CN110202132A - 一种埃洛石-铁镍合金复合材料及其制备方法 - Google Patents

一种埃洛石-铁镍合金复合材料及其制备方法 Download PDF

Info

Publication number
CN110202132A
CN110202132A CN201910374394.XA CN201910374394A CN110202132A CN 110202132 A CN110202132 A CN 110202132A CN 201910374394 A CN201910374394 A CN 201910374394A CN 110202132 A CN110202132 A CN 110202132A
Authority
CN
China
Prior art keywords
solid
iron
galapectite
nickel alloy
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910374394.XA
Other languages
English (en)
Other versions
CN110202132B (zh
Inventor
吕双双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Provincial Geological Institute
Original Assignee
ZHEJIANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCE filed Critical ZHEJIANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCE
Priority to CN201910374394.XA priority Critical patent/CN110202132B/zh
Publication of CN110202132A publication Critical patent/CN110202132A/zh
Application granted granted Critical
Publication of CN110202132B publication Critical patent/CN110202132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种埃洛石‑铁镍合金复合材料及其制备方法。首先将埃洛石分散于氯化铁、氯化镍混合溶液中,铁离子水解生成氢离子对埃洛石内壁进行酸蚀,扩大其内径;利用羧乙基两性咪唑啉对金属离子络合形成可溶性有机金属络合物,有机金属络合物具有羧乙基两性咪唑啉低表面能、润湿等特性,迅速在埃洛石内壁铺展开来,真空环境经水合肼还原处理,可得到铁镍合金插层的复合材料。本发明制备的埃洛石‑铁镍合金复合材料利用了埃洛石管状结构特点,将其作为纳米反应器,降低了铁、镍纳米颗粒被氧化的程度且限制了磁性颗粒之间的团聚,制备出磁能积更高、剩磁对温度依赖小、磁化特性优良的铁镍合金,可广泛应用于吸波材料、硬质合金、合金镀层等行业。

