CN110257698B - 一种适合汽车充电桩磁芯的纳米晶带材及其制备方法 - Google Patents

一种适合汽车充电桩磁芯的纳米晶带材及其制备方法 Download PDF

Info

Publication number
CN110257698B
CN110257698B CN201910382780.3A CN201910382780A CN110257698B CN 110257698 B CN110257698 B CN 110257698B CN 201910382780 A CN201910382780 A CN 201910382780A CN 110257698 B CN110257698 B CN 110257698B
Authority
CN
China
Prior art keywords
magnetic core
nanocrystalline
metal ingot
strip
charging pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910382780.3A
Other languages
English (en)
Other versions
CN110257698A (zh
Inventor
徐其信
蒋业文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Huaxin Microlite Metal Co ltd
Original Assignee
Foshan Huaxin Microlite Metal Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Huaxin Microlite Metal Co ltd filed Critical Foshan Huaxin Microlite Metal Co ltd
Priority to CN201910382780.3A priority Critical patent/CN110257698B/zh
Publication of CN110257698A publication Critical patent/CN110257698A/zh
Application granted granted Critical
Publication of CN110257698B publication Critical patent/CN110257698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种适合汽车充电桩磁芯的纳米晶带材,所述纳米晶带材由纳米晶软磁合金制成,所述的纳米晶软磁合金的分子式为Fe68Cu1Nb3Ni7Co3Si11B7。本发明的纳米晶带材具有磁感应强度高、低损耗和恒导范围宽的特点,其中饱和磁感应强度(Bs)达到1.5T以上,恒导范围宽可达到10kHz‑200kHz,损耗小,在20kHz/0.5T下损耗低于18W/kg,满足于汽车充电桩磁芯材料的饱和磁感应强度高、低损耗和恒导范围宽等各项性能指标。

