CN110233569A - 电源启动控制电路及其控制方法 - Google Patents

电源启动控制电路及其控制方法 Download PDF

Info

Publication number
CN110233569A
CN110233569A CN201910514871.8A CN201910514871A CN110233569A CN 110233569 A CN110233569 A CN 110233569A CN 201910514871 A CN201910514871 A CN 201910514871A CN 110233569 A CN110233569 A CN 110233569A
Authority
CN
China
Prior art keywords
circuit
resistance
voltage
connect
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910514871.8A
Other languages
English (en)
Other versions
CN110233569B (zh
Inventor
郭键
李明
周丽
陈蕾
阎芳
唐恒亮
刘军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Wuzi University
Original Assignee
Beijing Wuzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Wuzi University filed Critical Beijing Wuzi University
Priority to CN201910514871.8A priority Critical patent/CN110233569B/zh
Publication of CN110233569A publication Critical patent/CN110233569A/zh
Application granted granted Critical
Publication of CN110233569B publication Critical patent/CN110233569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种电源启动控制电路及其控制方法,该电源启动控制电路包括:软启动电路和全桥移相控制电路;软启动电路包括:同相比例放大电路、第一电阻、第一电容、第二电阻、第一二极管和第一三极管;同相比例放大电路的输入端接入软启动电压信号,输出端经第一电阻、第一电容和第二电阻接地;第一电阻和第一电容的连接点与第一三极管的基极端连接;第一三极管的集电极端接地,发射极端与全桥移相控制电路的输入端连接;全桥移相控制电路的输出端与全桥移相串联谐振电压发生电路连接,驱动其向负载输出直流电压;第一二极管反向并联于所述第二电阻的两端。本发明能够控制电源输出电压较快升高而不会有较大超调量。

Description

电源启动控制电路及其控制方法
技术领域
本发明涉及电力电子领域,尤其涉及一种电源启动控制电路及其控制方法。
背景技术
本部分旨在为权利要求书中陈述的本发明实施例提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
众所周知,X射线在各个领域的应用日益广泛,已经从医疗领域逐步应用到其他领域,例如,安检系统采用X射线照射携带的行李,通过成像技术检测行李中是否存在违禁物品。由于安检系统工作过程中,X射线源会频繁地启动、停止,这便要求X射线源的高压上升时间尽可能的快,同时又要防止输出的高压有较大的过冲,因为较大的高压过冲量会导致X射线管的损伤,降低X射线管的使用寿命。
由此,急需一种能够具有较快高压上升速度,且又能防止高压较大过冲的电源启动控制电路,能够应用于X射线源设备或类似设备的电源启动。
发明内容