Description

一种埃洛石-铁镍合金复合材料及其制备方法
技术领域
本发明涉及化合物的制备方法,尤其涉及一种埃洛石-铁镍合金复合材料及其制备方法。
背景技术
埃洛石是一种1:1二八面体高岭土系矿物,Al:Si为1:1,该矿物最普遍的形貌是中空管状结构,铝氧八面体层与硅氧四面体层间空间的不相匹配错位促使片状晶体卷曲成管。管内侧为Al-OH基团,管边缘为Al-OH和Si-OH基团,管外表面基团主要以O-Si-O存在,铝氧化物与硅氧化物等电点相异导致内层表征为带正电,外层表征为带负电。内外基团特征及带电性质为其选择性改性提供了多种途径,使其具有优良的材料加强性能,其在物质吸附、存储、运输以及电化学、储能等方面都具有优良的性能。
铁镍纳米合金粉体由于具有不同于单质铁、镍金属粉末的特殊性能以及特殊的表面磁性,在吸波材料、硬质合金、合金镀层等行业具有广泛的应用前景,例如由于晶粒细化,在记忆磁鼓、磁卡等电子产品方面也得到了广泛应用。铁镍合金粉体处纳米粒径将表现出磁能积更高、剩磁对温度依赖小、磁化特性优良等特点。
发明内容
为了克服现有技术的不足,本发明的目的是提供一种埃洛石-铁镍合金复合材料及其制备方法,通过创新的技术手段将铁镍合金插层进入埃洛石内管,控制粒径与分散性。本发明充分利用了我国丰富的埃洛石矿,为制备铁镍纳米合金粉体提供了优良的纳米反应材料,同时丰富了其制备途径与应用前景。
一种埃洛石-铁镍合金复合材料,由铁镍合金插层埃洛石得到;所述的埃洛石(HNTs)是一种天然铝硅酸盐管状粘土矿物,由高岭石片层在天然条件下卷曲而成;铁镍合金颗粒均匀分布于埃洛石层间。
一种所述的埃洛石-单质铁复合材料的制备方法,将埃洛石分散于氯化铁、氯化镍六水合物混合溶液中,加热促进金属离子水解,产生酸性环境,氢离子进入埃洛石内管,与铝氧八面体层反应,酸化生成无定型铝氧化物以及铝离子,酸蚀扩大埃洛石管内径;利用羧乙基两性咪唑啉对金属离子络合形成可溶性有机金属络合物,可溶性有机金属络合物在埃洛石内壁铺展开来,真空环境经水合肼还原处理,得到铁镍合金插层的复合材料。
所述的制备方法,步骤如下:
1)取10g粒径分布为0.1~200μm的埃洛石,加入50~100mL FeCl3浓度为3~5.67mol/L、NiCl2.6H2O浓度为0.33~0.81 mol/L混合溶液,80~120℃回流反应10~30h,反应完成后将混合体系过滤,取液相,记为液相①,取过滤后固体水洗三次,60℃真空干燥,记为固体①;
2)取1~3g羧乙基两性咪唑啉溶于50~100mL亚砜溶剂,加入固体①,超声20min,室温磁力搅拌20~40h,过滤回收固体,水洗三次,40~60℃烘干,磨细备用,记为固体②;
3)取固体②与液相①均匀混合,室温抽真空磁力搅拌20~30min,重复两次,过滤回收固体,水洗三次,记为固体③;
4)取固体③分散于浓度为2~4mol/L的水合肼水溶液中,室温磁力搅拌10~30min,过滤回收固体,水洗三次,40~60℃真空干燥即得到埃洛石-铁镍合金复合材料。
所述的亚砜溶剂为二甲基亚砜或癸基甲基亚砜,作为溶解和促渗体系。
本发明的有益效果:
提出的埃洛石-铁镍合金复合材料的制备方法,矿石来源丰富,价格低廉,涉及的表面活性剂绿色环保易降解,反应原理与工艺流程可通过简易反应器实现,操作条件节能环保。制备的埃洛石-铁镍合金复合材料,不仅综合了埃洛石中空管状结构和其稳定的矿物结构特征,而且制备的纳米尺寸铁镍合金在稳定性与分散性方面的性能得到了有效提高,扩大了其应用前景。本发明制备的埃洛石-铁镍合金复合材料利用了埃洛石管状结构特点,将其作为纳米反应器,降低了铁、镍纳米颗粒被氧化的程度且限制了磁性颗粒之间的团聚,制备出磁能积更高、剩磁对温度依赖小、磁化特性优良的铁镍合金,可广泛应用于吸波材料、硬质合金、合金镀层等行业。
具体实施方式
以下对本发明进行具体阐述。
一种埃洛石-铁镍合金复合材料,由铁镍合金插层埃洛石得到;所述的埃洛石(HNTs)是一种天然铝硅酸盐管状粘土矿物,由高岭石片层在天然条件下卷曲而成;铁镍合金颗粒均匀分布于埃洛石层间。
一种所述的埃洛石-单质铁复合材料的制备方法,第一步是将埃洛石分散于氯化铁、氯化镍六水合物混合溶液中,加热促进金属离子水解,产生酸性环境。
具体反应如下:
氢离子进入埃洛石内管,与铝氧八面体层反应,酸化生成无定型铝氧化物以及铝离子,酸蚀扩大埃洛石管内径。反应完成后将混合体系过滤,得到液相和固体,记为取液相①和固体①。
第二步是制备咪唑啉改性的埃洛石。将步骤一的固体①分散于羟乙基两性咪唑啉表面活性剂溶液中,碱性溶液条件下羟乙基两性咪唑啉能有效降低埃洛石表面能,且其带负电,埃洛石管内带正电,磁力搅拌充分接触,通过静电吸附作用,润湿性较好的羟乙基两性咪唑啉迅速在埃洛石管内铺展开来得到改性后的埃洛石(固体②)。
第三步是将液相①与固体②充分混合,使溶液中带正电的氢氧化铁胶体、铁离子、镍离子与附着在埃洛石管内的羟乙基两性咪唑啉充分接触,反应生成有机金属络合物。
第四步是通过水合肼的还原作用将三价铁和二价镍还原生成铁镍单质。水合肼分子量较小,渗透性优异,在搅拌作用下可充分进入埃洛石纳米管管内与三价铁和二价镍作用,将其还原生成铁镍合金,水洗干燥固相即可得到埃洛石-铁镍合金复合材料。
所述的制备方法,步骤如下:
1)取10g粒径分布为0.1~200μm的埃洛石,加入50~100mL FeCl3浓度为3~5.67mol/L、NiCl2.6H2O浓度为0.33~0.81 mol/L混合溶液,80~120℃回流反应10~30h,反应完成后将混合体系过滤,取液相,记为液相①,取过滤后固体水洗三次,60℃真空干燥,记为固体①;
2)取1~3g羧乙基两性咪唑啉溶于50~100mL亚砜溶剂,加入固体①,超声20min,室温磁力搅拌20~40h,过滤回收固体,水洗三次,40~60℃烘干,磨细备用,记为固体②;
3)取固体②与液相①均匀混合,室温抽真空磁力搅拌20~30min,重复两次,过滤回收固体,水洗三次,记为固体③;
4)取固体③分散于浓度为2~4mol/L的水合肼水溶液中,室温磁力搅拌10~30min,过滤回收固体,水洗三次,40~60℃真空干燥即得到埃洛石-铁镍合金复合材料。
所述的亚砜溶剂为二甲基亚砜或癸基甲基亚砜,作为溶解和促渗体系。
以下结合实施例进一步对本发明做进一步的阐述。
实施例1
1)取10g粒径分布为0.1~200μm的埃洛石,加入50~100mL FeCl3浓度为3~5.67mol/L、NiCl2.6H2O浓度为0.33~0.81 mol/L混合溶液,80~120℃回流反应10~30h,反应完成后将混合体系过滤,取液相,记为液相①,取过滤后固体水洗三次,60℃真空干燥,记为固体①;
2)取1~3g羧乙基两性咪唑啉溶于50~100mL二甲基亚砜溶剂,加入固体①,超声20min,室温磁力搅拌20~40h,过滤回收固体,水洗三次,40~60℃烘干,磨细备用,记为固体②;
3)取固体②与液相①均匀混合,室温抽真空磁力搅拌20~30min,重复两次,过滤回收固体,水洗三次,记为固体③;
4)取固体③分散于浓度为2~4mol/L的水合肼水溶液中,室温磁力搅拌10~30min,过滤回收固体,水洗三次,40~60℃真空干燥即得到埃洛石-铁镍合金复合材料。
实施例2
1)取10g粒径分布为0.1~200μm的埃洛石,加入50~100mL FeCl3浓度为3~5.67mol/L、NiCl2.6H2O浓度为0.33~0.81 mol/L混合溶液,80~120℃回流反应10~30h,反应完成后将混合体系过滤,取液相,记为液相①,取过滤后固体水洗三次,60℃真空干燥,记为固体①;
2)取1~3g羧乙基两性咪唑啉溶于50~100mL癸甲基亚砜溶剂,加入固体①,超声20min,室温磁力搅拌20~40h,过滤回收固体,水洗三次,40~60℃烘干,磨细备用,记为固体②;
3)取固体②与液相①均匀混合,室温抽真空磁力搅拌20~30min,重复两次,过滤回收固体,水洗三次,记为固体③;
4)取固体③分散于浓度为2~4mol/L的水合肼水溶液中,室温磁力搅拌10~30min,过滤回收固体,水洗三次,40~60℃真空干燥即得到埃洛石-铁镍合金复合材料。
实施例3
1)取10g粒径分布为0.1~200μm的埃洛石,加入50~100mL FeCl3浓度为3~5.67mol/L、NiCl2.6H2O浓度为0.33~0.81 mol/L混合溶液,80~120℃回流反应10~30h,反应完成后将混合体系过滤,取液相,记为液相①,取过滤后固体水洗三次,60℃真空干燥,记为固体①;