Description

一种适合汽车充电桩磁芯的纳米晶带材及其制备方法
技术领域
本发明涉及磁芯材料制备技术领域,尤其涉及一种适合汽车充电桩磁芯的纳米晶带材及其制备方法。
背景技术
汽车充电桩输出电流大,要求损耗小、输出效率高、体积小;对其开关电源的输出扼流圈提出较高要求,现有扼流圈铁芯往往采用硅钢片或普通非晶/纳米晶材料,硅钢片铁芯饱和磁感应强度高,但工作频率低,高频损耗大;普通非晶/纳米晶材料工作频率高,但饱和磁感应强度低。
发明内容
本发明的目的在于克服现有技术的不足,提供一种饱和磁感应强度高、低损耗和恒导范围宽的适合汽车充电桩磁芯的纳米晶带材。
为了实现以上目的,本发明采用的技术方案是:
一种适合汽车充电桩磁芯的纳米晶带材,所述纳米晶带材由纳米晶软磁合金制成,其中所述纳米晶软磁合金的分子式为:FeaCubNbcNidCoeSifBg, 其中a为55~75,b为1~2,c为2~5,d为5~11,e为1~6,f为8~15,g为4~8;并且d/ (a+b+c+d+e+f+g)*100%≥7%,e/(a+b+c+d+e+f+g)*100%≥3%。
优选地,所述的纳米晶软磁合金的分子式为Fe68Cu1Nb3Ni7Co3Si11B7
优选地,所述Fe取材于工业纯铁,所述Si取材于工业多晶硅,所述B取材于工业硼铁,所述Cu取材于电解铜;所述Nb取材于工业铌铁;所述Co取材于工业钴;所述Ni取材于工业镍块。
本发明还提供适合汽车充电桩磁芯的纳米晶带材的制备方法,包括以下步骤:
S1.先根据纳米晶软磁合金的分子式称取各组分的原料并进行配比;
S2.将配比好的原料投入熔炉中进行加热同时加入出渣剂并通入惰性气体进行搅拌使各原料均匀混合;
S3.将均匀混合的金属液浇注到模具内,待冷却成形后脱模获得纳米晶软磁合金的金属锭;
S4.从金属锭金属锭进行重熔并取样并通过直读光谱仪对样品进行分析判断其Fe元素、Cu元素、Nb元素、Ni元素、Co元素、Si元素和B元素的比例是否符合配比要求,如配比没达到要求则根据配比要求对金属锭以及各原料进行重新配比并重复步骤S2和步骤S3,直至金属锭中Fe元素、Cu元素、Nb元素、Ni元素、Co元素、Si元素和B元素的比例符合配比要求;
S5.对金属锭进行重熔后喷向高速旋转的冷却辊表面,喷射时在辊面上形成一个动平衡熔潭,熔融合金快速固化形成连续的的非晶带材;
S6.将非晶带材卷绕为晶磁芯;
S7. 非晶磁芯在真空退火炉中进行等温晶化退火;晶化退火温度范围为480~540℃,保温时间范围为60~150min,随炉冷却至300~350℃后出炉,风冷至室温即可。
优选地,所述步骤S2中,熔炉的加热温度为1500~1750℃,保温时间为50~110分钟。
优选地,所述步骤S4中,金属锭重熔时加热温度为1500~1750℃,保温时间为50~90分钟。
优选地,所述步骤S5中,重熔金属锭在0 .04~0 .3Mpa范围内的恒定压力下,将熔融合金通过条形喷嘴喷射至速度为23~28m/s的旋转铜辊上,喷制成厚度范围为20±1μm、宽度为30~55mm的非晶带材。
优选地,所述步骤S6中,非晶磁芯的宽度为4~10mm、内径为14~25mm、外径为18~28mm。
本发明的有益效果是:本发明的纳米晶带材具有磁感应强度高、低损耗和恒导范围宽的特点,其中饱和磁感应强度(Bs)达到1.5T以上,恒导范围宽可达到10kHz-200kHz,损耗小,在20kHz/0.5T下损耗低于18W/kg,满足于汽车充电桩磁芯材料的饱和磁感应强度高、低损耗和恒导范围宽等各项性能指标。
具体实施方式
现结合具体实施例对本发明所要求保护的技术方案作进一步详细说明。
实施例一
本实施例中纳米晶软磁合金的分子式为:Fe55Cu1Nb2Ni7Co3Si8B4 , 其中所述Fe取材于工业纯铁,所述Si取材于工业多晶硅,所述B取材于工业硼铁,所述Cu取材于电解铜;所述Nb取材于工业铌铁;所述Co取材于工业钴;所述Ni取材于工业镍块。
本实施例中,适合汽车充电桩磁芯的纳米晶带材的制备方法,包括以下步骤:
S1.先根据纳米晶软磁合金的分子式称取各组分的原料并进行配比。
S2.将配比好的原料投入熔炉中进行加热同时加入出渣剂并通入惰性气体进行搅拌使各原料均匀混合,其中熔炉的加热温度为1500~1750℃,保温时间为50~110分钟。
S3.将均匀混合的金属液浇注到模具内,待冷却成形后脱模获得纳米晶软磁合金的金属锭。
S4.从金属锭金属锭进行重熔,其中金属锭重熔时加热温度为1500~1750℃,保温时间为50~90分钟,同时对金属锭取样并通过直读光谱仪对样品进行分析判断其Fe元素、Cu元素、Nb元素、Ni元素、Co元素、Si元素和B元素的比例是否符合配比要求,如配比没达到要求则根据配比要求对金属锭以及各原料进行重新配比并重复步骤S2和步骤S3,直至金属锭中Fe元素、Cu元素、Nb元素、Ni元素、Co元素、Si元素和B元素的比例符合配比要求。