本发明实施例提供一种电源启动控制电路,用以解决现有高压电源以较快速度上升到高压时导致输出高压有较大过冲的技术问题,包括:软启动电路和全桥移相控制电路;软启动电路包括:同相比例放大电路、第一电阻、第一电容、第二电阻、第一二极管和第一三极管;其中,同相比例放大电路的输入端接入软启动电压信号;同相比例放大电路的输出端经第一电阻、第一电容和第二电阻接地;第一电阻和第一电容的连接点与第一三极管的基极端连接;第一三极管的集电极端接地;第一三极管的发射极端与全桥移相控制电路的输入端连接;全桥移相控制电路的输出端与全桥移相串联谐振电压发生电路连接,用于驱动全桥移相串联谐振电压发生电路向负载输出直流电压;第一二极管的阳极端与第一三极管的基极端连接;第一二极管的阴极端与同相比例放大电路的输出端连接。
本发明实施例提供一种电源启动控制电路的控制方法,用以解决现有高压电源以较快速度上升到高压时导致输出高压有较大过冲的技术问题,该电源启动控制电路包括:软启动电路、全桥移相控制电路、反馈补偿控制电路、电压跟随器和模数转换器;软启动电路的输出端与全桥移相控制电路的输入端、电压跟随器的输入端分别连接;电压跟随器的输出端与模数转换器连接;全桥移相控制电路的输出端与全桥移相串联谐振电压发生电路的输入端连接,用于驱动全桥移相串联谐振电压发生电路向负载输出直流电压;反馈补偿控制电路的第一输入端与全桥移相串联谐振电压发生电路的输出端连接;反馈补偿控制电路的第二输入端接入电压参考信号;该方法包括:获取当前电压输出值和负载电流值;根据当前电压输出值和负载电流值,获取对应的控制电压,其中,控制电压为预先学习并通过电压跟随器和模数转换器记录的电源在当前电压输出值和负载电流值下稳定运行时的控制电压;根据当前电压输出值和负载电流值对应的控制电压,设定软启动电路的软启动电压。
本发明实施例中,与全桥移相控制电路连接的软启动电路,其软启动电压的起点值由第一电阻和第二电阻的比值确定,而软启动电压的上升速度由第一电阻、第二电阻和第一电容构成的阻尼回路的时间常数确定,使得软启动电压在开始阶段的工作占空比为非零值;且随着时间延长占空比增加量逐渐减少,从而使得输出电压既能够较快升高又不会有较大调量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本发明实施例中提供的一种电源启动控制电路示意图;
图2为本发明实施例中提供的一种软启动电压上升曲线示意图;
图3为本发明实施例中提供的一种电压参考信号示意图;
图4为本发明实施例中提供的一种全桥移相串联谐振逆变高压发生电路示意图;
图5为本发明实施例中提供的一种基于全桥移相串联谐振逆变高压发生电路的电源启动控制电路示意图;
图6为本发明实施例中提供的一种电源启动控制电路的控制方法流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
在本说明书的描述中,所使用的“包含”、“包括”、“具有”、“含有”等,均为开放性的用语,即意指包含但不限于。参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”等的描述意指结合该实施例或示例描述的具体特征、结构或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。各实施例中涉及的步骤顺序用于示意性说明本申请的实施,其中的步骤顺序不作限定,可根据需要作适当调整。
本发明实施例中提供了一种电源启动控制电路,该启动控制电路可以应用但不限于高压电源。图1为本发明实施例中提供的一种电源启动控制电路示意图,如图1所示,该电源启动控制电路包括:软启动电路101和全桥移相控制电路102;软启动电路101包括:同相比例放大电路101a、第一电阻R1、第一电容C1、第二电阻R2、第一二极管D1和第一三极管Q1;
其中,同相比例放大电路101a的输入端接入软启动电压信号VHsoft;同相比例放大电路101a的输出端经第一电阻R1、第一电容C1和第二电阻R2接地AGND;第一电阻R1和第一电容C1的连接点与第一三极管Q1的基极端连接;第一三极管Q1的集电极端接地AGND;第一三极管Q1的发射极端与全桥移相控制电路102的输入端连接;全桥移相控制电路的输出端与全桥移相串联谐振电压发生电路108连接,用于驱动全桥移相串联谐振电压发生电路108向负载109输出直流电压;第一二极管D1的阳极端与第一三极管Q1的基极端连接;第一二极管D1的阴极端与同相比例放大电路101a的输出端连接。
