CN110201676A - 一种镶嵌无配体量子点的铋酸铜薄膜、制备方法及应用 - Google Patents

一种镶嵌无配体量子点的铋酸铜薄膜、制备方法及应用 Download PDF

Info

Publication number
CN110201676A
CN110201676A CN201910542362.6A CN201910542362A CN110201676A CN 110201676 A CN110201676 A CN 110201676A CN 201910542362 A CN201910542362 A CN 201910542362A CN 110201676 A CN110201676 A CN 110201676A
Authority
CN
China
Prior art keywords
quantum dot
acid copper
thin film
ligand quantum
copper thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910542362.6A
Other languages
English (en)
Inventor
王洪强
徐有勋
简洁
叶谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910542362.6A priority Critical patent/CN110201676A/zh
Publication of CN110201676A publication Critical patent/CN110201676A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8973Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种镶嵌无配体量子点的铋酸铜薄膜、制备方法及应用,包括以下步骤:将半导体氧化物或金属材料分散在液相媒介中,得到混合液;在超声辅助下,将混合液置于激光束下辐照,得到无配体量子点胶体溶液;将无配体量子点胶体溶液与铋酸铜前驱体溶液混合、制膜、烧结,获得镶嵌无配体量子点的铋酸铜薄膜。本发明通过液相脉冲辐照技术将无配体量子点均匀镶嵌在铋酸铜薄膜中,使铋酸铜薄膜的载流子分离效率显著提高,对该薄膜光电流密度进行测试,结果表明,相对于未镶嵌无配体量子点的铋酸铜薄膜来说,光电流密度从2.0mA/cm2提高到了3.0mA/cm2左右,光电性能得到了明显改善。

Description

一种镶嵌无配体量子点的铋酸铜薄膜、制备方法及应用
技术领域
本发明涉及光电催化技术领域,具体涉及一种镶嵌无配体量子点的铋酸铜薄膜、制备方法及应用。
背景技术
氢能是一种高效清洁的能源,是实现人类社会可持续发展的重要能源之一。光电化学(PEC)水解制氢是一种低成本的制氢方式,这项技术的关键在于寻找廉价稳定的光电阴极材料。铋酸铜(CuBi2O4)又称铋铜矿,是一种天然矿物,廉价易得并且化学性质稳定。近年来,CuBi2O4由于其足够窄的直接带隙(1.5-1.8eV),合适的带边缘位置(>+1V vs.RHE)和低成本等多种优点,被认为是PEC水分解的理想材料之一。在AM 1.5G的模拟光下,CuBi2O4的理论光流密度为19.7-29mA/cm2,然而实验的光电流密度远远低于此理论值。主要是由于CuBi2O4较低的载流子迁移率(1.2×10-3cm2V-1s-1)导致光生电子和空穴在体相复合比较严重。开发一种有效的策略提高载流子在CuBi2O4光电极中的体相传输成为提高CuBi2O4光阴极性能的关键问题。
目前主要通过纳米结构设计、构筑异质结和元素掺杂等方法提高CuBi2O4光阴极的载流子分离效率。纳米结构设计的设计可以减少载流子的扩散距离同时提高光吸收效率,然而这种方法使得光电极的制备工艺比较复杂,不能从根本上解决载流子传输这一问题。异质结是也一种提高载流子分离效率的策略,通过与CuO组成异质结可以提高载流子的分离效率,然而光电流密度仍然远远低于理论值。掺杂也是提高载流子传输的常见方法,比如W/Mo掺杂可以显著提高BiVO4的光电性能,然而对于CuBi2O4薄膜目前还缺乏有效的掺杂策略。
发明内容
