CN110272587A - 一种抗寒耐高温阻燃复合材料及其制备方法 - Google Patents

一种抗寒耐高温阻燃复合材料及其制备方法 Download PDF

Info

Publication number
CN110272587A
CN110272587A CN201910523941.6A CN201910523941A CN110272587A CN 110272587 A CN110272587 A CN 110272587A CN 201910523941 A CN201910523941 A CN 201910523941A CN 110272587 A CN110272587 A CN 110272587A
Authority
CN
China
Prior art keywords
temperature
cold
resflamet
flamet
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910523941.6A
Other languages
English (en)
Other versions
CN110272587B (zh
Inventor
牛海军
李家行
井艳芳
杨海峰
刘鹏
朱琳
秦入平
王厚超
黄楚涵
李丽娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pla Army Special Operations College
Original Assignee
Pla Army Special Operations College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pla Army Special Operations College filed Critical Pla Army Special Operations College
Priority to CN201910523941.6A priority Critical patent/CN110272587B/zh
Publication of CN110272587A publication Critical patent/CN110272587A/zh
Application granted granted Critical
Publication of CN110272587B publication Critical patent/CN110272587B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种抗寒耐高温阻燃复合材料及其制备方法。所述抗寒耐高温阻燃复合材料包括以下重量份组分:热塑性树脂100份、玄武岩纤维20‑45份、碳纤维5‑15份、凯夫拉纤维5‑10份、抗氧剂0.3‑0.6份、阻燃剂10‑20份和稳定剂1‑3份。本发明还提供了所述复合材料的制备方法。本发明选择以玄武岩纤维为主,以碳纤维和凯夫拉纤维为辅的增强纤维,并通过优选各组分配比,明显提高了复合材料的机械性能、抗寒耐低温、耐高温和阻燃性能。