可选地,上述同相比例放大电路101a可以由运算放大器来实现,由此,作为一种可选的实施方式,本发明实施例提供的电源启动控制电路中,同相比例放大电路101a可以具体包括:第一运算放大器U2A、第三电阻R3和第四电阻R4;
其中,第一运算放大器U2A的正输入端接入软启动电压信号;第一运算放大器U2A的输出端与第一电阻R1的第一端连接;第一运算放大器U2A的输出端经第三电阻R3和第四电阻R4接地AGND;第三电阻R3和第四电阻R4的连接点与第一运算放大器U2A的负输入端的连接。
本发明实施例提供的电源启动控制电路,其工作原理为:
与全桥移相控制电路连接的软启动电路,其软启动电压的起点值由第一电阻R1和第二电阻R2的比值确定,而软启动电压的上升速度由第一电阻R1、第二电阻R2和第一电容C1构成的阻尼回路的时间常数确定,使得软启动电压在开始阶段的工作占空比为非零值;且随着时间延长占空比增加量逐渐减少,从而使得输出电压既能够较快升高又不会有较大超调量。图2所示为本发明实施例提供的软启动电压上升曲线示意图。
需要注意的是,本发明实施例通过在软启动电路101中设置第一二极管D1,当系统停止工作(软启动电压信号VHsoft即刻被设置为0V)后,可以快速泄放第一电容C1上的电压,使得第一电阻R1和第一电容C1的连接点处的软启动控制电压(VKs)迅速降为0V,以便为下次电源软启动准备好初始值。
在一种可选的实施例中,如图1所示,本发明实施例提供的电源启动控制电路还可以进一步包括:反馈补偿控制电路103、电压跟随器104和模数转换器105;
其中,反馈补偿控制电路103的输出端与全桥移相控制电路102的输入端连接;反馈补偿控制电路103的输入端与全桥移相串联谐振电压发生电路108的输出端连接,用于根据直流电压反馈信号对控制电压进行控制;电压跟随器104与软启动电路101中第一三极管Q1的发射极端、反馈补偿控制电路103的输出端分别连接;用于将电源稳定运行后的控制电压送入模数转换器105中,记录电源稳定运行时的控制电压,以便下次运行时,根据记录的电源稳定运行时的控制电压设定软启动电路的软启动电压,使得电源启动时不超压或尽可能减少超压。
需要说明的是,反馈补偿控制电路103包括两个输入端,一个输入端与全桥移相串联谐振电压发生电路108的输出端连接(由于全桥移相串联谐振电压发生电路108输出为高压,因而,实际电路中可与全桥移相串联谐振电压发生电路108输出端的采样电路连接),另一个输入端接入电压参考信号;根据接入的电压参考信号和反馈比值,则反馈补偿控制电路103输出电压由电压参考信号与反馈电路的输出电压确定。通过设定不同的电压参考值,反馈补偿控制电路103能够输出不同的电压。
以高压电源为例,图3为本发明实施例中提供的一种电压参考信号示意图,如图3所示,电压参考信号VHref由系统控制在一定的时间内按特定曲线从零上升到终点值。
本发明实施例中,全桥移相串联谐振电压发生电路108可以是但不限于图4所示的全桥移相串联谐振逆变高压发生电路,如图4所示,Q3、Q4、Q5、Q6为全桥的4个功率开关管,其中,Q4和Q6组成超前桥臂,Q3和Q5组成滞后桥臂,T2为超前桥臂驱动变压器,T1为滞后桥臂驱动变压器,T3为逆变变压器,C34、L1为串联谐振电路的谐振电容和电感,T3右侧为经典C-W倍压整流电路。在全桥移相芯片(例如,UC3879芯片)的驱动下,T3输出交变电压,经倍压整流后得到直流高压。
作为一种可选的实施方式,本发明实施例提供的电源启动控制电路中,全桥移相控制电路102采用UC3879全桥移相芯片,则图5所示本发明实施例中提供的一种基于全桥移相串联谐振逆变高压发生电路的电源启动控制电路示意图,图5中UC3879全桥移相芯片的输出端子H_OUTD和H_OUTC与图4所示的全桥移相串联谐振逆变高压发生电路中相应的端子连接,用于驱动超前桥臂驱动变压器;图5中UC3879全桥移相芯片的输出端子H_OUTB和H_OUTA与图4所示的全桥移相串联谐振逆变高压发生电路中相应的端子连接,用于驱动滞后桥臂驱动变压器。