本发明的目的是为了解决上述背景技术中的不足,提供一种镶嵌无配体量子点的铋酸铜薄膜、制备方法及应用,主要通过液相脉冲辐照技术将无配体量子点镶嵌于CuBi2O4薄膜中,获得镶嵌无配体量子点的CuBi2O4薄膜,该方法操作简单,普适性强,可以显著提高CuBi2O4薄膜的载流子分离效率和光电性能。
本发明的第一个目的是提供一种镶嵌无配体量子点的铋酸铜薄膜,包括纳米多孔的铋酸铜薄膜,以及镶嵌在所述铋酸铜薄膜中的无配体量子点,所述无配体量子点均匀地镶嵌在所述铋酸铜薄膜中,且所述无配体量子点在所述镶嵌无配体量子点的铋酸铜薄膜中的质量分数为0.1-5.0%;
其中,所述无配体量子点由半导体氧化物混合液或金属材料混合液经激光束辐照得到;所述半导体氧化物混合液或金属材料混合液由半导体氧化物或金属材料分散在液相媒介中得到。
优选的,所述半导体氧化物为BaTiO3、SrTiO3、TiO2、BiVO4或BiFeO3,所述金属材料为Au或Pt。
优选的,所述液相媒介为乙醇、乙二醇和醋酸按照等体积混合而成的混合溶剂。
本发明的第二个目的是提供一种镶嵌无配体量子点的铋酸铜薄膜的制备方法,包括以下步骤:
S1,将半导体氧化物分散在液相媒介中,得到混合液;或者将金属材料分散在液相媒介中,然后置于激光束下辐照,辐照完毕后取出金属材料,得到混合液;
S2,在超声辅助下,将S1中混合液置于激光束下辐照,得到无配体量子点胶体溶液,所述无配体量子点胶体溶液浓度为0.1~1mg/mL;
S3,将S2得到的无配体量子点胶体溶液与铋酸铜前驱体溶液混合、制膜、烧结,获得镶嵌无配体量子点的铋酸铜薄膜;
其中,铋酸铜前驱体溶液浓度为0.1~0.5mol/L;
无配体量子点胶体溶液与铋酸铜前驱体溶液的体积比为1:1~5。
优选的,S1中激光采用非聚焦激光,且所述非聚焦激光的输出波长为1064nm,脉冲频率为10Hz,输出光斑直径约为10mm,激光辐照能量为800mJ/cm2,辐照时间为5min。
优选的,S2中激光采用非聚焦激光,且所述非聚焦激光的输出波长为355nm或1064nm,脉冲频率为10Hz或30Hz,输出光斑直径约为6~10mm,激光辐照能量为50~800mJ/cm2,辐照时间为5~30min。
本发明的第三个目的是提供上述镶嵌无配体量子点的铋酸铜薄膜在光电催化中的应用。
与现有技术相比,本发明的有益效果是:
1)本发明采用液相脉冲激光辐照技术获得较难合成的尺寸小于10nm的无配体量子点,再采用金属有机物分解法制备镶嵌无配体量子点的钒酸铋薄膜,具体是在前驱体制备步骤中直接将无配体量子点胶体溶液引入钒酸铋薄膜前驱体溶液后进行旋涂、烧结,整个制备过程方法简单、条件温和。
2)本发明通过向CuBi2O4光电阴极薄膜中均匀地镶嵌量子点显著地提高了光电极的载流子分离效率,CuBi2O4光电阴极薄膜的光电流密度从2.0mA/cm2提高到了3.0mA/cm2左右,光电性能得到了明显改善。
附图说明
图1为实施例1中BaTiO3原始颗粒SEM图。
图2为实施例1中激光辐照后的BaTiO3纳米晶TEM图。
图3为对比例1的CuBi2O4薄膜和实施例1中镶嵌BaTiO3无配体量子点CuBi2O4薄膜的SEM图,其中,图a和图b为对比例1不同角度的CuBi2O4薄膜SEM图,图c和图d为实施例1不同角度的镶嵌BaTiO3无配体量子点CuBi2O4薄膜的SEM图。
图4为实施例1中镶嵌BaTiO3量子点CuBi2O4薄膜的TEM图,其中,图a和图b为镶嵌BaTiO3量子点CuBi2O4薄膜不同放大倍数下的TEM图。
图5为对比例1的CuBi2O薄膜和实施例1中镶嵌BaTiO3无配体量子点CuBi2O4薄膜的光电流密度曲线图。
图6为对比例1的CuBi2O4薄膜和实施例1中镶嵌BaTiO3无配体量子点CuBi2O4薄膜的光电转化效率曲线图。
图7为实施例2中SrTiO3原始颗粒SEM图。
图8为实施例2中激光辐照后的SrTiO3纳米晶TEM图。
图9为对比例1CuBi2O4薄膜和实施例2中镶嵌SrTiO3无配体量子点CuBi2O4薄膜的光电流密度曲线图。
图10为实施例3中激光辐照后Au纳米晶TEM图。
图11为对比例1CuBi2O4薄膜和实施例3中镶嵌Au无配体量子点CuBi2O4薄膜的光电流密度曲线图。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例和附图对本发明作进一步说明,但所举实施例不作为对本发明的限定。
