CN110244768B - 基于切换系统的高超声速飞行器建模及抗饱和控制方法 - Google Patents

基于切换系统的高超声速飞行器建模及抗饱和控制方法 Download PDF

Info

Publication number
CN110244768B
CN110244768B CN201910657167.8A CN201910657167A CN110244768B CN 110244768 B CN110244768 B CN 110244768B CN 201910657167 A CN201910657167 A CN 201910657167A CN 110244768 B CN110244768 B CN 110244768B
Authority
CN
China
Prior art keywords
switching
equation
aircraft
invariant
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910657167.8A
Other languages
English (en)
Other versions
CN110244768A (zh
Inventor
刘田禾
张立宪
张瑞先
杨嘉楠
梁野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910657167.8A priority Critical patent/CN110244768B/zh
Publication of CN110244768A publication Critical patent/CN110244768A/zh
Application granted granted Critical
Publication of CN110244768B publication Critical patent/CN110244768B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提供了基于切换系统的高超声速飞行器建模及抗饱和控制方法,属于飞行器控制领域。由于高超声速飞行器具有强非线性、强耦合性,其飞行过程中的气动导数不仅与飞行器高度和速度的变化相关,还呈现出复杂的非线性变化特点。这使得以动力学模型为基础的控制方法很难在高超声速飞行器进行机动时始终保持稳定。本方法根据飞行器飞行包线划分区域,将飞行任务细分为多个模态,并建模为一种切换系统,可以在飞行器进行大范围、高速机动的情况下,通过切换控制实现对飞行参考轨迹的有效跟踪并确保飞行器在飞行过程中始终保持稳定。