如图5所示,本发明实施例提供的电源启动控制电路中,反馈补偿控制电路103可以具体包括:第二运算放大器U4A、第五电阻R5、第六电阻R6、第七电阻R7、第二电容C2、第三电容C3、第四电容C4;其中,第二运算放大器U4A的正输入端接入电压参考信号;第五电阻R5的第一端接入直流电压反馈信号;第五电阻R5的第二端与第二电容C2的第一端连接;第六电阻R6的第一端与第五电阻R5的第一端连接;第六电阻R6的第二端与第二电容C2的第二端连接;第七电阻R7的第一端与第二运算放大器U4A的负输入端连接;第七电阻R7的第二端与第三电容C3的第一端连接;第三电容C3的第二端与第二运算放大器U4A的输出端连接;第四电容C4的第一端与第七电阻R7的第一端连接;第四电容C4的第二端与第三电容C3的第二端连接;第二运算放大器U4A的输出端与全桥移相控制电路102的输入端连接。
可选地,如图5所示,本发明实施例提供的电源启动控制电路还可以进一步包括:反馈电路106;反馈电路106包括:第三运算放大器U4B、第八电阻R8、第九电阻R9;其中,第三运算放大器U4B的输出端与第五电阻R5的第一端连接;第三运算放大器U4B的输出端经第八电阻R8和第九电阻R9接地AGND;第八电阻R8和第九电阻R9的连接点与第三运算放大器U4B的负输入端连接;第三运算放大器U4B的正输入端与全桥移相串联谐振电压发生电路108的输出端连接。
需要注意的是,全桥移相串联谐振电压发生电路108的输出电压为高压,而反馈电路106的输入电压为低压,因而,反馈电路106可与全桥移相串联谐振电压发生电路108输出端的采样电路(图1和图5中省略未示出)连接,该采样电路可以是一个分压电路,用于将全桥移相串联谐振电压发生电路108输出的高压信号转换为反馈电路106所需的低压。
进一步地,该反馈电路106还可以包括:第十电阻R10、第十一电阻R11和第五电容C5;其中,第十电阻R10的第一端与全桥移相串联谐振电压发生电路108的输出端的采样电路连接;第十电阻R10的第二端与第八电阻R8的第一端连接;第八电阻R8的第二端与第三运算放大器U4B的正输入端连接;第七电阻R7和第八电阻R8的连接点经第五电容C5接地AGND。
作为一种可选的实施方式,如图5所示,本发明实施例提供的电源启动控制电路还可以进一步包括:分压电路107,用于将反馈补偿控制电路103中第二运算放大器U4A输出的电压进行分压后得到UK。该分压电路107可以包括:第十二电阻R12、第十三电阻R13、第二三极管Q2;其中,第二运算放大器U4A的输出端经第十二电阻R12和第十三电阻R13接地AGND;第十二电阻R12和第十三电阻R13的连接点与第二三极管Q2的基极端连接;第二三极管Q2的集电极端与全桥移相控制电路的输入端连接;第二三极管Q2的发射极端接地AGND。
优选地,如图5所示,本发明实施例提供的分压电路107还包括:第二二极管D2(稳压二极管),与第十三电阻R13并联,用于对第十三电阻R13两端电压信号进行限压。需要注意的是,第二二极管D2可以确保UK最大值不超过其基准电压,例如,5.1V。
优选地,如图5所示,本发明实施例提供的分压电路107还可以包括:第六电容C6,与第十三电阻R13并联,用于对第十三电阻R13两端电压信号进行滤波。即滤除UK的毛刺。
如图5所示,本发明实施例提供的电源启动控制电路中,电压跟随器104可以具体包括:第四运算放大器U2B,第四运算放大器U2B的输出端与第四运算放大器U2B的负输入端连接;第四运算放大器U2B的正输入端与第一三极管Q1的发射极端连接;第四运算放大器U2B的输出端与模数转换器105连接。可选地,模数转换器105采用ADS8344NB芯片。
基于上述任意一种可选的或优选的电源启动控制电路,该电源启动控制电路的负载可以是但不限于X射线源设备,任何需要高压启动且频繁启停的设备均可以采用本发明实施例提供的电源启动控制电路。
本发明实施例提供的电源启动控制电路可以具体应用时,可以通过预先学习得到一系列不同电压输出、不同负载电流值下电源稳定运行时的控制电压值,以便在正常电源启动过程中,直接根据当前电压输出、负载电流值获取对应的控制电压来设置软启动电路的软启动电压。