各实施例中超声功率范围为300W,频率为40kHz,下述各实施例中所述实验方法如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可在市场上购买得到。
实施例1
一种镶嵌BaTiO3无配体量子点的铋酸铜薄膜,包括纳米多孔的铋酸铜薄膜以及镶嵌在所述铋酸铜薄膜中的BaTiO3无配体量子点,且BaTiO3无配体量子点在镶嵌BaTiO3无配体量子点的铋酸铜薄膜中的质量分数为5.0%。
具体制备方法包括以下步骤:
S1,将Cu(NO3)2·3H2O和Bi(NO3)3·5H2O以1:2的摩尔比溶于由乙醇、乙二醇和醋酸按照等体积混合的溶剂中,混合均匀后,加入嵌段共聚物F108混合均匀,得到0.1mol/ml的CuBi2O4前驱体溶液;其中,CuBi2O4前驱体溶液中嵌段共聚物F108的浓度为0.1mg/ml;F108的加入一方面可以提高溶液粘度便于成膜,另一方面作为模板形成纳米多孔的薄膜;
S2,将10mg的BaTiO3颗粒分散在10ml由乙醇、乙二醇和醋酸按照等体积混合的溶剂中,得到混合液;
S3,将混合液先超声预处理20min,再将混合液置于非聚焦激光束下辐照反应,反应过程中采用超声辅助,使反应充分进行;其中非聚焦激光的脉冲频率为30Hz,输出波长为355nm,输出光斑直径为8mm,单脉冲能量为200mJ/cm2,辐照5min后得到透明无色胶体颗粒溶液,即为BaTiO3无配体量子点胶体溶液;
S4,将S1得到的CuBi2O4前驱体溶液与S3得到的BaTiO3无配体量子点胶体溶液按照体积比为1:1混合均匀,得到混合溶液,将混合溶液滴在20mm*20mm FTO玻璃衬底上旋涂,旋涂过程中,依次以2000r/min旋转10s,以3500r/min高速旋转40s,使混合溶液均匀的涂覆在FTO玻璃衬底上,最后于500℃热处理1h,即得到镶嵌有BaTiO3无配体量子点的CuBi2O4薄膜。
其中,20mm*20mm FTO玻璃衬底在旋涂前依次用水、乙醇和丙酮中超声清洗各20分钟,并氮气吹干。
实施例2
一种镶嵌SrTiO3无配体量子点的铋酸铜薄膜,包括纳米多孔的铋酸铜薄膜以及镶嵌在所述铋酸铜薄膜中的SrTiO3无配体量子点,且SrTiO3无配体量子点在镶嵌SrTiO3无配体量子点的铋酸铜薄膜中的质量分数为0.1%。
具体制备方法包括以下步骤:
S1,将Cu(NO3)2·3H2O和Bi(NO3)3·5H2O以1:2的摩尔比溶于由乙醇、乙二醇和醋酸按照等体积混合的溶剂中,混合均匀后,加入嵌段共聚物F108混合均匀,得到0.5mol/ml的CuBi2O4前驱体溶液;其中,CuBi2O4前驱体溶液中嵌段共聚物F108的浓度为0.1mg/ml;
S2,将1mgSrTiO3颗粒分散在10ml由乙醇、乙二醇和醋酸按照等体积混合的溶剂中,得到混合液;
S3,将混合液先超声预处理20min,再将混合液置于非聚焦激光束下辐照反应,反应过程中采用超声辅助,使反应充分进行;其中非聚焦激光的脉冲频率为30Hz,输出波长为355nm,输出光斑直径为10mm,单脉冲能量为50mJ/cm2,辐照30min后得到透明无色胶体颗粒溶液,即为SrTiO3无配体量子点胶体溶液;
S4,将S1得到的CuBi2O4前驱体溶液与S3得到的SrTiO3无配体量子点胶体溶液按照体积比为1:3混合均匀,得到混合溶液,将混合溶液滴在20mm*20mm FTO玻璃衬底上旋涂,旋涂过程中,依次以2000r/min旋转10s,以3500r/min高速旋转40s,使混合溶液均匀的涂覆在FTO玻璃衬底上,最后于500℃热处理1h,即得到镶嵌有SrTiO3无配体量子点的CuBi2O4薄膜。
其中,20mm*20mm FTO玻璃衬底在旋涂前依次用水、乙醇和丙酮中超声清洗各20分钟,并氮气吹干。
实施例3
一种镶嵌Au无配体量子点的铋酸铜薄膜,包括纳米多孔的铋酸铜薄膜以及镶嵌在所述铋酸铜薄膜中的Au无配体量子点,且Au无配体量子点在镶嵌Au无配体量子点的铋酸铜薄膜中的质量分数为3%。
具体制备方法包括以下步骤:
S1,将Cu(NO3)2·3H2O和Bi(NO3)3·5H2O以1:2的摩尔比溶于由乙醇、乙二醇和醋酸按照等体积混合的溶剂中,混合均匀后,加入嵌段共聚物F108混合均匀,得到0.2mol/ml的CuBi2O4前驱体溶液;其中,CuBi2O4前驱体溶液中嵌段共聚物F108的浓度为0.1mg/ml;