Description

一种抗寒耐高温阻燃复合材料及其制备方法
技术领域
本发明涉及纤维增强树脂技术领域,具体涉及一种抗寒耐高温阻燃复合材料及其制备方法。
背景技术
纤维增强热塑性复合材料主要由增强纤维和热塑性树脂基体组成,纤维增强热塑性复合材料受到载荷时,由纤维承受大部分的载荷,而树脂基体则起到在纤维之间传递载荷的作用,通过使纤维在树脂内部不同方向排列,可以在不同方向上获得不同的性能。纤维增强热塑性复合材料多为采用玻璃纤维或碳纤维作为增强纤维,具有结构强度高、机械性能优异、比重小、耐损伤等优良特性,可作为建筑板材应用于厂房、库房、商业建筑、临时建筑等大型结构中,但在长期使用过程中,纤维增强热塑性复合材料仍存在以下缺陷:防火阻燃性能、耐高温和耐低温抗寒性能不足。因而需要开发一种抗寒耐高温阻燃复合材料,提高其适应性及适用范围。
发明内容
本发明的目的在于克服现有技术的不足之处而提供一种抗寒耐高温阻燃复合材料及其制备方法。
为实现上述目的,本发明采取的技术方案如下:
一种抗寒耐高温阻燃复合材料,包括以下重量份组分:
本发明添加的增强纤维以玄武岩纤维为主,以碳纤维和凯夫拉纤维为辅,并通过优选各组分配比,明显提高了复合材料的机械性能、耐低温、耐高温和阻燃性能。
优选地,所述玄武岩纤维、碳纤维和凯夫拉纤维的重量比为4:1:1,具有较高的机械性能和耐高温性能。
优选地,所述玄武岩纤维、碳纤维和凯夫拉纤维均为复配酸改性纤维,所述复配酸包括多聚磷酸和植酸。采用酸对纤维进行表面处理,有助于增加纤维表面粗糙度,但也容易对纤维造成损伤,本发明采用多聚磷酸和植酸对玄武岩纤维、碳纤维和凯夫拉纤维进行改性,有效提高纤维与树脂基体的界面结合,实现纤维的大量填充,有利于增强复合材料的力学性能,且多聚磷酸和植酸较为温和,不会导致玄武岩纤维、碳纤维和凯夫拉纤维的纤维强力大幅下降。
优选地,所述复配酸由80wt%的多聚磷酸和70wt%的植酸按体积比1:(0.1-1)复配得到。
优选地,所述热塑性树脂的熔融指数为50-150g/10min。
优选地,所述热塑性树脂包括聚丙烯、聚苯硫醚、聚醚醚酮、聚醚砜、聚酰胺中的至少一种。
优选地,所述抗氧剂包括抗氧剂1010、抗氧剂1076、抗氧剂1222、抗氧剂168中的至少一种。
优选地,所述阻燃剂为磷系阻燃剂,材料燃烧分解可产生磷的含氧酸,催化含羟基化合物发生脱水成碳反应,并且吸收热量,有利于提高该复合材料的阻燃性能。
本发明还提供了上述的抗寒耐高温阻燃复合材料的制备方法,包括以下步骤:
(1)按比例称取热塑性树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为5-8MPa,收卷,得到连续纤维增强树脂预浸料;
(2)将步骤(1)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(3)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(4)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为4~6min后,保温加压的压力为0.4~1.5MPa,保温加压的时间6~10min;
(5)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
本发明还提供了上述的抗寒耐高温阻燃复合材料的制备方法,包括以下步骤:
(1)分别将玄武岩纤维、碳纤维和凯夫拉纤维放入含有多聚磷酸和植酸的复配酸溶液中,使纤维完全浸泡于溶液中,浸泡18-24h,经清洗、干燥后得到复配酸改性纤维;
(2)按比例称取热塑性树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的改性后的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为5-8MPa,收卷,得到连续纤维增强树脂预浸料;
(3)将步骤(2)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(4)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(5)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为4~6min后,保温加压的压力为0.4~1.5MPa,保温加压的时间6~10min;
(6)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
与现有技术相比,本发明的有益效果为:
本发明添加的增强纤维以玄武岩纤维为主,以碳纤维和凯夫拉纤维为辅,并通过优选各组分配比,明显提高了复合材料的机械性能、耐低温、耐高温和阻燃性能。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明进一步说明。本领域技术人员应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例中,所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
以下实施例的磷系阻燃剂选用9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物;
抗氧剂选用抗氧剂168。
实施例1
一种抗寒耐高温阻燃复合材料,包括以下重量份组分:
所述聚丙烯树脂的熔融指数为90g/10min。
本实施例的抗寒耐高温阻燃复合材料的制备方法,包括以下步骤:
(1)按比例称取聚丙烯树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为6MPa,收卷,得到连续纤维增强树脂预浸料;
(2)将步骤(1)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(3)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(4)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为5min后,保温加压的压力为1.3MPa,保温加压的时间8min;
(5)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
实施例2
一种抗寒耐高温阻燃复合材料,包括以下重量份组分:
所述聚丙烯树脂的熔融指数为90g/10min。
本实施例的抗寒耐高温阻燃复合材料的制备方法,包括以下步骤:
(1)按比例称取聚丙烯树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为6MPa,收卷,得到连续纤维增强树脂预浸料;