由此,本发明实施例中还提供了一种电源启动控制电路的控制方法,如下面的实施例所述。由于该方法实施例解决问题的原理与电源启动控制电路相似,因此该方法实施例的实施可以参见上述电源启动控制电路实施例的实施,重复之处不再赘述。
需要说明的是,本发明实施例提供的控制方法可以应用但不限于图1或图5所示的电源启动控制电路,该电源启动控制电路可以包括:软启动电路、全桥移相控制电路、反馈补偿控制电路、电压跟随器和模数转换器;软启动电路的输出端与全桥移相控制电路的输入端、电压跟随器的输入端分别连接;电压跟随器的输出端与模数转换器连接;全桥移相控制电路的输出端与全桥移相串联谐振电压发生电路的输入端连接,用于驱动全桥移相串联谐振电压发生电路向负载输出直流电压;反馈补偿控制电路的第一输入端与全桥移相串联谐振电压发生电路的输出端连接;反馈补偿控制电路的第二输入端接入电压参考信号。
图6为本发明实施例中提供的一种电源启动控制电路的控制方法流程图,如图6所示,该控制方法可以包括如下步骤:
S601,获取当前电压输出值和负载电流值;
S602,根据当前电压输出值和负载电流值,获取对应的控制电压,其中,控制电压为预先学习并通过电压跟随器和模数转换器记录的电源在当前电压输出值和负载电流值下稳定运行时的控制电压;
S603,根据当前电压输出值和负载电流值对应的控制电压,设定软启动电路的软启动电压。
需要说明的是,上述S601至S603提供的方案,是本发明实施例提供的电源启动控制电路对控制电压进行学习后正常启动电源(例如,X射线源的高压电源)的过程中。
以图5所示的基于全桥移相串联谐振逆变高压发生电路的电源启动控制电路,正常启动过程中,假设第一运算放大器U2B引脚5处是运行时的控制电压(VKr),第一电阻R1和第一电容C1连接点处的电压为软启动控制电压(VKs)。高压一开始运行时刻,VKr被VKs钳位为VKs的值,随着VKs从0V开始上升,当VKs大于VKr后,VKr由反馈补偿控制电路决定大小。
学习前,由VHsoft确定的VKs值可能不合适。因而,在学习过程中,每次高压启动将VHsoft设置为最大值(即高压逆变电路工作在最大占空比时的电压值,以图5所示的电源启动控制电路为例,当UC3879全桥移相芯片的脚2处为5V时,图4所示的高压逆变电路工作在最大占空比状态,则此时软启动控制电压VKs为5V,或大于5V就是软启动控制电压的最大值,VKs是由VHsoft经运算放大器放大,电阻分压后得到,其大小是VHsoft的倍,则VKs的最大值缩小此倍数后得到数值即为VHsoft的最大值)。VKs按图2所示软启动电压上升曲线上升到最大值,高压稳定后,VKr由VHref确定为一稳定值,此值对应本次的电压输出值(例如,图4所示的高压逆变电路的高压输出值)和负载电流值(例如,X射线管的管电流,由X射线管的阳极经过X射线管内的真空空间后到X射线管的阴极),系统通过电压跟随器和模数转换器记录下此时的VKr值。这样系统获得了电压输出值、负载电流值和VKr值,这三个值中前两个为设定值,第三个为系统按前两个值稳定运行后的控制值。通过设定不同的电压输出值、负载电流值,可以学习获得一系列VKr值。
当学习模式结束后,可以获得一系列由电压输出值、负载电流值和VKr值为一组的数值表。当系统进入正常工作模式时,系统工作前,根据当前电压输出值(X射线管高压输出值)、负载电流值(X射线管电流输出值)的设定值,获得相应的控制电压VKr值,预先得到VKs的最终值(例如,可以设定VKs的最终值是VKr稳定值的1.2倍),从而获得VHsoft。这样系统运行时,VKr的最大值不会超过其稳定值的1.2倍,从而限制了系统可能的超调量。
需要注意的是,设定VKs的最终值是VKr稳定值的1.2倍仅为示例,具体比例值可以根据开发过程中调试结果确定,例如,当调试结果为1.15或1.25更合适,则设定VKs的最终值是VKr稳定值的1.15或1.25倍。
综上所述,本发明实施例提供了一种电源启动控制电路,可以应用但不限于高压电源的启动控制,尤其是X射线源等需要频繁启动、停止的高压电源的启动。通过本发明实施例提供的电源启动控制电路能够使得电源输出具有较快的上升速度,又能防止高压较大过冲。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种电源启动控制电路,其特征在于,包括:软启动电路和全桥移相控制电路;所述软启动电路包括:同相比例放大电路、第一电阻、第一电容、第二电阻、第一二极管和第一三极管;