S2,将Au片置于10ml由乙醇、乙二醇和醋酸按照等体积组成的混合溶剂中,将含有Au片的混合溶剂置于非聚焦激光束下辐照5min,反应过程中采用超声辅助,使反应充分进行;非聚焦激光脉冲频率为10Hz,输出波长为1064nm,输出光斑直径约为10mm,单脉冲能量为800J/cm2;处理完毕后将Au片从混合溶剂中取出,得到含有Au纳米颗粒的混合液;
S3,继续用非聚焦激光辐照混合物溶液20min,并在反应过程中继续采用超声辅助反应,激光脉冲频率为10Hz,输出波长为355nm,输出光斑直径约为6mm,单脉冲能量为300J/cm2,得到了透明粉色胶体颗粒,即浓度为0.4mg/mL的Au无配体量子点胶体溶液;
S4,将S1得到的CuBi2O4前驱体溶液与S3得到的Au无配体量子点胶体溶液按照体积比为1:5混合均匀,得到混合溶液,将混合溶液滴在20mm*20mm FTO玻璃衬底上旋涂,旋涂过程中,依次以2000r/min旋转10s,以3500r/min高速旋转40s,使混合溶液均匀的涂覆在FTO玻璃衬底上,最后于500℃热处理1h,即得到镶嵌有Au无配体量子点的CuBi2O4薄膜。
其中,20mm*20mm FTO玻璃衬底在旋涂前依次用水、乙醇和丙酮中超声清洗各20分钟,并氮气吹干。
对比例1
制备CuBi2O4薄膜:
将Cu(NO3)2·3H2O和Bi(NO3)3·5H2O以1:2的摩尔比溶于由乙醇、乙二醇和醋酸按照等体积组成的混合溶剂中,混合均匀后,加入嵌段共聚物F108混合均匀,得到0.5mol/ml的CuBi2O4前驱体溶液;其中,CuBi2O4前驱体溶液中嵌段共聚物F108的浓度为0.1mg/ml;
将CuBi2O4前驱体溶液滴在20mm*20mm FTO玻璃衬底上旋涂,旋涂过程中,依次以2000r/min旋转10s,以3500r/min高速旋转40s,使混合溶液均匀的涂覆在FTO玻璃衬底上,最后于500℃热处理1h,即得到CuBi2O4薄膜。
其中,20mm*20mm FTO玻璃衬底在旋涂前依次用水、乙醇和丙酮中超声清洗各20分钟,并氮气吹干。
实施例1-3和对比例1制得的CuBi2O4薄膜的光电流密度进行测试,具体结果见表1。
表1光电流密度
项目 光电流密度(0.6V<sub>RHE</sub>)
实施例1 3.0mAcm<sup>-2</sup>
实施例2 2.8mAcm<sup>-2</sup>
实施例3 3.1mAcm<sup>-2</sup>
对比例1 2.0mAcm<sup>-2</sup>
从表1可以看出,实施例1-3中制得的镶嵌有无配体量子点的CuBi2O4薄膜的光电流密度均高于对比例1的CuBi2O4薄膜的光电流密度。实施例1-3的光电流密度较对比例1分别提高了50%、40%和55%。
为了说明本发明的效果,本发明还对实施例1-3和对比例1中原料以及制备出的产品的性能进行了测试,具体结果见图1-11。
图1为实施例1中BaTiO3原料的SEM图,从图1可以看出,BaTiO3颗粒粒径为80-100nm,分散较为均匀。
图2为实施例1中激光辐照后的BaTiO3纳米晶TEM图,从图2可以看出,BaTiO3纳米晶粒径为3-6nm,且分散均匀。
图3为对比例1的CuBi2O4薄膜和实施例1中镶嵌BaTiO3无配体量子点CuBi2O4薄膜的SEM图,其中,图a和图b为对比例1不同角度的CuBi2O4薄膜SEM图,图c和图d为实施例1不同角度的镶嵌BaTiO3无配体量子点CuBi2O4薄膜SEM图,从图3可以看出,BaTiO3无配体量子点CuBi2O4薄膜为纳米多孔结构,且以蠕虫状颗粒有序排列成膜状结构,其蠕虫状颗粒直径为40-60nm,且BaTiO3无配体量子点对CuBi2O4薄膜的形貌没有明显的影响。
图4为实施例1中镶嵌BaTiO3无配体量子点CuBi2O4薄膜的TEM图,其中,图a和图b为实施例1镶嵌BaTiO3无配体量子点CuBi2O4薄膜在不同放大倍数下的TEM图,从图4可以看出,CuBi2O4的基体上有一些<10nm的BaTiO3纳米晶,BaTiO3无配体量子点均匀地镶嵌在CuBi2O4的基体中。
图5为对比例1的CuBi2O4薄膜和实施例1中镶嵌BaTiO3无配体量子点CuBi2O4薄膜的光电流密度曲线图,从图5可以看出,镶嵌BaTiO3无配体量子点CuBi2O4薄膜在0.6VRHE时的光电流密度为3.0mA/cm2,相比于CuBi2O4薄膜光电流密度的2.0mA/cm2提高了50%,