(2)将步骤(1)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(3)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(4)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为5min后,保温加压的压力为1.3MPa,保温加压的时间8min;
(5)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
实施例3
一种抗寒耐高温阻燃复合材料,包括以下重量份组分:
所述聚丙烯树脂的熔融指数为90g/10min。
本实施例的抗寒耐高温阻燃复合材料的制备方法,包括以下步骤:
(1)按比例称取聚丙烯树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为6MPa,收卷,得到连续纤维增强树脂预浸料;
(2)将步骤(1)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(3)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(4)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为5min后,保温加压的压力为1.3MPa,保温加压的时间8min;
(5)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
实施例4
一种抗寒耐高温阻燃复合材料,包括以下重量份组分:
所所述聚丙烯树脂的熔融指数为90g/10min。
本实施例的抗寒耐高温阻燃复合材料的制备方法,包括以下步骤:
(1)分别将玄武岩纤维、碳纤维和凯夫拉纤维放入由80wt%的多聚磷酸和70wt%的植酸按体积比1:0.1复配得到的复配酸溶液中,使纤维完全浸泡于溶液中,浸泡24h,经清洗、干燥后得到复配酸改性纤维;
(2)按比例称取聚丙烯树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的改性后的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为6MPa,收卷,得到连续纤维增强树脂预浸料;
(3)将步骤(2)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(4)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(5)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为5min后,保温加压的压力为1.3MPa,保温加压的时间8min;
(6)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
实施例5
一种抗寒耐高温阻燃复合材料,包括以下重量份组分:
所述聚丙烯树脂的熔融指数为90g/10min。
本实施例的抗寒耐高温阻燃复合材料的制备方法,包括以下步骤:
(1)分别将玄武岩纤维、碳纤维和凯夫拉纤维放入由80wt%的多聚磷酸和70wt%的植酸按体积比1:0.3复配得到的复配酸溶液中,使纤维完全浸泡于溶液中,浸泡24h,经清洗、干燥后得到复配酸改性纤维;
(2)按比例称取聚丙烯树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的改性后的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为6MPa,收卷,得到连续纤维增强树脂预浸料;
(3)将步骤(2)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(4)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(5)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为5min后,保温加压的压力为1.3MPa,保温加压的时间8min;
(6)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
实施例6
一种抗寒耐高温阻燃复合材料,包括以下重量份组分:
所述聚丙烯树脂的熔融指数为90g/10min。
本实施例的抗寒耐高温阻燃复合材料的制备方法,包括以下步骤:
(1)分别将玄武岩纤维、碳纤维和凯夫拉纤维放入由80wt%的多聚磷酸和70wt%的植酸按体积比1:1复配得到的复配酸溶液中,使纤维完全浸泡于溶液中,浸泡24h,经清洗、干燥后得到复配酸改性纤维;
(2)按比例称取聚丙烯树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的改性后的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为6MPa,收卷,得到连续纤维增强树脂预浸料;
(3)将步骤(2)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(4)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(5)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为5min后,保温加压的压力为1.3MPa,保温加压的时间8min;
(6)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
实施例7
一种抗寒耐高温阻燃复合材料,包括以下重量份组分:
所述聚丙烯树脂的熔融指数为90g/10min。
本实施例的抗寒耐高温阻燃复合材料的制备方法,包括以下步骤:
(1)分别将玄武岩纤维、碳纤维和凯夫拉纤维放入由80wt%的多聚磷酸和70wt%的硝酸按体积比1:1复配得到的复配酸溶液中,使纤维完全浸泡于溶液中,浸泡24h,经清洗、干燥后得到复配酸改性纤维;
(2)按比例称取聚丙烯树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的改性后的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为6MPa,收卷,得到连续纤维增强树脂预浸料;
(3)将步骤(2)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(4)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(5)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为5min后,保温加压的压力为1.3MPa,保温加压的时间8min;
(6)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