S5.对金属锭进行重熔后在0 .04~0 .3Mpa范围内的恒定压力下,将熔融合金通过条形喷嘴喷射至速度为23~28m/s的旋转铜辊上,喷制成厚度范围为20±1μm、宽度为30~55mm的非晶带材。
S6.将非晶带材卷绕为晶磁芯,其中非晶磁芯的宽度为4~10mm、内径为14~25mm、外径为18~28mm。
S7. 非晶磁芯在真空退火炉中进行等温晶化退火;晶化退火温度范围为480~540℃,保温时间范围为60~150min,随炉冷却至300~350℃后出炉,风冷至室温即可。
实施例二
本实施例中纳米晶软磁合金的分子式为:Fe75Cu2Nb5Ni11Co6Si15B8 , 其中所述Fe取材于工业纯铁,所述Si取材于工业多晶硅,所述B取材于工业硼铁,所述Cu取材于电解铜;所述Nb取材于工业铌铁;所述Co取材于工业钴;所述Ni取材于工业镍块。
本实施例中,适合汽车充电桩磁芯的纳米晶带材的制备方法,包括以下步骤:
S1.先根据纳米晶软磁合金的分子式称取各组分的原料并进行配比。
S2.将配比好的原料投入熔炉中进行加热同时加入出渣剂并通入惰性气体进行搅拌使各原料均匀混合,其中熔炉的加热温度为1500~1750℃,保温时间为50~110分钟。
S3.将均匀混合的金属液浇注到模具内,待冷却成形后脱模获得纳米晶软磁合金的金属锭。
S4.从金属锭金属锭进行重熔,其中金属锭重熔时加热温度为1500~1750℃,保温时间为50~90分钟,同时对金属锭取样并通过直读光谱仪对样品进行分析判断其Fe元素、Cu元素、Nb元素、Ni元素、Co元素、Si元素和B元素的比例是否符合配比要求,如配比没达到要求则根据配比要求对金属锭以及各原料进行重新配比并重复步骤S2和步骤S3,直至金属锭中Fe元素、Cu元素、Nb元素、Ni元素、Co元素、Si元素和B元素的比例符合配比要求。
S5.对金属锭进行重熔后在0 .04~0 .3Mpa范围内的恒定压力下,将熔融合金通过条形喷嘴喷射至速度为23~28m/s的旋转铜辊上,喷制成厚度范围为20±1μm、宽度为30~55mm的非晶带材。
S6.将非晶带材卷绕为晶磁芯,其中非晶磁芯的宽度为4~10mm、内径为14~25mm、外径为18~28mm。
S7. 非晶磁芯在真空退火炉中进行等温晶化退火;晶化退火温度范围为480~540℃,保温时间范围为60~150min,随炉冷却至300~350℃后出炉,风冷至室温即可。
实施例三
本实施例中纳米晶软磁合金的分子式为:Fe68Cu1Nb3Ni7Co3Si11B7,其中所述Fe取材于工业纯铁,所述Si取材于工业多晶硅,所述B取材于工业硼铁,所述Cu取材于电解铜;所述Nb取材于工业铌铁;所述Co取材于工业钴;所述Ni取材于工业镍块。
本实施例中,适合汽车充电桩磁芯的纳米晶带材的制备方法,包括以下步骤:
S1.先根据纳米晶软磁合金的分子式称取各组分的原料并进行配比。
S2.将配比好的原料投入熔炉中进行加热同时加入出渣剂并通入惰性气体进行搅拌使各原料均匀混合,其中熔炉的加热温度为1500~1750℃,保温时间为50~110分钟。
S3.将均匀混合的金属液浇注到模具内,待冷却成形后脱模获得纳米晶软磁合金的金属锭。
S4.从金属锭金属锭进行重熔,其中金属锭重熔时加热温度为1500~1750℃,保温时间为50~90分钟,同时对金属锭取样并通过直读光谱仪对样品进行分析判断其Fe元素、Cu元素、Nb元素、Ni元素、Co元素、Si元素和B元素的比例是否符合配比要求,如配比没达到要求则根据配比要求对金属锭以及各原料进行重新配比并重复步骤S2和步骤S3,直至金属锭中Fe元素、Cu元素、Nb元素、Ni元素、Co元素、Si元素和B元素的比例符合配比要求。
S5.对金属锭进行重熔后在0 .04~0 .3Mpa范围内的恒定压力下,将熔融合金通过条形喷嘴喷射至速度为23~28m/s的旋转铜辊上,喷制成厚度范围为20±1μm、宽度为30~55mm的非晶带材。
S6.将非晶带材卷绕为晶磁芯,其中非晶磁芯的宽度为4~10mm、内径为14~25mm、外径为18~28mm。
S7. 非晶磁芯在真空退火炉中进行等温晶化退火;晶化退火温度范围为480~540℃,保温时间范围为60~150min,随炉冷却至300~350℃后出炉,风冷至室温即可。
对上述是三个实施例获得的非晶磁芯采用振动磁强计(VSM)测试铁芯的饱和磁感应强度Bs、剩磁值Br,损耗(Pcm )Ps0.5/20K,其测试结果如下:
测试项目 Bs(T) Br (T) Pcm(W/kg)
实施例一 1.58 1.56 17.5
实施例二 15.4 15.7 17
实施例三 16.8 16.5 16.3
以上所述之实施例仅为本发明的较佳实施例,并非对本发明做任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出更多可能的变动和润饰,或修改为等同变化的等效实施例。故凡未脱离本发明技术方案的内容,依据本发明之思路所作的等同等效变化,均应涵盖于本发明的保护范围内。