图6为对比例1CuBi2O4薄膜和实施例1中镶嵌BaTiO3无配体量子点CuBi2O4薄膜的光电转化效率曲线图,从图6可以看出,镶嵌BaTiO3无配体量子点CuBi2O4薄膜的光电转化效率相比CuBi2O4薄膜的光电转化效率明显提高,尤其在400-600nm范围内的光电转化效率提高的更为明显。
图7为实施例2中SrTiO3原料SEM图,从图7可以看出,SrTiO3颗粒的为块体状,粒径为200-400nm,分散较均匀。
图8为实施例2中激光辐照后的SrTiO3纳米晶TEM图,从图8可以看出,SrTiO3原料激光辐照后形成尺寸小于10nm的SrTiO3纳米晶,且分散均匀。
图9为对比例1CuBi2O4薄膜和实施例2中镶嵌SrTiO3无配体量子点CuBi2O4薄膜的光电流密度曲线图,从图9可以看出,镶嵌SrTiO3无配体量子点CuBi2O4薄膜在0.6VRHE时的光电流密度为2.8mA/cm2,相比于CuBi2O4薄膜的光电流密度2.0mA/cm2提高了40%。
图10为实施例3中激光辐照后Au纳米晶的TEM图,从图10可以看出,Au样经过激光辐照后形成尺寸为5-10nm的Au纳米晶,且分散均匀。
图11为对比例1CuBi2O4薄膜和实施例3中镶嵌Au无配体量子点CuBi2O4薄膜的光电流密度曲线图,从图11可以看出,镶嵌Au无配体量子点CuBi2O4薄膜在0.6VRHE时的光电流密度为3.1mA/cm2,相比于CuBi2O4薄膜的光电流密度2.0mA/cm2提高了55%。
综上,通过采用的基于液相脉冲辐照技术引入量子点,制备出的一种镶嵌无配体量子点的铋酸铜薄膜的光电流密度性能,相对于未引入无配体量子点的铋酸铜薄膜的光电流密度性能均有大幅度提升。
本发明提供的一种镶嵌无配体量子点的铋酸铜制备方法中,无配体量子点原始颗粒还可以为Pt、TiO2、BiVO4和BiFeO3,采用的激光输出波长可以为266,355,532和1064nm,单脉冲能量为50-1000mJ/cm2。衬底为氧化铟锡导电玻璃或掺氟氧化锡导电玻璃,CuBi2O4薄膜的制备工艺可以是基于溶液法制膜的旋涂、提拉和热喷涂的任意一种。
本发明描述了优选实施例及其效果。但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种镶嵌无配体量子点的铋酸铜薄膜,其特征在于,包括纳米多孔的铋酸铜薄膜,以及镶嵌在所述铋酸铜薄膜中的无配体量子点,且所述无配体量子点在所述镶嵌无配体量子点的铋酸铜薄膜中的质量分数为0.1-5.0%;
其中,所述无配体量子点由半导体氧化物混合液或金属材料混合液经激光束辐照得到;所述半导体氧化物混合液或金属材料混合液由半导体氧化物或金属材料分散在液相媒介中得到。
2.根据权利要求1所述的镶嵌无配体量子点的铋酸铜薄膜,其特征在于,所述半导体氧化物为BaTiO3、SrTiO3、TiO2、BiVO4或BiFeO3,所述金属材料为Au或Pt。
3.根据权利要求1所述的镶嵌无配体量子点的铋酸铜薄膜,其特征在于,所述液相媒介为乙醇、乙二醇和醋酸按照等体积混合而成的混合溶剂。
4.一种权利要求1所述的镶嵌无配体量子点的铋酸铜薄膜的制备方法,其特征在于,包括以下步骤:
S1,将半导体氧化物分散在液相媒介中,得到混合液;或者将金属材料分散在液相媒介中,然后置于激光束下辐照,辐照完毕后取出金属材料,得到混合液;
S2,在超声辅助下,将S1中混合液置于激光束下辐照,得到无配体量子点胶体溶液,所述无配体量子点胶体溶液浓度为0.1~1mg/mL;
S3,将S2得到的无配体量子点胶体溶液与铋酸铜前驱体溶液混合、制膜、烧结,获得镶嵌无配体量子点的铋酸铜薄膜;
其中,铋酸铜前驱体溶液浓度为0.1~0.5mol/L。
5.根据权利要求4所述的镶嵌无配体量子点的铋酸铜薄膜的制备方法,其特征在于,S1中激光采用非聚焦激光,且所述非聚焦激光的输出波长为1064nm,脉冲频率为10Hz,输出光斑直径约为10mm,激光辐照能量为800mJ/cm2,辐照时间为5min。
6.根据权利要求4所述的镶嵌无配体量子点的铋酸铜薄膜的制备方法,其特征在于,S2中激光采用非聚焦激光,且所述非聚焦激光的输出波长为355nm或1064nm,脉冲频率为10Hz或30Hz,输出光斑直径约为6~10mm,激光辐照能量为50~800mJ/cm2,辐照时间为5~30min。