其中,所述同相比例放大电路的输入端接入软启动电压信号;所述同相比例放大电路的输出端经所述第一电阻、所述第一电容和所述第二电阻接地;所述第一电阻和所述第一电容的连接点与所述第一三极管的基极端连接;所述第一三极管的集电极端接地;所述第一三极管的发射极端与所述全桥移相控制电路的输入端连接;所述全桥移相控制电路的输出端与全桥移相串联谐振电压发生电路连接,用于驱动所述全桥移相串联谐振电压发生电路向负载输出直流电压;所述第一二极管的阳极端与所述第一三极管的基极端连接;所述第一二极管的阴极端与所述同相比例放大电路的输出端连接。
2.如权利要求1所述的电源启动控制电路,其特征在于,所述同相比例放大电路包括:第一运算放大器、第三电阻和第四电阻;
其中,所述第一运算放大器的正输入端接入软启动电压信号;所述第一运算放大器的输出端与所述第一电阻的第一端连接;所述第一运算放大器的输出端经所述第三电阻和第四电阻接地;所述第三电阻和第四电阻的连接点与所述第一运算放大器的负输入端的连接。
3.如权利要求1所述的电源启动控制电路,其特征在于,所述电源启动控制电路还包括:反馈补偿控制电路;所述反馈补偿控制电路包括:第二运算放大器、第五电阻、第六电阻、第七电阻、第二电容、第三电容、第四电容;
其中,所述第二运算放大器的正输入端接入电压参考信号;所述第五电阻的第一端接入直流电压反馈信号;所述第五电阻的第二端与所述第二电容的第一端连接;所述第六电阻的第一端与所述第五电阻的第一端连接;所述第六电阻的第二端与所述第二电容的第二端连接;所述第七电阻的第一端与所述第二运算放大器的负输入端连接;所述第七电阻的第二端与所述第三电容的第一端连接;所述第三电容的第二端与所述第二运算放大器的输出端连接;所述第四电容的第一端与所述第七电阻的第一端连接;所述第四电容的第二端与所述第三电容的第二端连接;所述第二运算放大器的输出端与全桥移相控制电路的输入端连接。
4.如权利要求3所述的电源启动控制电路,其特征在于,所述电源启动控制电路还包括:反馈电路;所述反馈电路包括:第三运算放大器、第八电阻、第九电阻;
其中,所述第三运算放大器的输出端与所述第五电阻的第一端连接;所述第三运算放大器的输出端经所述第八电阻和所述第九电阻接地;所述第八电阻和所述第九电阻的连接点与所述第三运算放大器的负输入端连接;所述第三运算放大器的正输入端与所述全桥移相串联谐振电压发生电路的输出端连接。
5.如权利要求4所述的电源启动控制电路,其特征在于,所述反馈电路还包括:第十电阻、第十一电阻和第五电容;
其中,所述第十电阻的第一端与所述全桥移相串联谐振电压发生电路的输出端连接;所述第十电阻的第二端与所述第八电阻的第一端连接;所述第八电阻的第二端与所述第三运算放大器的正输入端连接;所述第七电阻和所述第八电阻的连接点经所述第五电容接地。
6.如权利要求3所述的电源启动控制电路,其特征在于,所述电源启动控制电路还包括:分压电路,所述分压电路包括:第十二电阻、第十三电阻、第二三极管;
其中,所述第二运算放大器的输出端经所述第十二电阻和所述第十三电阻接地;所述十二电阻和所述第十三电阻的连接点与所述第二三极管的基极端连接;所述第二三极管的集电极端与所述全桥移相控制电路的输入端连接;所述第二三极管的发射极端接地。
7.如权利要求6所述的电源启动控制电路,其特征在于,所述分压电路还包括:
第六电容,与所述第十三电阻并联,用于对所述第十三电阻两端电压信号进行滤波;
第二二极管,与所述第十三电阻并联,用于对所述第十三电阻两端电压信号进行限压;
其中,所述第二二极管为稳压二极管。
8.如权利要求1所述的电源启动控制电路,其特征在于,所述电源启动控制电路还包括:电压跟随器和模数转换器;
其中,所述电压跟随器包括:第四运算放大器,所述第四运算放大器的输出端与所述第四运算放大器的负输入端连接;所述第四运算放大器的正输入端与所述第一三极管的发射极端连接;所述第四运算放大器的输出端与所述模数转换器连接。
9.如权利要求1至8任一项所述的电源启动控制电路,其特征在于,所述负载为X射线源设备。