Claims (5)

1.一种适合汽车充电桩磁芯的纳米晶带材,其特征在于:所述纳米晶带材由纳米晶软磁合金制成,其中所述纳米晶软磁合金的分子式为:Fe68Cu1Nb3Ni7Co3Si11B7;其制备方法包括以下步骤:
S1.先根据纳米晶软磁合金的分子式称取各组分的原料并进行配比;
S2.将配比好的原料投入熔炉中进行加热同时加入出渣剂并通入惰性气体进行搅拌使各原料均匀混合;
S3.将均匀混合的金属液浇注到模具内,待冷却成形后脱模获得纳米晶软磁合金的金属锭;
S4.从金属锭金属锭进行重熔并取样并通过直读光谱仪对样品进行分析判断其Fe元素、Cu元素、Nb元素、Ni元素、Co元素、Si元素和B元素的比例是否符合配比要求,如配比没达到要求则根据配比要求对金属锭以及各原料进行重新配比并重复步骤S2和步骤S3,直至金属锭中Fe元素、Cu元素、Nb元素、Ni元素、Co元素、Si元素和B元素的比例符合配比要求;
S5.对金属锭进行重熔后喷向高速旋转的冷却辊表面,喷射时在辊面上形成一个动平衡熔潭,熔融合金快速固化形成连续的非晶带材;重熔金属锭在0.04~0.3MPa范围内的恒定压力下,将熔融合金通过条形喷嘴喷射至速度为23~28m/s的旋转铜辊上,喷制成厚度为20±1μm、宽度为30~55mm的非晶带材;
S6.将非晶带材卷绕为晶磁芯;
S7. 非晶磁芯在真空退火炉中进行等温晶化退火;晶化退火温度为480~540℃,保温时间为60~150min,随炉冷却至300~350℃后出炉,风冷至室温。
2.根据权利要求1所述的一种适合汽车充电桩磁芯的纳米晶带材,其特征在于:所述Fe取材于工业纯铁,所述Si取材于工业多晶硅,所述B取材于工业硼铁,所述Cu取材于电解铜;所述Nb取材于工业铌铁;所述Co取材于工业钴;所述Ni取材于工业镍块。
3.根据权利要求1所述的一种适合汽车充电桩磁芯的纳米晶带材,其特征在于:所述步骤S2中,熔炉的加热温度为1500~1750℃,保温时间为50~110分钟。
4.根据权利要求1所述的一种适合汽车充电桩磁芯的纳米晶带材,其特征在于:所述步骤S4中,金属锭重熔时加热温度为1500~1750℃,保温时间为50~90分钟。
5.根据权利要求1所述的一种适合汽车充电桩磁芯的纳米晶带材,其特征在于:所述步骤S6中,非晶磁芯的宽度为4~10mm、内径为14~25mm、外径为18~28mm。
CN201910382780.3A 2019-05-09 2019-05-09 一种适合汽车充电桩磁芯的纳米晶带材及其制备方法 Active CN110257698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910382780.3A CN110257698B (zh) 2019-05-09 2019-05-09 一种适合汽车充电桩磁芯的纳米晶带材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910382780.3A CN110257698B (zh) 2019-05-09 2019-05-09 一种适合汽车充电桩磁芯的纳米晶带材及其制备方法

Publications (2)

Publication Number Publication Date
CN110257698A CN110257698A (zh) 2019-09-20
CN110257698B true CN110257698B (zh) 2022-12-13

Family

ID=67914416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910382780.3A Active CN110257698B (zh) 2019-05-09 2019-05-09 一种适合汽车充电桩磁芯的纳米晶带材及其制备方法

Country Status (1)

Country Link
CN (1) CN110257698B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114694908B (zh) * 2022-05-30 2023-11-24 天津三环奥纳科技有限公司 一种耐低温纳米晶软磁合金铁芯、制造方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787133B2 (ja) * 1989-02-02 1995-09-20 日立金属株式会社 Fe基微結晶軟磁性合金からなる巻磁心及びその製造方法
JP5182601B2 (ja) * 2006-01-04 2013-04-17 日立金属株式会社 非晶質合金薄帯、ナノ結晶軟磁性合金ならびにナノ結晶軟磁性合金からなる磁心
JP2008196006A (ja) * 2007-02-13 2008-08-28 Hitachi Metals Ltd Fe基ナノ結晶軟磁性合金、アモルファス合金薄帯およびFe基ナノ結晶軟磁性合金の製造方法並びに磁性部品
JP5339192B2 (ja) * 2008-03-31 2013-11-13 日立金属株式会社 非晶質合金薄帯、ナノ結晶軟磁性合金、磁心、ならびにナノ結晶軟磁性合金の製造方法
CN108570607B (zh) * 2018-04-27 2020-08-25 佛山市中研非晶科技股份有限公司 一种铁钴镍系抗直流纳米晶合金材料及其制备方法

Also Published As

Publication number Publication date
CN110257698A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN104485192B (zh) 一种铁基非晶纳米晶软磁合金及其制备方法
CN104962816B (zh) 一种极薄取向硅钢板及其短流程制造方法
CN101368246B (zh) 一种中薄板坯生产取向硅钢的方法
WO2011115120A1 (ja) 方向性電磁鋼板の製造方法
KR20150007360A (ko) 방향성 전자 강판의 제조 방법
CN105950992B (zh) 一种采用一次冷轧法制造的晶粒取向纯铁及方法
WO2011134178A1 (zh) 一种高性能钕铁硼永磁材料的制造方法
CN104451465B (zh) 一种用于工业生产的铁基非晶纳米晶软磁合金的制备方法
CN103805918A (zh) 一种高磁感取向硅钢及其生产方法
CN101914726B (zh) 一种低碳低硅高效无取向电工钢板及其生产方法
JP7324549B2 (ja) 強磁性方向性高ケイ素鋼極薄帯及びその製造方法
CN112375953A (zh) 一种Fe-Mn-Al-C-M多主元轻质高强合金及其制备方法
CN110257698B (zh) 一种适合汽车充电桩磁芯的纳米晶带材及其制备方法
Kernion et al. High induction, low loss FeCo-based nanocomposite alloys with reduced metalloid content
CN103882293A (zh) 无取向电工钢及其生产方法
JPS6250529B2 (zh)
CN105950979A (zh) 一种采用二次冷轧法制造的晶粒取向纯铁及方法
CN101824582B (zh) 采用多元抑制剂的取向电工钢板带及其生产方法
CN104538169B (zh) 一种钴基磁芯的制备方法
CN111549299A (zh) 一种铁基纳米晶软磁母合金的冶炼工艺
CN105702408B (zh) 一种纳米晶软磁材料的制备方法
CN108950434B (zh) 一种激磁功率小的铁基非晶带材及其制备方法
CN107845465B (zh) 一种耐腐蚀车用磁钢及其制备方法
CN105385937B (zh) 一种高磁感取向硅钢极薄带的减量化制备方法
CN112877613A (zh) 一种铁基非晶软磁合金及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20191227

Address after: 330000 in the starting area of Sanghai economic and Technological Development Zone, Nanchang City, Jiangxi Province

Applicant after: JIANGXI KAIRUIXIANG NANO TECHNOLOGY CO.,LTD.

Applicant after: FOSHAN HUAXIN MICROLITE METAL Co.,Ltd.

Address before: 528225 Building 3, 8D Industrial Avenue, District B, Shishan Industrial Park, Nanhai District, Foshan City, Guangdong Province

Applicant before: FOSHAN HUAXIN MICROLITE METAL Co.,Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220408

Address after: 528200 workshop 1, Heshengchang building, No. 8 "Bian Gang", Liudong village, muyuan, Shishan town, Nanhai District, Foshan City, Guangdong Province

Applicant after: FOSHAN HUAXIN MICROLITE METAL Co.,Ltd.

Address before: 330000 in the starting area of Sanghai economic and Technological Development Zone, Nanchang City, Jiangxi Province

Applicant before: JIANGXI KAIRUIXIANG NANO TECHNOLOGY CO.,LTD.

Applicant before: FOSHAN HUAXIN MICROLITE METAL Co.,Ltd.

GR01 Patent grant
GR01 Patent grant