7.一种权利要求1所述的镶嵌无配体量子点的铋酸铜薄膜在光电催化中的应用。
CN201910542362.6A 2019-06-21 2019-06-21 一种镶嵌无配体量子点的铋酸铜薄膜、制备方法及应用 Pending CN110201676A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910542362.6A CN110201676A (zh) 2019-06-21 2019-06-21 一种镶嵌无配体量子点的铋酸铜薄膜、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910542362.6A CN110201676A (zh) 2019-06-21 2019-06-21 一种镶嵌无配体量子点的铋酸铜薄膜、制备方法及应用

Publications (1)

Publication Number Publication Date
CN110201676A true CN110201676A (zh) 2019-09-06

Family

ID=67794014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910542362.6A Pending CN110201676A (zh) 2019-06-21 2019-06-21 一种镶嵌无配体量子点的铋酸铜薄膜、制备方法及应用

Country Status (1)

Country Link
CN (1) CN110201676A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111570811A (zh) * 2020-05-22 2020-08-25 西北工业大学 一种激光辐照制备纳米合金液滴的方法
CN112941548A (zh) * 2021-01-27 2021-06-11 西北工业大学 一种羟基功能化碳点修饰的钒酸铋薄膜、制备方法及应用
CN113957394A (zh) * 2021-09-27 2022-01-21 山东省科学院能源研究所 一种p型半导体薄膜氧化铋铜及其制备方法与应用
CN116283287A (zh) * 2023-03-20 2023-06-23 西北工业大学 一种量子片锚固的钒酸铋薄膜、制备方法及应用
CN116371472A (zh) * 2023-04-11 2023-07-04 西北工业大学 多组分金属纳米胶体颗粒原位植入MOFs复合催化剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308166A (zh) * 2014-10-10 2015-01-28 北京工业大学 一种采用脉冲激光液相烧蚀法制备Ag/ZnO核壳纳米结构的方法
WO2017019146A1 (en) * 2015-07-29 2017-02-02 Regents Of The University Of California The Z-scheme microbial photoelectrochemical system (mps) for wastewater-to-chemical fuel conversion
CN107185530A (zh) * 2017-04-24 2017-09-22 天津大学 激光合成富含晶体缺陷的银纳米颗粒的方法
CN109148593A (zh) * 2018-07-16 2019-01-04 复旦大学 一种三元p型CuBi2O4薄膜晶体管及其制备方法
CN109126764A (zh) * 2018-09-13 2019-01-04 西北工业大学 一种单分散黑色钒酸铋胶体颗粒的制备方法
CN109308982A (zh) * 2018-10-18 2019-02-05 温州大学 一种共修饰铋酸铜纳米棒光电阴极制备方法
CN109772357A (zh) * 2019-03-26 2019-05-21 河南科技学院 铋酸铜/氧化钨复合薄膜材料、制备方法及在光催化二氧化碳制甲烷中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308166A (zh) * 2014-10-10 2015-01-28 北京工业大学 一种采用脉冲激光液相烧蚀法制备Ag/ZnO核壳纳米结构的方法