实施例8
一种抗寒耐高温阻燃复合材料,包括以下重量份组分:
所述聚酰胺树脂的熔融指数为50g/10min。
本实施例的抗寒耐高温阻燃复合材料的制备方法,包括以下步骤:
(1)按比例称取聚酰胺树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为5MPa,收卷,得到连续纤维增强树脂预浸料;
(2)将步骤(1)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(3)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(4)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为6min后,保温加压的压力为1.5MPa,保温加压的时间6min;
(5)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
实施例9
一种抗寒耐高温阻燃复合材料,包括以下重量份组分:
所述聚酰胺树脂的熔融指数为150g/10min。
本实施例的抗寒耐高温阻燃复合材料的制备方法,包括以下步骤:
(1)按比例称取聚酰胺树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为8MPa,收卷,得到连续纤维增强树脂预浸料;
(2)将步骤(1)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(3)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(4)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为4min后,保温加压的压力为0.4MPa,保温加压的时间10min;
(5)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
对本发明制备的复合材料的各项性能进行测试,测试结果如表1所示。
表1
由表1结果可知,本发明的增强纤维以玄武岩纤维为主,以碳纤维和凯夫拉纤维为辅,并通过优选各组分配比,制备得到的复合材料的热变形温度明显提高,且氧指数>30,具有良好的阻燃性能,以及优良的力学性能、耐低温和耐高温性能;采用多聚磷酸和植酸对玄武岩纤维、碳纤维和凯夫拉纤维进行表面处理,促进纤维与树脂基体的界面结合,更有利于增强复合材料的力学性能。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种抗寒耐高温阻燃复合材料,其特征在于,包括以下重量份组分:
2.根据权利要求1所述的抗寒耐高温阻燃复合材料,其特征在于,所述玄武岩纤维、碳纤维和凯夫拉纤维的重量比为4:1:1。
3.根据权利要求1或2所述的抗寒耐高温阻燃复合材料,其特征在于,所述玄武岩纤维、碳纤维和凯夫拉纤维均为复配酸改性纤维,所述复配酸包括多聚磷酸和植酸。
4.根据权利要求3所述的抗寒耐高温阻燃复合材料,其特征在于,所述复配酸由80wt%的多聚磷酸和70wt%的植酸按体积比1:(0.1-1)复配得到。
5.根据权利要求1所述的抗寒耐高温阻燃复合材料,其特征在于,所述热塑性树脂的熔融指数为50-150g/10min。
6.根据权利要求1所述的抗寒耐高温阻燃复合材料,其特征在于,所述热塑性树脂包括聚丙烯、聚苯硫醚、聚醚醚酮、聚醚砜、聚酰胺中的至少一种。
7.根据权利要求1所述的抗寒耐高温阻燃复合材料,其特征在于,所述抗氧剂包括抗氧剂1010、抗氧剂1076、抗氧剂1222、抗氧剂168中的至少一种。
8.根据权利要求1所述的抗寒耐高温阻燃复合材料,其特征在于,所述阻燃剂为磷系阻燃剂。
9.一种如权利要求1-8任一项所述的抗寒耐高温阻燃复合材料的制备方法,其特征在于,包括以下步骤:
(1)按比例称取热塑性树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为5-8MPa,收卷,得到连续纤维增强树脂预浸料;
(2)将步骤(1)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(3)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(4)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为4~6min后,保温加压的压力为0.4~1.5MPa,保温加压的时间6~10min;
(5)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
10.一种如权利要求1-8任一项所述的抗寒耐高温阻燃复合材料的制备方法,其特征在于,包括以下步骤:
(1)分别将玄武岩纤维、碳纤维和凯夫拉纤维放入含有多聚磷酸和植酸的复配酸溶液中,使纤维完全浸泡于溶液中,浸泡18-24h,经清洗、干燥后得到复配酸改性纤维;
(2)按比例称取热塑性树脂、抗氧剂、阻燃剂和稳定剂,混合均匀后加入挤出机中,采用交错的双挤出模头组挤出,并在模头处与铺展的改性后的玄武岩纤维、碳纤维和凯夫拉纤维进行浸润复合,通过辊压成型,辊压压力为5-8MPa,收卷,得到连续纤维增强树脂预浸料;
(3)将步骤(2)制备的连续纤维增强树脂预浸料裁剪成所需尺寸,根据预浸料中纤维的方向以0°/90°进行铺放;
(4)将铺放好的连续纤维增强树脂预浸料转移至模具,并在模具和预浸料表面喷涂脱模剂,置于热成型机中进行合模;
(5)预热,待预浸料软化后保温加压,预热温度为预浸料的软化温度,预热时间为4~6min后,保温加压的压力为0.4~1.5MPa,保温加压的时间6~10min;
(6)停止加热后通水冷却,冷却过程中保持压力不变,冷却至室温后,取出脱模,得到所述抗寒耐高温阻燃复合材料。
CN201910523941.6A 2019-06-17 2019-06-17 一种抗寒耐高温阻燃复合材料及其制备方法 Active CN110272587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910523941.6A CN110272587B (zh) 2019-06-17 2019-06-17 一种抗寒耐高温阻燃复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910523941.6A CN110272587B (zh) 2019-06-17 2019-06-17 一种抗寒耐高温阻燃复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110272587A true CN110272587A (zh) 2019-09-24
CN110272587B CN110272587B (zh) 2021-11-09