2)取1~3g羧乙基两性咪唑啉溶于50~100mL二甲基亚砜溶剂,加入固体①,超声20min,室温磁力搅拌20~40h,过滤回收固体,水洗三次,40~60℃烘干,磨细备用,记为固体②;
3)取固体②与液相①均匀混合,室温抽真空磁力搅拌20~30min,重复两次,过滤回收固体,水洗三次,记为固体③;
4)取固体③分散于浓度为2~4mol/L的水合肼水溶液中,室温磁力搅拌10~30min,过滤回收固体,水洗三次,40~60℃真空干燥即得到埃洛石-铁镍合金复合材料。
实施例4
1)取10g粒径分布为0.1~200μm的埃洛石,加入50~100mL FeCl3浓度为3~5.67mol/L、NiCl2.6H2O浓度为0.33~0.81 mol/L混合溶液,80~120℃回流反应10~30h,反应完成后将混合体系过滤,取液相,记为液相①,取过滤后固体水洗三次,60℃真空干燥,记为固体①;
2)取1~3g羧乙基两性咪唑啉溶于50~100mL癸甲基亚砜溶剂,加入固体①,超声20min,室温磁力搅拌20~40h,过滤回收固体,水洗三次,40~60℃烘干,磨细备用,记为固体②;
3)取固体②与液相①均匀混合,室温抽真空磁力搅拌20~30min,重复两次,过滤回收固体,水洗三次,记为固体③;
4)取固体③分散于浓度为2~4mol/L的水合肼水溶液中,室温磁力搅拌10~30min,过滤回收固体,水洗三次,40~60℃真空干燥即得到埃洛石-铁镍合金复合材料。
实施例5
1)取10g粒径分布为0.1~200μm的埃洛石,加入50~100mL FeCl3浓度为3~5.67mol/L、NiCl2.6H2O浓度为0.33~0.81 mol/L混合溶液,80~120℃回流反应10~30h,反应完成后将混合体系过滤,取液相,记为液相①,取过滤后固体水洗三次,60℃真空干燥,记为固体①;
2)取1~3g羧乙基两性咪唑啉溶于50~100mL二甲基亚砜溶剂,加入固体①,超声20min,室温磁力搅拌20~40h,过滤回收固体,水洗三次,40~60℃烘干,磨细备用,记为固体②;
3)取固体②与液相①均匀混合,室温抽真空磁力搅拌20~30min,重复两次,过滤回收固体,水洗三次,记为固体③;
4)取固体③分散于浓度为2~4mol/L的水合肼水溶液中,室温磁力搅拌10~30min,过滤回收固体,水洗三次,40~60℃真空干燥即得到埃洛石-铁镍合金复合材料。
实施例6
1)取10g粒径分布为0.1~200μm的埃洛石,加入50~100mL FeCl3浓度为3~5.67mol/L、NiCl2.6H2O浓度为0.33~0.81 mol/L混合溶液,80~120℃回流反应10~30h,反应完成后将混合体系过滤,取液相,记为液相①,取过滤后固体水洗三次,60℃真空干燥,记为固体①;
2)取1~3g羧乙基两性咪唑啉溶于50~100mL癸甲基亚砜溶剂,加入固体①,超声20min,室温磁力搅拌20~40h,过滤回收固体,水洗三次,40~60℃烘干,磨细备用,记为固体②;
3)取固体②与液相①均匀混合,室温抽真空磁力搅拌20~30min,重复两次,过滤回收固体,水洗三次,记为固体③;
4)取固体③分散于浓度为2~4mol/L的水合肼水溶液中,室温磁力搅拌10~30min,过滤回收固体,水洗三次,40~60℃真空干燥即得到埃洛石-铁镍合金复合材料。
实施例7
1)取10g粒径分布为0.1~200μm的埃洛石,加入50~100mL FeCl3浓度为3~5.67mol/L、NiCl2.6H2O浓度为0.33~0.81 mol/L混合溶液,80~120℃回流反应10~30h,反应完成后将混合体系过滤,取液相,记为液相①,取过滤后固体水洗三次,60℃真空干燥,记为固体①;
2)取1~3g羧乙基两性咪唑啉溶于50~100mL二甲基亚砜溶剂,加入固体①,超声20min,室温磁力搅拌20~40h,过滤回收固体,水洗三次,40~60℃烘干,磨细备用,记为固体②;
3)取固体②与液相①均匀混合,室温抽真空磁力搅拌20~30min,重复两次,过滤回收固体,水洗三次,记为固体③;
4)取固体③分散于浓度为2~4mol/L的水合肼水溶液中,室温磁力搅拌10~30min,过滤回收固体,水洗三次,40~60℃真空干燥即得到埃洛石-铁镍合金复合材料。

Claims (4)

1.一种埃洛石-铁镍合金复合材料,其特征在于,由铁镍合金插层埃洛石得到;所述的埃洛石是一种天然铝硅酸盐管状粘土矿物,由高岭石片层在天然条件下卷曲而成;铁镍合金颗粒均匀分布于埃洛石层间。
2.一种根据权利要求1所述的埃洛石-单质铁复合材料的制备方法,其特征在于,
将埃洛石分散于氯化铁、氯化镍六水合物混合溶液中,加热促进金属离子水解,产生酸性环境,氢离子进入埃洛石内管,与铝氧八面体层反应,酸化生成无定型铝氧化物以及铝离子,酸蚀扩大埃洛石管内径;利用羧乙基两性咪唑啉对金属离子络合形成可溶性有机金属络合物,可溶性有机金属络合物在埃洛石内壁铺展开来,真空环境经水合肼还原处理,得到铁镍合金插层的复合材料。
3.根据权利要求2所述的制备方法,其特征在于,步骤如下:
1)取10g粒径分布为0.1~200μm的埃洛石,加入50~100mL 混合溶液,其中FeCl3浓度为3~5.67mol/L,NiCl2.6H2O浓度为0.33~0.81 mol/L,80~120℃回流反应10~30h,反应完成后将混合体系过滤,取液相,记为液相①,取过滤后固体水洗三次,60℃真空干燥,记为固体①;
2)取1~3g羧乙基两性咪唑啉溶于50~100mL亚砜溶剂,加入固体①,超声20min,室温磁力搅拌20~40h,过滤回收固体,水洗三次,40~60℃烘干,磨细备用,记为固体②;
3)取固体②与液相①均匀混合,室温抽真空磁力搅拌20~30min,重复两次,过滤回收固体,水洗三次,记为固体③;
4)取固体③分散于浓度为2~4mol/L的水合肼水溶液中,室温磁力搅拌10~30min,过滤回收固体,水洗三次,40~60℃真空干燥即得到埃洛石-铁镍合金复合材料。
4.根据权利要求2所述的制备方法,其特征在于,所述的亚砜溶剂为二甲基亚砜或癸基甲基亚砜,作为溶解和促渗体系。
CN201910374394.XA 2019-05-07 2019-05-07 一种埃洛石-铁镍合金复合材料及其制备方法 Active CN110202132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910374394.XA CN110202132B (zh) 2019-05-07 2019-05-07 一种埃洛石-铁镍合金复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910374394.XA CN110202132B (zh) 2019-05-07 2019-05-07 一种埃洛石-铁镍合金复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110202132A true CN110202132A (zh) 2019-09-06
CN110202132B CN110202132B (zh) 2021-02-19

Family

ID=67785586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910374394.XA Active CN110202132B (zh) 2019-05-07 2019-05-07 一种埃洛石-铁镍合金复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110202132B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718182A (zh) * 2021-08-30 2021-11-30 无锡华能电缆有限公司 锌铝镀层殷钢单线及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090202719A1 (en) * 2003-01-30 2009-08-13 Science Applications International Corporation Microwave-attenuating composite materials, methods for preparing the same, intermediates for preparing the same, devices containing the same, methods of preparing such a device, and methods of attentuating microwaves
CN102935371A (zh) * 2012-11-16 2013-02-20 南开大学 一种用于催化分解磷化氢气体制备黄磷的催化剂及其制备方法
WO2015165061A1 (en) * 2014-04-30 2015-11-05 Xi'an Jiaotong University Composites comprising halloysite tubes and methods for their preparation and use
CN107418510A (zh) * 2017-05-16 2017-12-01 天长市中德电子有限公司 一种埃洛石基软磁铁氧体吸波材料的制备方法
CN108059193A (zh) * 2017-07-05 2018-05-22 中南大学 一种埃洛石管内组装四氧化三铁纳米复合材料的制备方法
CN108067276A (zh) * 2016-11-09 2018-05-25 天津格林凯恩化工科技有限公司 一种光催化分解有毒有害气体ph3催化剂的制备方法
US9981074B1 (en) * 2015-09-25 2018-05-29 Louisiana Tech Research Corporation Method for metalizing nanotubes through electrolysis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090202719A1 (en) * 2003-01-30 2009-08-13 Science Applications International Corporation Microwave-attenuating composite materials, methods for preparing the same, intermediates for preparing the same, devices containing the same, methods of preparing such a device, and methods of attentuating microwaves
CN102935371A (zh) * 2012-11-16 2013-02-20 南开大学 一种用于催化分解磷化氢气体制备黄磷的催化剂及其制备方法
WO2015165061A1 (en) * 2014-04-30 2015-11-05 Xi'an Jiaotong University Composites comprising halloysite tubes and methods for their preparation and use
US9981074B1 (en) * 2015-09-25 2018-05-29 Louisiana Tech Research Corporation Method for metalizing nanotubes through electrolysis
CN108067276A (zh) * 2016-11-09 2018-05-25 天津格林凯恩化工科技有限公司 一种光催化分解有毒有害气体ph3催化剂的制备方法
CN107418510A (zh) * 2017-05-16 2017-12-01 天长市中德电子有限公司 一种埃洛石基软磁铁氧体吸波材料的制备方法
CN108059193A (zh) * 2017-07-05 2018-05-22 中南大学 一种埃洛石管内组装四氧化三铁纳米复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XUEJIAO TANG等: "Halloysite-nanotubes supported FeNi alloy nanoparticles for catalytic decomposition of toxic phosphine gas into yellow phosphorus and hydrogen", 《CHEMOSPHERE》 *
陈芸霞等: "新型NiFe2O4/埃洛石纳米复合材料的制备及其吸附性能的研究", 《化工新型材料》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718182A (zh) * 2021-08-30 2021-11-30 无锡华能电缆有限公司 锌铝镀层殷钢单线及其制备方法

Also Published As

Publication number Publication date
CN110202132B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
Zhan et al. Facile solvothermal preparation of Fe 3 O 4–Ag nanocomposite with excellent catalytic performance
CN102553593B (zh) 磁性纳米四氧化三铁-石墨烯复合催化剂的制备方法
Wang et al. Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres
Bai et al. Application of iron-based materials for removal of antimony and arsenic from water: Sorption properties and mechanism insights
Deng et al. Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach
Yang et al. Synthesis of magnetic graphene oxide-titanate composites for efficient removal of Pb (II) from wastewater: performance and mechanism
Cui et al. Facile synthesis of cobalt ferrite submicrospheres with tunable magnetic and electrocatalytic properties
CN104722777B (zh) 一种淀粉稳定化纳米零价铁的快速制备方法
CN108456530B (zh) 一种磁性羧基化空心微球土壤修复剂、其制备方法及应用
Li et al. Efficient U (VI) adsorption on iron/carbon composites derived from the coupling of cellulose with iron oxides: Performance and mechanism
TW200808471A (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
CN102826613B (zh) 一种石墨烯基四氧化三铁纳米复合材料的制备方法
Venkateswarlu et al. An environmentally benign synthesis of Fe3O4 nanoparticles to Fe3O4 nanoclusters: Rapid separation and removal of Hg (II) from an aqueous medium
Zhang et al. Synthesis and characterization of Fe 3 O 4@ SiO 2 magnetic composite nanoparticles by a one-pot process
CN107601461A (zh) 一种四氧化三铁包覆碳纳米管的磁性复合材料及其制备方法
Xiong et al. In situ growth of gold nanoparticles on magnetic γ-Fe 2 O 3@ cellulose nanocomposites: a highly active and recyclable catalyst for reduction of 4-nitrophenol
CN101599335A (zh) 一种耐氧化二甲基硅油基磁性液体及其制备方法
CN102583576A (zh) 一种利用铁尾矿制备超顺磁性Fe3O4纳米颗粒的方法
Siregar et al. A pollutant gas sensor based on Fe3O4 nanostructures: A review
CN111517372A (zh) 一种富勒烯包覆Fe3O4复合纳米材料及其制备方法
Wang et al. Controlled synthesis of magnetic Pd/Fe 3 O 4 spheres via an ethylenediamine-assisted route
Zhang et al. Facile one-pot synthesis of cellulose nanocrystal-supported hollow CuFe 2 O 4 nanoparticles as efficient catalyst for 4-nitrophenol reduction
CN108483474A (zh) 一种纳米级球形氧化铝的制备方法
Han et al. Facile synthesis of Fe3Pt-Ag nanocomposites for catalytic reduction of methyl orange
CN102001712A (zh) 基于模板热分解制备超顺磁性Fe3O4纳米粒子的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231218

Address after: No.498 Stadium Road, Xihu District, Hangzhou, Zhejiang 310000

Patentee after: Zhejiang Provincial Geological Institute

Address before: No.508 Stadium Road, Xiacheng District, Hangzhou, Zhejiang 310007

Patentee before: ZHEJIANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCE

TR01 Transfer of patent right