WO2017019146A1 (en) * 2015-07-29 2017-02-02 Regents Of The University Of California The Z-scheme microbial photoelectrochemical system (mps) for wastewater-to-chemical fuel conversion
CN107185530A (zh) * 2017-04-24 2017-09-22 天津大学 激光合成富含晶体缺陷的银纳米颗粒的方法
CN109148593A (zh) * 2018-07-16 2019-01-04 复旦大学 一种三元p型CuBi2O4薄膜晶体管及其制备方法
CN109126764A (zh) * 2018-09-13 2019-01-04 西北工业大学 一种单分散黑色钒酸铋胶体颗粒的制备方法
CN109308982A (zh) * 2018-10-18 2019-02-05 温州大学 一种共修饰铋酸铜纳米棒光电阴极制备方法
CN109772357A (zh) * 2019-03-26 2019-05-21 河南科技学院 铋酸铜/氧化钨复合薄膜材料、制备方法及在光催化二氧化碳制甲烷中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIE JIAN ET.AL.: ""Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting"", 《NATURE COMMUNICATION》 *
SHANGPU LIU ET AL.,: "("Pulsed laser/ electrodeposited CuBi2O4/BiVO4 p-n heterojunction for solar water splitting"", 《SOLAR ENERGY MATERIALS AND SOLAR CELLS》 *
余乐等: ""液相脉冲激光烧蚀法制备高熔点的纳米金属粒子"", 《物理化学学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111570811A (zh) * 2020-05-22 2020-08-25 西北工业大学 一种激光辐照制备纳米合金液滴的方法
CN111570811B (zh) * 2020-05-22 2021-08-24 西北工业大学 一种激光辐照制备纳米合金液滴的方法
CN112941548A (zh) * 2021-01-27 2021-06-11 西北工业大学 一种羟基功能化碳点修饰的钒酸铋薄膜、制备方法及应用
CN113957394A (zh) * 2021-09-27 2022-01-21 山东省科学院能源研究所 一种p型半导体薄膜氧化铋铜及其制备方法与应用
CN113957394B (zh) * 2021-09-27 2023-09-26 山东省科学院能源研究所 一种p型半导体薄膜氧化铋铜及其制备方法与应用
CN116283287A (zh) * 2023-03-20 2023-06-23 西北工业大学 一种量子片锚固的钒酸铋薄膜、制备方法及应用
CN116283287B (zh) * 2023-03-20 2024-04-05 西北工业大学 一种量子片锚固的钒酸铋薄膜、制备方法及应用
CN116371472A (zh) * 2023-04-11 2023-07-04 西北工业大学 多组分金属纳米胶体颗粒原位植入MOFs复合催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110201676A (zh) 一种镶嵌无配体量子点的铋酸铜薄膜、制备方法及应用
Xiao et al. Interfacial construction of zero-dimensional/one-dimensional g-C3N4 nanoparticles/TiO2 nanotube arrays with Z-scheme heterostructure for improved photoelectrochemical water splitting
Wang et al. BiVO 4/TiO 2 (N 2) nanotubes heterojunction photoanode for highly efficient photoelectrocatalytic applications
Qiu et al. Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting
Mane et al. An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells
Wang et al. Synergy of Ti-O-based heterojunction and hierarchical 1D nanobelt/3D microflower heteroarchitectures for enhanced photocatalytic tetracycline degradation and photoelectrochemical water splitting
KR100928072B1 (ko) 염료감응 태양전지 및 그 제조방법
Yang et al. Enhanced photoelectrochemical water oxidation on WO3 nanoflake films by coupling with amorphous TiO2
Shi et al. Visible light photoanode material for photoelectrochemical water splitting: a review of bismuth vanadate
Venditti et al. Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs
Wan et al. Enhanced photoelectrochemical water oxidation of bismuth vanadate via a combined strategy of W doping and surface RGO modification
CN107641817B (zh) 一种提高光解水性能的光阳极制备方法及所得光阳极结构
CN106887520A (zh) 一种添加剂辅助的钙钛矿太阳能电池及其制备方法
CN103301828B (zh) 一种光电催化薄膜、制备方法及应用
CN110368968B (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
Zhao et al. Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO2 passivation on ZnO nanorod arrays
CN108597886A (zh) 一种用于改性氧化铁光阳极的有机溶液及其应用
CA2752420A1 (en) Low temperature sintering of dye-sensitised solar cells
CN107761127A (zh) 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法
CN110215918A (zh) 一种无配体纳米晶体复合的钒酸铋薄膜、制备方法及应用
Priya et al. Construction of MoS2 nanoparticles incorporated TiO2 nanosheets heterojunction photocatalyst for enhanced visible light driven hydrogen production
CN109748320B (zh) 一种单斜相二氧化钒纳米线薄膜及其制备方法和应用
CN105948530A (zh) 一种多孔网状结构BiVO4薄膜及其制备方法
CN103680766B (zh) 导电薄膜的制备方法
CN109671846B (zh) 以三维结构石墨烯作为背电极的钙钛矿太阳能电池及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190906

RJ01 Rejection of invention patent application after publication