Description

基于切换系统的高超声速飞行器建模及抗饱和控制方法
技术领域
本发明涉及基于切换系统的高超声速飞行器建模及抗饱和控制方法,属于飞行器控制领域。
背景技术
文献[1]中公开了一种基于半时间依赖Lyapunov函数的切换系统的异步控制方法。其方法是通过构建一类半时间依赖Lyapunov函数对异步持续驻留时间下的切换系统进行稳定性分析和控制器设计,该方法能够有效地降低控制器设计方面的保守性。其不足之处在于在设计控制器时未考虑抗饱和机制,因此在执行器饱和时,系统状态无法根据控制输入信号进行调整。
文献[2]中给出了一种基于凸包形式的切换系统抗饱和控制律。该方法给出了如何使用凸包的形式来计算切换系统的抗饱和控制律。其不足之处在于控制器保守性较高,可行解寻找困难,且该方法主要适用于离散时间系统而无法应用于连续时间系统。
[1],Tianhe Liu,Changhong Wang,Zeyang Fan,Hui Wang,Minghao Han.Semi-Time-Dependent Asynchronously Switched Control of Continuous-Time SwitchedSystems with P ersistent Dwell Time[C].43rd Annual Conference of the IEEE-Industrial-Electronics-Society,20 17:7563-7568.(EI收录号:20182005185689).
[2],王茂,樊友高,邱剑彬,等.饱和切换系统鲁棒H∞静态输出反馈控制[J].哈尔滨工业大学学报,2011,43(7):12–18.
发明内容
本发明的目的是为了解决上述现有技术存在的问题,进而提供一种基于切换系统的高超声速飞行器建模及抗饱和控制方法。
本发明的目的是通过以下技术方案实现的:
一种基于切换系统的高超声速飞行器建模及抗饱和控制方法,所述基于切换系统的高超声速飞行器建模及抗饱和控制方法具体步骤为:
步骤一:建立高超声速飞行器的纵向动力学模型;
纵向动力学模型可由下式给出:
Figure BDA0002137201370000021
其中,V为飞行器速度,h为飞行器高度,α为攻角,θ为俯仰角,Q为俯仰角速率,ηi为机身弹性模态,T、D和L分别为推力、阻力和升力,Myy为俯仰力矩,Iyy为俯仰转动惯量,ξi和ωi均为与弹性模态相关系数,Ni为广义力,m为飞行器质量,g为重力加速度;
式(1)中的T、D、L、Myy和Ni可通过下式进行拟合:
Figure BDA0002137201370000022
其中,Φ为超燃冲压发动机燃量比,δe为升降舵偏角,δc为鸭翼偏角,
Figure BDA0002137201370000023
为动压, Ma为马赫数,zT为飞行器重心到发动机推力线的距离,S为飞行器参考面积,
Figure BDA0002137201370000024
为气动弦长,Δτ1和Δτ2分别为飞行器前部转角和后部顶角,Ad为扩压器面积比,CT,Φ和CT为与推力相关的拟合系数,CD为与阻力相关的拟合系数,CL为与升力相关的拟合系数, CM为与俯仰力矩相关的拟合系数;
式(2)中的拟合系数可由下式给出:
Figure BDA0002137201370000031
在步骤一中给出的动力学模型中,共包括五个刚体变量:V、h、α、θ、Q,六个弹性变量:ηi
Figure BDA0002137201370000032
i∈{1,2,3};系统控制输入为:Φ、δe、δc
步骤二:建立高超声速飞行器的非线性刚体动力学模型;
引入二阶动态环节:
Figure BDA0002137201370000033
其中,Φ为超燃冲压发动机燃量比,Φc为超燃冲压发动机的控制量,ξΦ和ωΦ分别为二阶动态中的常数,且有0<ξΦ<1,ωΦ>0,则可将式(1)改写为如下的刚体动力学模型:
Figure BDA0002137201370000034
为了简化计算流程,进一步忽略拟合多项式中的高阶小量以及飞行器转角和顶角的影响,则式(2)与式(3)可分别改写如下:
Figure BDA0002137201370000035
Figure BDA0002137201370000041
在步骤二中给出的刚体动力学模型中,状态变量为:V、h、α、θ、Q、Φ、Ψ,系统控制输入为:Φ、δe、δc
步骤三:对非线性刚体动力学模型进行线性化,得到线性控制系统模型;
结合式(5)、(6)和(7),可以得到非线性控制系统的标准形式如下:
Figure BDA0002137201370000042
其中,状态变量为:V、h、α、θ、Q、Φ、Ψ,系统控制输入为:Φ、δe、δc,系统输出为y,Vref和href分别为速度和高度的参考轨迹;系统矩阵f(x(t))和g(x(t)) 有如下表达:
Figure BDA0002137201370000043
Figure BDA0002137201370000051
选取平衡点xeq=[Veq,heqeqeq,Qeqeqeq]T,并定义
Figure BDA0002137201370000052
可以得到线性系统模型:
Figure BDA0002137201370000053
其中,
Figure BDA0002137201370000054
B=g(xeq);
步骤四:对高超声速飞行器飞行包线进行分区,得到高超声速飞行器的切换线性系统模型;
设定的飞行包线根据飞行器的速度和动压划分成了九个区域,得到切换律如下:
σ(t)=i,(V,h)∈Ai (10)
对区域内的动压计算可使用下式:
Figure BDA0002137201370000055
其中,ρ0=6.7429×10-5slug/ft3,h0=8.5000×104ft,hs=2.1358×104ft;
结合式(10)中的切换信号,可以得到高超声速飞行器面向控制的切换非线性系统模型如下:
Figure BDA0002137201370000061
根据步骤三中提出的方法,将式(12)线性化,可以得到高超声速的切换线性系统模型如下:
Figure BDA0002137201370000062
其中,
Figure BDA0002137201370000063
B=g(xeq,σ(t))。
步骤五:给出切换系统相关符号;
其他切换系统相关符号:
(1)
Figure BDA0002137201370000064
代表在区间
Figure BDA0002137201370000065
内的切换次数,其中,
Figure BDA0002137201370000066
为第p个阶段内的第a次切换,tp为进入第p个阶段的瞬间,即tp
Figure BDA0002137201370000067
是等价的;为了排除Zeno效应,即有限时间内进行无限多次切换,定义T部内的切换次数上限为Qmax
(2)
Figure BDA0002137201370000068
Figure BDA0002137201370000069
分别为区间
Figure BDA00021372013700000610
上Lyapunov函数上升和下降的时间集;
(3)
Figure BDA00021372013700000611
为切换信号最大异步时滞;
(4)α和β分别为Lyapunov函数下降和上述速率;
(5)μ为系统切换时Lyapunov函数的跳变率;
步骤六:基于N步不变集的概念,给出Lyapunov函数;
对于给定的正定矩阵P,其相应的椭球可写为ε(P)={x(t)∈Rn:xT(t)Px(t)≤1};
N步不变集的定义:
若从椭球ε(P0)={x(t)∈Rn:xT(t)P0x(t)≤1}中出发的所有状态轨迹在N步内都会进入一个收缩不变的椭球ε(PN)={x(t)∈Rn:xT(t)PNx(t)≤1},则称ε(P0)为N步不变椭球,将每一步所得的不变椭球用一组凸包函数拟合,所得到的凸组合称为N步不变集;
基于N步不变集的概念,二次型Lyapunov函数的表达式为:
Vi(x(t),t)=xT(t)Pi(t)x(t)=xT(t)Pi(qt)x(t) (14)
其中,
Figure BDA0002137201370000071
r为正实数,qt为N步不变集的调度参数,取值方式如下:
Figure BDA0002137201370000072
步骤七:基于N步不变集的概念,给出抗饱和反馈控制律基于凸包形式的表达形式,并对受到持续驻留时间信号约束的切换饱和控制系统的稳定性进行证明;
带有执行器饱和的切换系统的表达式为:
Figure BDA0002137201370000073
其中,x(t)为系统状态;u(t)为控制输入;σ(t)为切换信号,从有限集合
Figure BDA0002137201370000074
中取值,其中L为子系统数量;sat(u(t))为标准饱和控制输入,则标准饱和控制输入的形式为:
Figure BDA0002137201370000075
状态反馈控制器的表达式为:
ui(t)=Kix(t) (18)
其中,Ki∈Rm×n
为给出基于N步不变集的抗饱和反馈控制律,定义对称多面体为:
Figure BDA0002137201370000076
其中,ki,j为Ki的第j行;
定义矩阵E:
令V为m×m维的对角矩阵集,其对角线元素为0或1,V中有2m个元素,记V中元素为Ej,j∈[1,2m],并定义
Figure BDA0002137201370000077
Figure BDA0002137201370000078
同样是V中的元素;
抗饱和控制律基于凸包形式的表达式为:
引理1:给定矩阵Ki,Hi∈Rm×n,对于任意x(t)∈Rn,如果有x(t)∈L(Hi),
Figure BDA0002137201370000082
则有:
Figure BDA0002137201370000083
其中,l∈[1,2m],
Figure BDA0002137201370000084
co表示凸包,则sat(Kix(t))可写为:
Figure BDA0002137201370000085
且有
Figure BDA0002137201370000086
切换系统式(16)的稳定性判据如下:
引理2:对于切换系统式(16),令α>0,β>0,μ>1,r>0为已知常数,对于预先给定的持续周期T,若存在矩阵
Figure BDA0002137201370000087
使得
Figure BDA0002137201370000088
l∈[1,2m],下列不等式成立:
Figure BDA0002137201370000089
Figure BDA00021372013700000810
Figure BDA00021372013700000811
Figure BDA00021372013700000812
Pi(t)-μPj(t)≤0,σ(t)=i,σ(t-)=j (26)
其中,
Figure BDA00021372013700000813
Zi,l(qt)为Zi(qt)的第l行,则受到满足
Figure BDA00021372013700000814
的持续驻留时间信号约束时,切换系统式(16)是全局一致渐进稳定,ε(Pi(0))为N步收缩不变椭球,即从ε(Pi(0))中出发的所有状态轨迹均在Nt内进入收缩不变椭球ε(Pi(Nt));
受到持续驻留时间信号约束的切换饱和控制系统的稳定性证明:
令Hi(qt)=Zi(qt)Pi(qt),则根据式(22)可得:
Figure BDA00021372013700000815
根据引理1,有:
Figure BDA00021372013700000816
切换系统式(16)可改写为:
Figure BDA0002137201370000091
对于形如式(14)的Lyapunov函数,令
Figure BDA0002137201370000092
由式(23)、(24) 可得:
Figure BDA0002137201370000093
由式(25)可得:
Figure BDA0002137201370000094
根据引理1和引理2可知当持续驻留时间信号满足式(27)时,切换系统式(16)是全局一致渐进稳定的,由N步收缩不变椭球定义可知,ε(Pi(0))为包含在吸引域内的N步不变椭球;
步骤八:根据步骤四给出的切换系统模型及步骤七给出的抗饱和反馈控制律,设计高超声速飞行器切换抗饱和控制器;
在步骤七的基础上,给出高超声速飞行器切换抗饱和控制器的设计方法如下:
定理1:对于切换系统式(16),令α>0,β>0,μ>1,r>0为已知常数,对于预先给定的持续周期T,若存在矩阵
Figure BDA0002137201370000095
Zi(qt),Yi,使得
Figure BDA0002137201370000096
l∈[1,2m],下列不等式成立:
Figure BDA0002137201370000097
Figure BDA0002137201370000098
Figure BDA0002137201370000099
Qj(qt)-μQi(qt)≤0,σ(t)=i,σ(t-)=j (36)
则受到满足式(27)的持续驻留时间信号约束时,切换系统式(16)是全局一致渐进稳定的,若式(33)-(36)有可行解,则控制器增益可由下式给出:
Figure BDA00021372013700000910
Figure BDA00021372013700000911
为N步收缩不变椭球,即从
Figure BDA00021372013700000912
中出发的所有状态轨迹均在Nt内进入收缩不变椭球
Figure BDA00021372013700000913
定理1的证明:由于Qi(qt)为正定矩阵,则有
Figure BDA00021372013700000914
则有
Figure BDA00021372013700000915
因此,由式(33)可得:
Figure BDA0002137201370000101
Figure BDA0002137201370000102
则由式(38)可得:
Figure BDA0002137201370000103
因此,根据引理1可得:
Figure BDA0002137201370000104
切换系统(16)可改写为:
Figure BDA0002137201370000105
由式(34)可得:
Figure BDA0002137201370000106
在式(42)左端前后分别乘以
Figure BDA0002137201370000107
可得:
Figure BDA0002137201370000108
同理,由式(35)可得:
Figure BDA0002137201370000109
引理2中的式(23)-(25)成立,由式(36)可得引理2中的式(26)成立,根据引理2,可以得出受到满足式(27)的持续驻留时间信号约束时,切换系统(16)是全局一致渐进稳定的,若式(33)-(36)有可行解,则控制器增益可由式(37)给出,ε(Pi(0))为N步收缩不变椭球,即从ε(Pi(0))中出发的所有状态轨迹均在Nt内进入收缩不变椭球ε(Pi(Nt))。
本发明一种基于切换系统的高超声速飞行器建模及抗饱和控制方法,所述步骤七中持续驻留时间信号定义为:
对于切换信号σ和切换时刻t0,t1,…ts,…,其中t0=0,若存在无限多个长度不小于τ的不相交区间,在区间内σ为常值,且带有该性质的两个相邻区间间隔不超过T,则称τ为持续驻留时间,称T为持续周期。
本发明基于切换系统的高超声速飞行器建模及抗饱和控制方法,根据飞行器飞行包线划分区域,将飞行任务细分为多个模态,并建模为一种切换系统,可以在飞行器进行大范围、高速机动的情况下,通过切换控制实现对飞行参考轨迹的有效跟踪并确保飞行器在飞行过程中始终保持稳定。
附图说明
图1为高超声速飞行器切换系统建模方法示例。
图2为高超声速飞行器切换抗饱和控制器设计框图。
图3为基于高超声速飞行器的飞行包线分区示例图。
图4为持续驻留时间图解。
图5为飞行轨迹误差对比图。
图6为高超声速飞行器飞行速度误差对比。
图7为高超声速飞行器飞行高度误差对比。
具体实施方式
下面将结合附图对本发明做进一步的详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述实施例。
实施例一:如图1-7所示,本实施例所涉及的一种基于切换系统的高超声速飞行器建模及抗饱和控制方法,基于切换系统的高超声速飞行器建模及抗饱和控制方法包括以下步骤:
步骤一:建立高超声速飞行器的纵向动力学模型。
该纵向动力学模型可由下式给出:
Figure BDA0002137201370000111
其中,V为飞行器速度;h为飞行器高度;α为攻角;θ为俯仰角;Q为俯仰角速率;ηi为机身弹性模态;T、D和L分别为推力、阻力和升力;Myy为俯仰力矩;Iyy为俯仰转动惯量;ξi和ωi均为与弹性模态相关系数;Ni为广义力;m为飞行器质量;g为重力加速度。
式(1)中的T、D、L、Myy和Ni可通过下式进行拟合:
Figure BDA0002137201370000121
其中,Φ为超燃冲压发动机燃量比;δe为升降舵偏角;δc为鸭翼偏角;
Figure BDA0002137201370000122
为动压; Ma为马赫数;zT为飞行器重心到发动机推力线的距离;S为飞行器参考面积;
Figure BDA0002137201370000123
为气动弦长;Δτ1和Δτ2分别为飞行器前部转角和后部顶角;Ad为扩压器面积比;CT,Φ和CT为与推力相关的拟合系数;CD为与阻力相关的拟合系数;CL为与升力相关的拟合系数; CM为与俯仰力矩相关的拟合系数。
式(2)中的拟合系数可由下式给出:
Figure BDA0002137201370000124
在步骤一中给出的动力学模型中,共包括五个刚体变量:V、h、α、θ、Q,六个弹性变量:ηi
Figure BDA0002137201370000125
i∈{1,2,3};系统控制输入为:Φ、δe、δc
步骤二:建立高超声速飞行器的非线性刚体动力学模型。
考虑到飞行的弹性模态对刚体运动的影响较为有限,在此忽略弹性模变带来的影响。同时,为进一步模拟发动机内燃料燃烧过程,引入二阶动态环节如下:
Figure BDA0002137201370000126
其中,Φ为超燃冲压发动机燃量比,Φc为超燃冲压发动机的控制量,ξΦ和ωΦ分别为二阶动态中的常数,且有0<ξΦ<1,ωΦ>0。则可将式(1)改写为如下的刚体动力学模型:
Figure BDA0002137201370000131
为了简化计算流程,进一步忽略拟合多项式中的高阶小量以及飞行器转角和顶角的影响。则式(2)与式(3)可分别改写如下:
Figure BDA0002137201370000132
Figure BDA0002137201370000133
在步骤二中给出的刚体动力学模型中,状态变量为:V、h、α、θ、Q、Φ、Ψ,系统控制输入为:Φ、δe、δc
步骤三:对非线性刚体动力学模型进行线性化,得到线性控制系统模型。
由于步骤二中给出的刚体动力学模型带有很强的非线性以及系统状态和控制输入间的耦合,难以直接用于控制器设计,因此需要进一步对模型线性化。
结合式(5)、(6)、(7),可以得到非线性控制系统的标准形式如下:
Figure BDA0002137201370000134
其中,状态变量为:V、h、α、θ、Q、Φ、Ψ,系统控制输入为:Φ、δe、δc,系统输出为y,Vref和href分别为速度和高度的参考轨迹。系统矩阵f(x(t))和g(x(t)) 有如下表达:
Figure BDA0002137201370000141
Figure BDA0002137201370000142
选取平衡点xeq=[Veq,heqeqeq,Qeqeqeq]T,并定义
Figure BDA0002137201370000143
可以得到线性系统模型:
Figure BDA0002137201370000144
其中,
Figure BDA0002137201370000145
B=g(xeq)。
步骤四:对高超声速飞行器飞行包线进行分区,得到高超声速飞行器的切换线性系统模型。
图3是高超声速飞行器的飞行包线分区示例。可以看到,设定的飞行包线根据飞行器的速度和动压划分成了九个区域。可以得到切换律如下:
σ(t)=i,(V,h)∈Ai (54)
对区域内的动压计算可使用下式:
Figure BDA0002137201370000146
其中,ρ0=6.7429×10-5slug/ft3,h0=8.5000×104ft,hs=2.1358×104ft。
结合式(10)中的切换信号,可以得到高超声速飞行器面向控制的切换非线性系统模型如下:
Figure BDA0002137201370000151
根据步骤三中提出的方法,将式(12)线性化,可以得到高超声速的切换线性系统模型如下:
Figure BDA0002137201370000152
其中,
Figure BDA0002137201370000153
B=g(xeq,σ(t))。
步骤五:给出持续驻留时间信号定义以及切换系统相关符号。
持续驻留时间信号定义如下:
考虑切换信号σ和切换时刻t0,t1,…ts,…,其中t0=0。若存在无限多个长度不小于τ的不相交区间,在区间内σ为常值,且带有该性质的两个相邻区间间隔不超过T,则称τ为持续驻留时间,称T为持续周期。
图4为持续驻留时间信号图解。可以看出,持续驻留时间可以视为一类将时间轴分割为无限多个连续的切换阶段的切换信号。每个切换阶段均包含两个部分:τ部和T部。其中,τ部内持续时间不小于τ且子系统模态保持为常值;T部需确保其持续时间需不大于持续周期T,而对其内部子系统切换序列方面不做要求。
其他切换系统相关符号如下:
1.
Figure BDA0002137201370000154
代表在区间
Figure BDA0002137201370000155
内的切换次数,其中,
Figure BDA0002137201370000156
为第p个阶段内的第a次切换。需要说明的是,tp为进入第p个阶段的瞬间,即tp
Figure BDA0002137201370000157
是等价的。为了排除Zeno效应(即有限时间内进行无限多次切换),定义T部内的切换次数上限为Qmax
2.
Figure BDA0002137201370000158
Figure BDA0002137201370000159
分别为区间
Figure BDA00021372013700001510
上Lyapunov函数上升和下降的时间集。
3.
Figure BDA00021372013700001511
为切换信号最大异步时滞。
4.α和β分别为Lyapunov函数下降和上述速率。
5.μ为系统切换时Lyapunov函数的跳变率。
步骤六:基于N步不变集的概念,给出Lyapunov函数。
对于给定的正定矩阵P,其相应的椭球可写为ε(P)={x(t)∈Rn:xT(t)Px(t)≤1}。则N 步不变集的定义如下:
若从椭球ε(P0)={x(t)∈Rn:xT(t)P0x(t)≤1}中出发的所有状态轨迹在N步内都会进入一个收缩不变的椭球ε(PN)={x(t)∈Rn:xT(t)PNx(t)≤1},则称ε(P0)为N步不变椭球,将每一步所得的不变椭球用一组凸包函数拟合,所得到的凸组合称为N步不变集。
考虑一类具有如下形式的二次型Lyapunov函数:
Vi(x(t),t)=xT(t)Pi(t)x(t)=xT(t)Pi(qt)x(t) (58)
其中,
Figure BDA0002137201370000161
r为正实数,qt为N步不变集的调度参数,取值方式如下:
Figure BDA0002137201370000162
步骤七:基于N步不变集的概念,给出带有执行器饱和的切换系统模型及抗饱和反馈控制律基于凸包形式的表达形式并对系统稳定性进行证明,并确定持续驻留时间。
考虑带有执行器饱和的切换系统:
Figure BDA0002137201370000163
其中,x(t)为系统状态;u(t)为控制输入;σ(t)为切换信号,从有限集合
Figure BDA0002137201370000164
中取值,其中L为子系统数量;sat(u(t))为标准饱和控制输入,其形式如下:
Figure BDA0002137201370000165
考虑一类状态反馈控制器:
ui(t)=Kix(t) (62)
其中,Ki∈Rm×n
为给出基于N步不变集的抗饱和反馈控制律,定义对称多面体如下:
Figure BDA0002137201370000166
其中,ki,j为Ki的第j行。
令V为m×m维的对角矩阵集,其对角线元素为0或1。显然,V中有2m个元素。记V 中元素为Ej,j∈[1,2m],并定义
Figure BDA0002137201370000167
显然,
Figure BDA0002137201370000168
同样是V中的元素。
下面给出抗饱和控制律基于凸包形式的表达如下:
引理1:给定矩阵Ki,Hi∈Rm×n,对于任意x(t)∈Rn,如果有x(t)∈L(Hi),
Figure BDA0002137201370000169
则有:
Figure BDA00021372013700001610
其中,l∈[1,2m],
Figure BDA00021372013700001611
co表示凸包。则sat(Kix(t))可写为:
Figure BDA00021372013700001612
且有
Figure BDA00021372013700001613
该引理的证明见文献[2]
切换系统(16)的稳定性判据如下:
引理2:考虑切换系统(16),令α>0,β>0,μ>1,r>0为已知常数。对于预先给定的持续周期T,若存在矩阵
Figure BDA0002137201370000171
Zi(qt),使得
Figure BDA0002137201370000172
l∈[1,2m],下列不等式成立:
Figure BDA0002137201370000173
Figure BDA0002137201370000174
Figure BDA0002137201370000175
Figure BDA0002137201370000176
Pi(t)-μPj(t)≤0,σ(t)=i,σ(t-)=j (70)
其中,
Figure BDA0002137201370000177
Zil(qt)为Zi(qt)的第l行。则受到满足
Figure BDA0002137201370000178
的持续驻留时间信号约束时,切换系统(16)是全局一致渐进稳定的。此外,ε(Pi(0))为N步收缩不变椭球,即从ε(Pi(0))中出发的所有状态轨迹均在Nt内进入收缩不变椭球ε(Pi(Nt))。
证明:令Hi(qt)=Zi(qt)Pi(qt),则根据式(22)可得:
Figure BDA0002137201370000179
根据引理1,有:
Figure BDA00021372013700001710
切换系统(16)可改写为:
Figure BDA00021372013700001711
考虑形如式(14)的Lyapunov函数。令
Figure BDA00021372013700001712
由式(23)、(24) 可得:
Figure BDA00021372013700001713
由式(25)可得:
Figure BDA00021372013700001714
根据文献[1]中的引理1和引理2可知当持续驻留时间信号满足式(27)时,切换系统(16) 是全局一致渐进稳定的。由N步收缩不变椭球定义可知,ε(Pi(0))为包含在吸引域内的N步不变椭球。证毕。
步骤八:根据步骤四给出的切换系统模型及步骤七给出的抗饱和反馈控制律,设计高超声速飞行器切换抗饱和控制器。
在步骤七的基础上,给出高超声速飞行器切换抗饱和控制器的设计方法如下:
定理1:考虑切换系统(16),令α>0,β>0,μ>1,r>0为已知常数。对于预先给定的持续周期T,若存在矩阵
Figure BDA00021372013700001715
Zi(qt),Yi,使得
Figure BDA00021372013700001716
l∈[1,2m],下列不等式成立:
Figure BDA00021372013700001717
Figure BDA00021372013700001718
Figure BDA0002137201370000181
Qj(qt)-μQi(qt)≤0,σ(t)=i,σ(t-)=j (80)
则受到满足式(27)的持续驻留时间信号约束时,切换系统(16)是全局一致渐进稳定的。若式(33)-(36)有可行解,则控制器增益可由下式给出:
Figure BDA0002137201370000182
此外,
Figure BDA0002137201370000183
为N步收缩不变椭球,即从
Figure BDA0002137201370000184
中出发的所有状态轨迹均在Nt内进入收缩不变椭球
Figure BDA0002137201370000185
证明:由于Qi(qt)为正定矩阵,则有
Figure BDA0002137201370000186
则有
Figure BDA0002137201370000187
因此,由式(33)可得:
Figure BDA0002137201370000188
Figure BDA0002137201370000189
则由式(38)可得:
Figure BDA00021372013700001810
因此,根据引理1可得:
Figure BDA00021372013700001811
切换系统(16)可改写为:
Figure BDA00021372013700001812
由式(34)可得:
Figure BDA00021372013700001813
在式(42)左端前后分别乘以
Figure BDA00021372013700001814
可得:
Figure BDA00021372013700001815
同理,由式(35)可得:
Figure BDA00021372013700001816
可以看出,引理2中的式(23)-(25)成立。此外,由式(36)可得引理2中的式(26)成立。根据引理2,可以得出受到满足式(27)的持续驻留时间信号约束时,切换系统(16)是全局一致渐进稳定的。若式(33)-(36)有可行解,则控制器增益可由式(37)给出。此外,ε(Pi(0))为N 步收缩不变椭球,即从ε(Pi(0))中出发的所有状态轨迹均在Nt内进入收缩不变椭球ε(Pi(Nt))。证毕。
步骤一到步骤四为高超声速飞行器的切换系统模型设计;步骤五、六都是为了后续控制器设计做的准备工作,包括证明过程中使用的符号和符号对应的概念;步骤七给出的是抗饱和控制器的系统稳定性条件,为了说明在达到什么样的条件下,系统才能是稳定的;步骤八给出的是控制器的设计方法。
由于高超声速飞行器的飞行空域跨度很大,其高度、速度、动压的变化都非常剧烈并呈现复杂的非线性函数关系。同时,高超声速飞行器的飞行运动通道之间存在着强耦合特性,导致其飞行过程中的气动导数不仅与飞行器高度和速度的变化相关,还呈现出复杂的非线性变化特点。这使得以动力学模型为基础的控制方法很难在高超声速飞行器进行机动时始终保持稳定。为解决这一问题,本发明提出一种基于切换系统的高超声速飞行器建模及抗饱和控制方法。根据飞行器飞行包线划分区域,将飞行任务细分为多个模态,并建模为一种切换系统,可以在飞行器进行大范围、高速机动的情况下,通过切换控制实现对飞行参考轨迹的有效跟踪并确保飞行器在飞行过程中始终保持稳定。
图5给出了切换控制器和非切换控制器得到的飞行轨迹与参考轨迹之间的误差。可以看出,非切换控制器给出的飞行轨迹与参考轨迹之间存在明显偏差,而通过切换控制器得到的飞行轨迹与参考轨迹间的偏差较小。
图6和图7分别给出了飞行器在不同控制器下的飞行速度误差和高度误差随时间的变化曲线。非切换控制器的最大速度跟踪误差可达422ft/s,最大高度跟踪误差可达1898ft,而切换控制器的速度和高度跟踪误差仅为64.8ft/s和445ft。
以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (2)

1.基于切换系统的高超声速飞行器建模及抗饱和控制方法,其特征在于,所述基于切换系统的高超声速飞行器建模及抗饱和控制方法具体步骤为:
步骤一:建立高超声速飞行器的纵向动力学模型;
纵向动力学模型可由下式给出:
Figure FDA0002137201360000011
其中,V为飞行器速度,h为飞行器高度,α为攻角,θ为俯仰角,Q为俯仰角速率,ηi为机身弹性模态,T、D和L分别为推力、阻力和升力,Myy为俯仰力矩,Iyy为俯仰转动惯量,ξi和ωi均为与弹性模态相关系数,Ni为广义力,m为飞行器质量,g为重力加速度;
式(1)中的T、D、L、Myy和Ni可通过下式进行拟合:
Figure FDA0002137201360000012
其中,Φ为超燃冲压发动机燃量比,δe为升降舵偏角,δc为鸭翼偏角,
Figure FDA0002137201360000013
为动压,Ma为马赫数,zT为飞行器重心到发动机推力线的距离,S为飞行器参考面积,
Figure FDA0002137201360000014
为气动弦长,Δτ1和Δτ2分别为飞行器前部转角和后部顶角,Ad为扩压器面积比,CT,Φ和CT为与推力相关的拟合系数,CD为与阻力相关的拟合系数,CL为与升力相关的拟合系数,CM为与俯仰力矩相关的拟合系数;
式(2)中的拟合系数可由下式给出:
Figure FDA0002137201360000021
在步骤一中给出的动力学模型中,共包括五个刚体变量:V、h、α、θ、Q六个弹性变量:ηi
Figure FDA0002137201360000022
系统控制输入为:Φ、δe、δc
步骤二:建立高超声速飞行器的非线性刚体动力学模型;
引入二阶动态环节:
Figure FDA0002137201360000023
其中,Φ为超燃冲压发动机燃量比,Φc为超燃冲压发动机的控制量,ξΦ和ωΦ分别为二阶动态中的常数,且有0<ξΦ<1,ωΦ>0,则可将式(1)改写为如下的刚体动力学模型:
Figure FDA0002137201360000024
为了简化计算流程,进一步忽略拟合多项式中的高阶小量以及飞行器转角和顶角的影响,则式(2)与式(3)可分别改写如下:
Figure FDA0002137201360000025
Figure FDA0002137201360000031
在步骤二中给出的刚体动力学模型中,状态变量为:V、h、α、θ、Q、Φ、Ψ,系统控制输入为:Φ、δe、δc
步骤三:对非线性刚体动力学模型进行线性化,得到线性控制系统模型;
结合式(5)、(6)和(7),可以得到非线性控制系统的标准形式如下:
Figure FDA0002137201360000032
其中,状态变量为:V、h、α、θ、Q、Φ、Ψ,系统控制输入为:Φ、δe、δc,系统输出为y,Vref和href分别为速度和高度的参考轨迹;系统矩阵f(x(t))和g(x(t))有如下表达:
Figure FDA0002137201360000033
Figure FDA0002137201360000041
选取平衡点xeq=[Veq,heqeqeq,Qeqeqeq]T,并定义
Figure FDA0002137201360000042
可以得到线性系统模型:
Figure FDA0002137201360000043
其中,
Figure FDA0002137201360000044
B=g(xeq);
步骤四:对高超声速飞行器飞行包线进行分区,得到高超声速飞行器的切换线性系统模型;
设定的飞行包线根据飞行器的速度和动压划分成了九个区域,得到切换律如下:
σ(t)=i,(V,h)∈Ai (10)
对区域内的动压计算可使用下式:
Figure FDA0002137201360000045
其中,ρ0=6.7429×10-5slug/ft3,h0=8.5000×104ft,hs=2.1358×104ft;
结合式(10)中的切换信号,可以得到高超声速飞行器面向控制的切换非线性系统模型如下:
Figure FDA0002137201360000051
根据步骤三中提出的方法,将式(12)线性化,可以得到高超声速的切换线性系统模型如下:
Figure FDA0002137201360000052
其中,
Figure FDA0002137201360000053
B=g(xeq,σ(t));
步骤五:给出切换系统相关符号;
其他切换系统相关符号:
(1)
Figure FDA0002137201360000054
代表在区间
Figure FDA0002137201360000055
内的切换次数,其中,
Figure FDA0002137201360000056
为第p个阶段内的第a次切换,tp为进入第p个阶段的瞬间,即tp
Figure FDA0002137201360000057
是等价的;为了排除Zeno效应,即有限时间内进行无限多次切换,定义T部内的切换次数上限为Qmax
(2)
Figure FDA0002137201360000058
Figure FDA0002137201360000059
分别为区间
Figure FDA00021372013600000510
上Lyapunov函数上升和下降的时间集;
(3)
Figure FDA00021372013600000511
为切换信号最大异步时滞;
(4)α和β分别为Lyapunov函数下降和上述速率;
(5)μ为系统切换时Lyapunov函数的跳变率;
步骤六:基于N步不变集的概念,给出Lyapunov函数;
对于给定的正定矩阵P,其相应的椭球可写为ε(P)={x(t)∈Rn:xT(t)Px(t)≤1};
N步不变集的定义:
若从椭球ε(P0)={x(t)∈Rn:xT(t)P0x(t)≤1}中出发的所有状态轨迹在N步内都会进入一个收缩不变的椭球
Figure FDA0002137201360000069
则称ε(P0)为N步不变椭球,将每一步所得的不变椭球用一组凸包函数拟合,所得到的凸组合称为N步不变集;
基于N步不变集的概念,二次型Lyapunov函数的表达式为:
Vi(x(t),t)=xT(t)Pi(t)x(t)=xT(t)Pi(qt)x(t) (14)
其中,
Figure FDA0002137201360000061
r为正实数,qt为N步不变集的调度参数,取值方式如下:
Figure FDA0002137201360000062
步骤七:基于N步不变集的概念,给出抗饱和反馈控制律基于凸包形式的表达形式,并对受到持续驻留时间信号约束的切换饱和控制系统的稳定性进行证明;
带有执行器饱和的切换系统的表达式为:
Figure FDA0002137201360000063
其中,x(t)为系统状态;u(t)为控制输入;σ(t)为切换信号,从有限集合
Figure FDA0002137201360000068
中取值,其中L为子系统数量;sat(u(t))为标准饱和控制输入,则标准饱和控制输入的形式为:
Figure FDA0002137201360000064
状态反馈控制器的表达式为:
ui(t)=Kix(t) (18)
其中,Ki∈Rm×n
为给出基于N步不变集的抗饱和反馈控制律,定义对称多面体为:
Figure FDA0002137201360000065
其中,ki,j为Ki的第j行;
定义矩阵E:
令V为m×m维的对角矩阵集,其对角线元素为0或1,V中有2m个元素,记V中元素为Ej,j∈[1,2m],并定义
Figure FDA0002137201360000066
Figure FDA0002137201360000067
同样是V中的元素;
抗饱和控制律基于凸包形式的表达式为:
引理1:给定矩阵Ki,Hi∈Rm×n,对于任意x(t)∈Rn,如果有x(t)∈L (Hi),
Figure FDA0002137201360000071
则有:
Figure FDA00021372013600000715
其中,
Figure FDA00021372013600000716
co表示凸包,则sat(Kix(t))可写为:
Figure FDA0002137201360000072
且有
Figure FDA0002137201360000073
切换系统式(16)的稳定性判据如下:
引理2:对于切换系统式(16),令α>0,β>0,μ>1,r>0为已知常数,对于预先给定的持续周期T,若存在矩阵
Figure FDA0002137201360000074
Zi(qt),使得
Figure FDA0002137201360000075
l∈[1,2m],下列不等式成立:
Figure FDA0002137201360000076
Figure FDA0002137201360000077
Figure FDA0002137201360000078
Figure FDA0002137201360000079
Pi(t)-μPj(t)≤0,σ(t)=i,σ(t-)=j (26)
其中,
Figure FDA00021372013600000710
Zi,l(qt)为Zi(qt)的第l行,则受到满足
Figure FDA00021372013600000711
的持续驻留时间信号约束时,切换系统式(16)是全局一致渐进稳定,ε(Pi(0))为N步收缩不变椭球,即从ε(Pi(0))中出发的所有状态轨迹均在Nt内进入收缩不变椭球ε(Pi(Nt));
受到持续驻留时间信号约束的切换饱和控制系统的稳定性证明:
令Hi(qt)=Zi(qt)Pi(qt),则根据式(22)可得:
Figure FDA00021372013600000712
根据引理1,有:
Figure FDA00021372013600000713
切换系统式(16)可改写为:
Figure FDA0002137201360000081
对于形如式(14)的Lyapunov函数,令
Figure FDA0002137201360000082
由式(23)、(24)可得:
Figure FDA0002137201360000083
由式(25)可得:
Figure FDA0002137201360000084
根据引理1和引理2可知当持续驻留时间信号满足式(27)时,切换系统式(16)是全局一致渐进稳定的,由N步收缩不变椭球定义可知,ε(Pi(0))为包含在吸引域内的N步不变椭球;
步骤八:根据步骤四给出的切换系统模型及步骤七给出的抗饱和反馈控制律,设计高超声速飞行器切换抗饱和控制器;
在步骤七的基础上,给出高超声速飞行器切换抗饱和控制器的设计方法如下:
定理1:对于切换系统式(16),令α>0,β>0,μ>1,r>0为已知常数,对于预先给定的持续周期T,若存在矩阵
Figure FDA0002137201360000085
Zi(qt),Yi,使得
Figure FDA0002137201360000086
l∈[1,2m],下列不等式成立:
Figure FDA0002137201360000087
Figure FDA0002137201360000088
Figure FDA0002137201360000089
Qj(qt)-μQi(qt)≤0,σ(t)=i,σ(t-)=j (36)
当受到满足式(27)的持续驻留时间信号约束时,切换系统式(16)是全局一致渐进稳定的,若式(33)-(36)有可行解,则控制器增益可由下式给出:
Figure FDA00021372013600000810
Figure FDA00021372013600000811
为N步收缩不变椭球,即从
Figure FDA00021372013600000812
中出发的所有状态轨迹均在Nt内进入收缩不变椭球
Figure FDA00021372013600000813
定理1的证明:由于Qi(qt)为正定矩阵,则有
Figure FDA00021372013600000814
则有
Figure FDA00021372013600000815
因此,由式(33)可得:
Figure FDA0002137201360000091
Figure FDA0002137201360000092
则由式(38)可得:
Figure FDA0002137201360000093
因此,根据引理1可得:
Figure FDA0002137201360000094
切换系统(16)可改写为:
Figure FDA0002137201360000095
由式(34)可得:
Figure FDA0002137201360000096
在式(42)左端前后分别乘以
Figure FDA0002137201360000097
可得:
Figure FDA0002137201360000098
同理,由式(35)可得:
Figure FDA0002137201360000099
引理2中的式(23)-(25)成立,由式(36)可得引理2中的式(26)成立,根据引理2,可以得出受到满足式(27)的持续驻留时间信号约束时,切换系统式(16)是全局一致渐进稳定的,若式(33)-(36)有可行解,则控制器增益可由式(37)给出,ε(Pi(0))为N步收缩不变椭球,即从ε(Pi(0))中出发的所有状态轨迹均在Nt内进入收缩不变椭球ε(Pi(Nt))。
2.根据权利要求1所述的基于切换系统的高超声速飞行器建模及抗饱和控制方法,其特征在于,所述步骤七中持续驻留时间信号定义为:
对于切换信号σ和切换时刻t0,t1,…ts,…,其中t0=0,若存在无限多个长度不小于τ的不相交区间,在区间内σ为常值,且带有该性质的两个相邻区间间隔不超过T,则称τ为持续驻留时间,称T为持续周期。
CN201910657167.8A 2019-07-19 2019-07-19 基于切换系统的高超声速飞行器建模及抗饱和控制方法 Expired - Fee Related CN110244768B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910657167.8A CN110244768B (zh) 2019-07-19 2019-07-19 基于切换系统的高超声速飞行器建模及抗饱和控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910657167.8A CN110244768B (zh) 2019-07-19 2019-07-19 基于切换系统的高超声速飞行器建模及抗饱和控制方法

Publications (2)

Publication Number Publication Date
CN110244768A CN110244768A (zh) 2019-09-17
CN110244768B true CN110244768B (zh) 2021-11-30

Family

ID=67893170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910657167.8A Expired - Fee Related CN110244768B (zh) 2019-07-19 2019-07-19 基于切换系统的高超声速飞行器建模及抗饱和控制方法

Country Status (1)

Country Link
CN (1) CN110244768B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112114522B (zh) * 2020-09-22 2021-09-17 哈尔滨工业大学 一种基于切换自适应算法的四旋翼飞行器故障容错控制方法
CN112558623B (zh) * 2020-12-04 2024-03-15 天津大学 一种弹性高超声速飞行器多胞lpv系统建模方法
CN112859605B (zh) * 2021-01-12 2023-02-03 哈尔滨工业大学 一种兼具控制量防抖及干扰抑制性能的切换系统控制方法
CN112904881A (zh) * 2021-01-19 2021-06-04 杭州电子科技大学 一种高超声速飞行器动态增益调度控制器设计方法
CN113093794A (zh) * 2021-03-29 2021-07-09 西北工业大学 面向宽域飞行的多模态精确划分方法
CN113406930A (zh) * 2021-05-24 2021-09-17 杭州电子科技大学 一种状态饱和网络化工业系统的有限时间控制方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1047586A (en) * 1962-07-27 1966-11-09 Aviat G M B H Method of producing hypersonic fluid flows
FR2824787A1 (fr) * 2001-05-18 2002-11-22 Peugeot Citroen Automobiles Sa Dispositif de commande d'un climatiseur automatique d'habitacle de vehicule automobile
ES2294138T3 (es) * 2001-07-26 2008-04-01 Motorola, Inc. Control de seguimiento para un sistema estrangulador electronico.
CN104898682A (zh) * 2015-05-05 2015-09-09 南京航空航天大学 一种高超声速飞行器再入姿态容错控制方法
CN105137999A (zh) * 2015-07-23 2015-12-09 北京航空航天大学 一种具有输入饱和的飞行器跟踪控制直接法
WO2016053194A1 (en) * 2014-10-03 2016-04-07 Infinium Robotics Pte Ltd System for performing tasks in an operating region and method of controlling autonomous agents for performing tasks in the operating region
CN106406102A (zh) * 2016-12-20 2017-02-15 哈尔滨工业大学 一种含干扰观测器的高超声速飞行器跟踪控制方法
CN106842912A (zh) * 2016-11-30 2017-06-13 南京航空航天大学 高超声速机动飞行抗舵面饱和鲁棒控制方法
CN106997208A (zh) * 2017-05-10 2017-08-01 南京航空航天大学 一种面向不确定条件下的高超声速飞行器的控制方法
CN107728475A (zh) * 2017-09-19 2018-02-23 天津大学 带有执行器饱和的切换系统事件触发控制设计方法
CN107831653A (zh) * 2017-10-16 2018-03-23 南京航空航天大学 一种抑制参数摄动的高超声速飞行器指令跟踪控制方法
CN108427289A (zh) * 2018-04-27 2018-08-21 哈尔滨工业大学 一种基于非线性函数的高超声速飞行器跟踪控制方法
CN108490786A (zh) * 2018-04-27 2018-09-04 哈尔滨工业大学 一种基于终端滑模的高超声速飞行器鲁棒跟踪控制方法
CN108595756A (zh) * 2018-03-21 2018-09-28 中国科学院自动化研究所 大包线飞行干扰估计的方法及装置
WO2018215910A1 (en) * 2017-05-22 2018-11-29 Oara Cristian Method for automated vehicle platooning
CN109426146A (zh) * 2017-08-23 2019-03-05 中国空气动力研究与发展中心计算空气动力研究所 高超声速飞行器的高阶非奇异Terminal滑模控制方法
CN109976378A (zh) * 2019-03-13 2019-07-05 南京航空航天大学 风扰下无人机栖落机动的轨迹控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572214B2 (ja) * 2007-05-09 2010-11-04 株式会社アクション・リサーチ 振動呈示装置
US20100299651A1 (en) * 2009-05-19 2010-11-25 Nec Laboratories America, Inc. Robust testing for discrete-time and continuous-time system models

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1047586A (en) * 1962-07-27 1966-11-09 Aviat G M B H Method of producing hypersonic fluid flows
FR2824787A1 (fr) * 2001-05-18 2002-11-22 Peugeot Citroen Automobiles Sa Dispositif de commande d'un climatiseur automatique d'habitacle de vehicule automobile
ES2294138T3 (es) * 2001-07-26 2008-04-01 Motorola, Inc. Control de seguimiento para un sistema estrangulador electronico.
WO2016053194A1 (en) * 2014-10-03 2016-04-07 Infinium Robotics Pte Ltd System for performing tasks in an operating region and method of controlling autonomous agents for performing tasks in the operating region
CN104898682A (zh) * 2015-05-05 2015-09-09 南京航空航天大学 一种高超声速飞行器再入姿态容错控制方法
CN105137999A (zh) * 2015-07-23 2015-12-09 北京航空航天大学 一种具有输入饱和的飞行器跟踪控制直接法
CN106842912A (zh) * 2016-11-30 2017-06-13 南京航空航天大学 高超声速机动飞行抗舵面饱和鲁棒控制方法
CN106406102A (zh) * 2016-12-20 2017-02-15 哈尔滨工业大学 一种含干扰观测器的高超声速飞行器跟踪控制方法
CN106997208A (zh) * 2017-05-10 2017-08-01 南京航空航天大学 一种面向不确定条件下的高超声速飞行器的控制方法
WO2018215910A1 (en) * 2017-05-22 2018-11-29 Oara Cristian Method for automated vehicle platooning
CN109426146A (zh) * 2017-08-23 2019-03-05 中国空气动力研究与发展中心计算空气动力研究所 高超声速飞行器的高阶非奇异Terminal滑模控制方法
CN107728475A (zh) * 2017-09-19 2018-02-23 天津大学 带有执行器饱和的切换系统事件触发控制设计方法
CN107831653A (zh) * 2017-10-16 2018-03-23 南京航空航天大学 一种抑制参数摄动的高超声速飞行器指令跟踪控制方法
CN108595756A (zh) * 2018-03-21 2018-09-28 中国科学院自动化研究所 大包线飞行干扰估计的方法及装置
CN108427289A (zh) * 2018-04-27 2018-08-21 哈尔滨工业大学 一种基于非线性函数的高超声速飞行器跟踪控制方法
CN108490786A (zh) * 2018-04-27 2018-09-04 哈尔滨工业大学 一种基于终端滑模的高超声速飞行器鲁棒跟踪控制方法
CN109976378A (zh) * 2019-03-13 2019-07-05 南京航空航天大学 风扰下无人机栖落机动的轨迹控制方法

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
Self-Healing_Control_for_Attitude_System_of_Hypersonic_Flight_Vehicle_With_Body_Flap_Faults;Wang, A (Wang, Ang);《IEEE ACCESS》;20181231;全文 *
Stability_and_Stabilization_of_Switched_Linear_Systems_With_Mode-Dependent_Average_Dwell_Time;Tianhe Liu;《43rd Annual Conference of the IEEE-Industrial-Electronics-Society》;20181231;第6卷;全文 *
Stability_and_Stabilization_of_Switched_Linear_Systems_With_Mode-Dependent_Average_Dwell_Time;Xudong Zhao;《IEEE Transactions on Automatic Control ( Volume: 57, Issue: 7, July 2012)》;20111008;全文 *
Trajectory_tracking_control_of_flexible_hypersonic_vehicle_based_on_sliding_mode_observer;Xiao-guang Di⏘;《Proceedings of the 32nd Chinese Control Conference》;20131121;全文 *
分数阶PI_λD_μ在高超声速飞行器姿态控制中的应用展望;齐乃明;《航天控制》;20101015;全文 *
考虑攻角约束的高超声速飞行器纵向姿态控制;张峰;《哈尔滨工程大学学报》;20130621;第34卷(第4期);全文 *
输入饱和及带宽限制下高超飞行器的闭环稳定边界研究;陈柏屹;《控制理论与应用》;20161205(第4期);全文 *
近空间飞行器的连续非线性鲁棒控制设计;李咚;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20111215;全文 *
高超声速巡航飞行器姿态控制方法研究;王鹏;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;20160115(第1期);全文 *
高超声速飞行器多回路抗饱和鲁棒切换控制;吴振东;《哈尔滨工程大学学报》;20130621;第34卷(第8期);全文 *
高超声速飞行器大包线切换LPV控制方法;张增辉;《航空学报》;20120925;第33卷(第9期);全文 *
高超声速飞行器抗饱和鲁棒自适应切换控制;王青;《北京航空航天大学学报》;20131121;第39卷(第11期);全文 *
高超声速飞行器气动参数辨识与LPV混合控制方法研究;刘奇治;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20150515;全文 *

Also Published As

Publication number Publication date
CN110244768A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
CN110244768B (zh) 基于切换系统的高超声速飞行器建模及抗饱和控制方法
Lu et al. Flight control design for small-scale helicopter using disturbance-observer-based backstepping
CN109426146A (zh) 高超声速飞行器的高阶非奇异Terminal滑模控制方法
Wang et al. Nonlinear hierarchy-structured predictive control design for a generic hypersonic vehicle
MacKunis et al. Asymptotic tracking for aircraft via robust and adaptive dynamic inversion methods
Raza et al. Two-time-scale robust output feedback control for aircraft longitudinal dynamics via sliding mode control and high-gain observer
An et al. Adaptive controller design for a switched model of air-breathing hypersonic vehicles
Shin et al. Nonlinear discrete-time reconfigurable flight control law using neural networks
Zhou et al. Dynamic surface control based on neural network for an air‐breathing hypersonic vehicle
Afman et al. Nonlinear maneuver regulation for reduced-G atmospheric flight
Shin et al. Adaptive control of advanced fighter aircraft in nonlinear flight regimes
Emami et al. Robustness investigation of a ducted-fan aerial vehicle control, using linear, adaptive, and model predictive controllers
Tran et al. Back-stepping based flight path angle control algorithm for longitudinal dynamics
Banazadeh et al. Control effectiveness investigation of a ducted-fan aerial vehicle using model predictive controller
Liu et al. Optimal switching control for Morphing aircraft with Aerodynamic Uncertainty
Kimathi et al. Modelling and attitude control of an agile fixed wing UAV based on nonlinear dynamic inversion
Lu et al. Observer-Based Fault Tolerant Control for a Class of Nonlinear Systems via Filter and Neural Network
Song et al. Research on aircraft attitude control method based on linear active disturbance rejection
Rouyan et al. Aircraft pitch control tracking with sliding mode control
Nie et al. Asynchronous switched LPV control for quad-tilt rotor UAVs against actuator faults and persistent external disturbances
Weilai et al. Anti-disturbance control of hypersonic vehicle considering input saturation
An et al. Resilient Switching Control of the Tilt-Rotor Aircraft Based on the Disturbance Observer
Potter et al. CFD Based Reduced Order Modeling for Hypersonic Vehicles Using CREATE (TM)-AV Kestrel
Wang et al. Virtual flight simulation of the basic finner projectile based on fuzz control
Mi et al. Multi-model Tube-MPC Fault-tolerant Control for Flexible Hypersonic Vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211130

CF01 Termination of patent right due to non-payment of annual fee