10.一种电源启动控制电路的控制方法,其特征在于,所述电源启动控制电路包括:软启动电路、全桥移相控制电路、反馈补偿控制电路、电压跟随器和模数转换器;所述软启动电路的输出端与所述全桥移相控制电路的输入端、所述电压跟随器的输入端分别连接;所述电压跟随器的输出端与所述模数转换器连接;所述全桥移相控制电路的输出端与全桥移相串联谐振电压发生电路的输入端连接,用于驱动所述全桥移相串联谐振电压发生电路向负载输出直流电压;所述反馈补偿控制电路的第一输入端与所述全桥移相串联谐振电压发生电路的输出端接;所述反馈补偿控制电路的第二输入端接入电压参考信号;该方法包括:
获取当前电压输出值和负载电流值;
根据当前电压输出值和负载电流值,获取对应的控制电压,其中,所述控制电压为预先学习并通过所述电压跟随器和所述模数转换器记录的所述电源在当前电压输出值和负载电流值下稳定运行时的控制电压;
根据当前电压输出值和负载电流值对应的控制电压,设定所述软启动电路的软启动电压。
CN201910514871.8A 2019-06-14 2019-06-14 电源启动控制电路及其控制方法 Active CN110233569B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910514871.8A CN110233569B (zh) 2019-06-14 2019-06-14 电源启动控制电路及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910514871.8A CN110233569B (zh) 2019-06-14 2019-06-14 电源启动控制电路及其控制方法

Publications (2)

Publication Number Publication Date
CN110233569A true CN110233569A (zh) 2019-09-13
CN110233569B CN110233569B (zh) 2024-02-09

Family

ID=67859255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910514871.8A Active CN110233569B (zh) 2019-06-14 2019-06-14 电源启动控制电路及其控制方法

Country Status (1)

Country Link
CN (1) CN110233569B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114578750A (zh) * 2022-03-07 2022-06-03 天津美腾科技股份有限公司 用于x射线设备的射源控制电路、方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322864A (ja) * 1989-06-16 1991-01-31 Yuasa Battery Co Ltd 電源装置の起動方式
US7208927B1 (en) * 2005-12-09 2007-04-24 Monolithic Power Systems, Inc. Soft start system and method for switching regulator
JP2008167587A (ja) * 2006-12-28 2008-07-17 Fujitsu Access Ltd ソフトスタート電源装置
CN107359786A (zh) * 2017-09-01 2017-11-17 湖南科技大学 一种用于开关电源的软启动电路
CN207265858U (zh) * 2017-09-19 2018-04-20 郑州华伟电器技术有限公司 一种全范围软开关的移相全桥电路
CN209881650U (zh) * 2019-06-14 2019-12-31 北京物资学院 电源启动控制电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322864A (ja) * 1989-06-16 1991-01-31 Yuasa Battery Co Ltd 電源装置の起動方式
US7208927B1 (en) * 2005-12-09 2007-04-24 Monolithic Power Systems, Inc. Soft start system and method for switching regulator
JP2008167587A (ja) * 2006-12-28 2008-07-17 Fujitsu Access Ltd ソフトスタート電源装置
CN107359786A (zh) * 2017-09-01 2017-11-17 湖南科技大学 一种用于开关电源的软启动电路
CN207265858U (zh) * 2017-09-19 2018-04-20 郑州华伟电器技术有限公司 一种全范围软开关的移相全桥电路
CN209881650U (zh) * 2019-06-14 2019-12-31 北京物资学院 电源启动控制电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114578750A (zh) * 2022-03-07 2022-06-03 天津美腾科技股份有限公司 用于x射线设备的射源控制电路、方法及设备
CN114578750B (zh) * 2022-03-07 2023-08-15 天津美腾科技股份有限公司 用于x射线设备的射源控制电路、方法及设备

Also Published As

Publication number Publication date
CN110233569B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN105356739B (zh) 一种图腾无桥pfc电路的控制方法、装置和整流电路
CN101971476B (zh) 变流器的控制方法以及控制装置
CN104953882A (zh) 电力转换装置、发电系统、控制装置及电力转换方法
CN106849654B (zh) 栅极电压控制装置
CN109586590B (zh) 用于电流源型变流器的多功能空间矢量调制方法
CN106455278B (zh) X射线高压发生器、串联谐振变换器的控制电路和方法
US10374527B2 (en) Regenerative braking system
US20190020271A1 (en) Multi-level power factor correction circuit using hybrid devices
CN110233569A (zh) 电源启动控制电路及其控制方法
CN111740635A (zh) 一种单相lc型逆变器的双环控制方法
CN111416523B (zh) 一种双有源桥dc/dc变换器软充控制系统及方法
JP5300726B2 (ja) トランスを駆動するための方法と装置
CN107438941A (zh) 主动笔、升压电路及其控制方法
CN105186880B (zh) Vhf电路的控制方法、vhf电路及其电源扩展架构
CN108599222A (zh) 一种模块化多电平换流器预充电限流电阻的参数计算方法
CN107529348B (zh) 沿面放电元件驱动用电源电路
CN103973123A (zh) 一种弧焊电源系统、控制方法及电源模块
CN115441762B (zh) 一种单相五电平逆变器及其控制方法
CN101714204B (zh) 一种乘法器及具有该乘法器的功率因数校正控制器
CN104578858B (zh) 一种逆变器的非线性补偿方法
CN106533186A (zh) 电磁探测仪器发射机
CN209881650U (zh) 电源启动控制电路
CN105564263A (zh) 多直流输入的pwm逆变驱动装置及其方法
US8674763B2 (en) Multi-autonomous electronic amplifier
CN113328648B (zh) 一种逆变器pwm调制方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant