓷及其制备方法
CN105859281B (zh) 一种低介低损耗微波介质陶瓷及制备方法
CN106007707A (zh) Mg-Nb掺杂钛酸铋微波介质陶瓷及其制备方法
CN103319177A (zh) 可低温烧结微波介电陶瓷Ba3WTiO8及其制备方法
CN106699164B (zh) 微波陶瓷SrO-ZnO(MgO)-TiO2及制法
CN112299845B (zh) 一种高性能的陶瓷介质材料及其制备方法
CN107602121A (zh) 一种高储能密度无铅反铁电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20180302