Family

ID=67960968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910523941.6A Active CN110272587B (zh) 2019-06-17 2019-06-17 一种抗寒耐高温阻燃复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110272587B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805884A (zh) * 2022-05-10 2022-07-29 兴安盟石源玄武岩纤维工程技术研究院 一种玄武岩纤维无人机机壳的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201475A (ja) * 2000-12-28 2002-07-19 Ajinomoto Co Inc 難燃剤及び該難燃剤を含有する熱可塑性樹脂組成物
US20060258810A1 (en) * 2003-07-31 2006-11-16 Mitsubishi Rayon Co., Ltd Carbon fiber bundle process for producing the same and thermoplastic resin composition and molded article thereof
CN101235590A (zh) * 2008-02-25 2008-08-06 北京科技大学 一种pbo纤维的超声化学表面改性方法
JP2009046596A (ja) * 2007-08-21 2009-03-05 Tokyo Institute Of Technology ポリマーグラフト炭素材料およびその製造方法
CN103467757A (zh) * 2013-09-30 2013-12-25 金发科技股份有限公司 一种纤维增强热塑性复合材料及其制备方法
CN103540014A (zh) * 2012-07-17 2014-01-29 辽宁辽杰科技有限公司 一种连续纤维增强树脂预浸料、制备方法及其应用
CN103881176A (zh) * 2012-12-20 2014-06-25 辽宁辽杰科技有限公司 一种高强度连续纤维增强热塑性板材及其制备方法和用途
CN104448567A (zh) * 2014-12-22 2015-03-25 河北科技大学 植物纤维表面接枝超支化聚酰胺改善复合材料力学性能的方法
US20160319109A1 (en) * 2013-12-18 2016-11-03 Dic Corporation Resin composition for blow hollow molded articles, blow hollow molded article and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201475A (ja) * 2000-12-28 2002-07-19 Ajinomoto Co Inc 難燃剤及び該難燃剤を含有する熱可塑性樹脂組成物
US20060258810A1 (en) * 2003-07-31 2006-11-16 Mitsubishi Rayon Co., Ltd Carbon fiber bundle process for producing the same and thermoplastic resin composition and molded article thereof
JP2009046596A (ja) * 2007-08-21 2009-03-05 Tokyo Institute Of Technology ポリマーグラフト炭素材料およびその製造方法
CN101235590A (zh) * 2008-02-25 2008-08-06 北京科技大学 一种pbo纤维的超声化学表面改性方法
CN103540014A (zh) * 2012-07-17 2014-01-29 辽宁辽杰科技有限公司 一种连续纤维增强树脂预浸料、制备方法及其应用
CN103881176A (zh) * 2012-12-20 2014-06-25 辽宁辽杰科技有限公司 一种高强度连续纤维增强热塑性板材及其制备方法和用途
CN103467757A (zh) * 2013-09-30 2013-12-25 金发科技股份有限公司 一种纤维增强热塑性复合材料及其制备方法
US20160319109A1 (en) * 2013-12-18 2016-11-03 Dic Corporation Resin composition for blow hollow molded articles, blow hollow molded article and method for producing same
CN104448567A (zh) * 2014-12-22 2015-03-25 河北科技大学 植物纤维表面接枝超支化聚酰胺改善复合材料力学性能的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孔萍: "《塑料配混技术》", 31 August 2009, 北京:中国轻工业出版社 *
曹海琳等: "《玄武岩纤维》", 31 July 2017, 北京:国防工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805884A (zh) * 2022-05-10 2022-07-29 兴安盟石源玄武岩纤维工程技术研究院 一种玄武岩纤维无人机机壳的制备方法

Also Published As

Publication number Publication date
CN110272587B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN102731960B (zh) 一种高韧性阻燃酚醛预浸料复合材料的制备方法
CN107840975B (zh) 一种连续纤维增强尼龙复合材料的制备方法
CN102529252B (zh) 一种高抗冲耐磨隔热复合板材
CN112009038B (zh) 一种结构阻燃功能性复合材料及其制备方法
CN104629238A (zh) 一种无卤阻燃玄武岩纤维增强不饱和聚酯树脂复合材料及其制备方法
WO2017140121A1 (zh) 一种由带导流层的预织件制成的电木浪板及其制造方法
CN104387719A (zh) 纤维增强酚醛树脂基复合材料及其制备方法
CN107868448B (zh) 一种连续纤维增强长碳链尼龙复合板材
CN100422261C (zh) 氰酸酯树脂/碳纤维复合材料及其制备方法
CN110272587A (zh) 一种抗寒耐高温阻燃复合材料及其制备方法
CN108440955A (zh) 连续纤维增强阻燃尼龙复合材料及其制备方法与应用
CN109760339A (zh) 低烟无卤超高阻燃frp拉挤型材制造方法
CN104177827A (zh) 一种芳砜纶基碳纤维增强复合材料及其制备方法
CN104356325B (zh) 纳米层状硅酸盐粘土改性的酚醛树脂及其制备方法
CN104693691A (zh) 一种无卤阻燃乙烯基酯树脂复合物及其制备方法
AU751842B2 (en) Resin transfer moulding
CN110951217B (zh) 一种芳纶纤维增强碳纤维树脂预浸料及其制备方法
CN113637286A (zh) 一种增韧、阻燃热熔型酚醛树脂、预浸料、复合材料及其制备方法
CN104045972A (zh) 半固化片及纤维增强复合泡沫材料
CN104530637A (zh) 半固化片及纤维增强复合泡沫材料
US20040164451A1 (en) Resin transfer moulding
CN113897026B (zh) 生物基树脂基体材料、碳纤维生物基树脂复合材料及其制备方法
CN110527257B (zh) 一种碳纤维复合材料及其制备方法和应用
CN106393846A (zh) 一种阻燃高韧性酚醛树脂防腐采光板及其制备方法
CN116003956A (zh) 苯并噁嗪组合物及其预浸料和层压板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant