CN110173244A - 黏度可控的原位乳化增黏体系及其在水驱油藏的应用 - Google Patents

黏度可控的原位乳化增黏体系及其在水驱油藏的应用 Download PDF

Info

Publication number
CN110173244A
CN110173244A CN201910384440.4A CN201910384440A CN110173244A CN 110173244 A CN110173244 A CN 110173244A CN 201910384440 A CN201910384440 A CN 201910384440A CN 110173244 A CN110173244 A CN 110173244A
Authority
CN
China
Prior art keywords
viscosity
water
situ
ultra
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910384440.4A
Other languages
English (en)
Other versions
CN110173244B (zh
Inventor
刘锐
蒲万芬
杜代军
孙琳
庞诗师
赵平起
蔡明俊
张家良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan kunao Petroleum Technology Co., Ltd
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201910384440.4A priority Critical patent/CN110173244B/zh
Priority to PCT/CN2019/098263 priority patent/WO2020224064A1/zh
Priority to US16/961,562 priority patent/US11268013B2/en
Publication of CN110173244A publication Critical patent/CN110173244A/zh
Application granted granted Critical
Publication of CN110173244B publication Critical patent/CN110173244B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明公开了黏度可控的原位乳化增黏体系,由以下组分按重量百分比组成:乳化剂0.3~1.5%,超细胶态粒子0.05~0.5%,悬浮剂0.01~0.1%,其余为矿化水。所述乳化剂为石油磺酸盐、石油羧酸盐、十二烷基磺酸钠、十二烷基苯磺酸钠、烷基糖苷、脂肪醇醚羧酸盐、脂肪醇醚磺酸盐、羟基磺基甜菜碱、烷醇酰胺的一种或组合。所述超细胶态粒子为超细二氧化硅、超细蒙脱土、超细氧化铁、超细四氧化三铁、超细氧化铝、超细二氧化钛的一种。所述悬浮剂为部分水解聚丙烯酰胺、直链淀粉、羧甲基壳聚糖、羟甲基纤维素、黄原胶、海藻酸钠的一种。该原位乳化增黏体系适用于黏度小于50mPa·s的水驱油藏,不受油藏温度、矿化度影响,覆盖范围十分宽广,经济效益突出,有效驱动水驱油藏的高效开发。

Description

黏度可控的原位乳化增黏体系及其在水驱油藏的应用
技术领域
本发明涉及黏度可控的原位乳化增黏体系及其在水驱油藏的应用,属油田化学和油田开采技术领域。
背景技术
注水开发的油藏,受非均质的影响,高渗区域的水驱波及程度高、剩余油饱和度低,低渗区域的水驱波及程度低、剩余油饱和度高(Liu R,Du D,Pu W,et al.Enhanced oilrecovery potential of alkyl alcohol polyoxyethylene ethersulfonatesurfactants in high-temperature and high-salinity reservoirs[J].Energy&Fuels,2018,32:12128-12140)。水驱油藏乳状液的类型与含水率密切相关,在低含水率条件下易形成油外相乳状液;在高含水率条件下易形成水外相乳状液。基于乳状液粒径均匀的相体积比理论认为,当内相体积分数达到球形颗粒的最大堆积分数时,乳状液将发生突变转相(Galindo-Alvarez J,Sadtler V,Choplin L,Salager J L.Viscous oilemulsification by catastrophic phase inversion:influence of oil viscosity andprocess conditions[J].Industrial&Engineering Chemistry Research,2011,50(9):5575-5583),突变转相后乳状液的黏度将发生显著改变。
乳状液的黏度与乳状液的类型密切相关,为此,国内外学者开展了广泛地研究,形成了多种判定方式,如Winsor比R值、亲油-亲水平衡值HLB、亲水亲油偏差值HLD等。Winsor比主要用于判别(天然)乳化剂的亲水亲油性。基于R与1的相对关系,乳液体系总的被分为了4类。R<1时,乳化剂与油相的反应能小于与水相的反应能,更容易形成O/W型乳液(类型I);当R>1时,乳化剂与水相的反应能小于与油相的反应能,更容易形成W/O型乳液(类型Ⅱ);当R≈1时,一种可能是形成上部为有机相、下部为水相、中部为微乳液的体系(类型Ⅲ);另一种可能是形成单相的均匀体系,其中油水以双连续相或层状相的形式存在。亲水亲油偏差值是最优化配方偏差的数字表现形式。HLD值与HLB值的概念相似,但其同时考虑了乳化剂本身和体系可能发生的变化。根据HLD值的定义,当HLD=0是最佳配方所在点,在此条件下乳化剂从油相转移到水相所需的自由能为0。HLD=0时,体系界面张力处于最低值,体系自发曲率为0。体系任何性质的改变,比如温度、乳化剂类型、原油性质、盐或者助乳化剂的存在都会导致体系偏离最佳值。
1903年Ramsden发现胶体尺度的固相颗粒可以稳定乳状液,1907年Pickering对固相离子稳定乳液开展了独立系统的工作,因此,对固相稳定的乳液称为Pickering乳状液。与传统的乳液相比,Pickering乳液的显著特征是不可逆的界面吸附,超强抗聚并的稳定性能,对巨型乳状液的超强稳定性能(最大能达到几个毫米),高浓度的内相,不规则的流变性特征。乳液的尺寸和固相均匀颗粒的大小直接相关。呈胶态的黏土促使乳液形成O/W或者W/O乳液,石蜡、二氧化硅、黏土、氧化铁和聚合物胶体在界面的吸附稳定乳液,通过颗粒的网络或者界面吸附的胶体,稳定界面膜,这些受粒子的尺寸、形状、形貌、密度、浓度、表面覆盖物和润湿性影响。Masalova等利用笼状倍半硅氧烷POSSAM0275来形成高浓油包水乳状液(Masalova,I.,Tshilumbu,N.,Mamedov,E.,Kharatyan,E.,Katende,J.Stabilisation ofhighly concentrated water-in-oil emulsions by polyhedral oligomericsilsesquioxane nanomolecules[J].Journal of Molecular Liquids,2019,279,351–360),其中分散相浓度大约为90%,油相为十二烷。POSSAM0275纳米分子在乳液中能够形成一种全新的界面层,这种界面层既不同于传统表面活性剂也不同于纳米颗粒在油水界面层的性质。
然而,由于油外相乳状液在相变点附近内相的堆积密度达到极限(史胜龙,王业飞,汪庐山,靳彦欣,王涛,王静.胜坨油田高温高盐油藏自发乳化驱提高采收率[J].油田化学,2015,32(2):242-246),乳状液的平均中值粒径最大,油外相乳状液的黏度是原油的数倍~十几倍。Kumar等(Kumar R,Dao E,Mohanty K.Heavy-oil recovery by in-situemulsion formation[J].SPE Journal,2012,17(02):326-334)、Alboudwarej等(Alboudwarej H,Muhammad M,Shahraki AK,Dubey S,Vreenegoor L,Saleh J M.Rheologyof heavy-oil emulsions[J].SPE Production&Operations,2007,22(03):285-293)、Tyrode等(Tyrode E,Allouche J,Choplin L,Salager J.Emulsion catastrophicinversion from abnormal to normal morphology.4.Following the emulsionviscosity during three inversion protocols and extending the criticaldispersed-phase concept[J].Industrial&engineering chemistry research,2005,44(1):67-74)分别对轻质油、普通稠油、特稠油的乳状液进行了研究,一致发现在相变点附近乳状液的黏度可达原油黏度的数倍。然而,黏度过大的乳状液在地层传播困难,导致注入压力过高,严重影响生产。另一方面,现场实践表明,由于在高渗层易形成黏度低的水外相乳状液而在低渗层易形成黏度高的油外相乳状液,反而加剧了储层的非均质性。因此,乳状液大幅度提高采收率的重要前提是在储层中黏度可控,即在高含水层形成高黏度的乳状液,提高渗流阻力,在低渗层形成低黏度的乳状液,降低储层的非均质性,以增加中、低渗层的波及系数。
发明内容
本发明的目的在于提供黏度可控的原位乳化增黏体系,该体系具有优异的流度自控性能,原材料价廉易得,制备原理可靠,经济效益突出,能够实现高渗区域(高含水、低含油饱和度)、低渗区域(低含水、高含油饱和度)的活塞驱替,大幅度提高水驱油藏的采收率,具有广阔的工业化应用前景。
本发明的另一目的还在于提供上述黏度可控的原位乳化增黏体系在水驱油藏中的应用,该原位乳化增黏体系适用于黏度小于50mPa·s的水驱油藏,并且不受油藏温度、矿化度的影响,覆盖油藏的范围十分宽广,经济效益突出,有效驱动水驱油藏的高效开发。
为达到以上技术目的,本发明采用以下技术方案。
一种黏度可控的原位乳化增黏体系,由乳化剂+超细胶态粒子+悬浮剂组成。该体系直接用水溶解或者分散,黏度略高于水相的黏度,通过注入设备泵入地层,在20~90%含水的油藏,乳化剂与超细胶态粒子产生协同作用,原位乳化剩余(残余)油形成动力学稳定的水外相乳状液;在高含水率条件(60~80%)乳状液的黏度是原油黏度的1~1.5倍,而在低含水条件(<60%)乳状液黏度略低于原油黏度而显著大于水相黏度,实现高渗区域、低渗区域的活塞驱替,并协同超低界面张力洗油,大幅度提高油藏条件原油黏度小于50mPa·s的水驱油藏采收率。
黏度可控的原位乳化增黏体系,包括与原油形成(超)低界面张力(10-2mN/m数量级及以下)的乳化剂、亲水性超细胶态粒子和悬浮剂,该体系由以下组分按重量百分比组成:
乳化剂 0.3~1.5%;
超细胶态粒子 0.05~0.5%;
悬浮剂 0.01~0.1%;
其余为矿化水。
所述乳化剂为石油磺酸盐、石油羧酸盐、十二烷基磺酸钠、十二烷基苯磺酸钠、烷基糖苷、脂肪醇醚羧酸盐、脂肪醇醚磺酸盐、羟基磺基甜菜碱、烷醇酰胺的一种或组合,其油-水界面张力达到10-2mN/m数量级及以下。
所述超细胶态粒子为超细二氧化硅、超细蒙脱土、超细氧化铁、超细四氧化三铁、超细氧化铝、超细二氧化钛的一种,这里的超细是指胶态粒子的粒径为10nm~1.0μm。
所述悬浮剂为部分水解聚丙烯酰胺、直链淀粉、羧甲基壳聚糖、羟甲基纤维素、黄原胶、海藻酸钠的一种。
上述物质均为市售。
所述黏度可控的原位乳化增黏体系,以重量百分比计,所述乳化剂优选为0.4%,所述超细胶态粒子优选为0.15%,所述悬浮剂优选为0.05%,其余为矿化水。
所述黏度可控的原位乳化增黏体系在水驱油藏中的应用,该油藏的性质如下:
温度最高达140℃,水的矿化度最高达24×104mg/L,地层原油黏度小于50mPa·s的水驱油藏。
本发明所提供的黏度可控的原位乳化增黏体系直接用矿化水溶解或者分散,黏度略高于矿化水黏度,注入性好;在20~90%含水条件与原油原位生成动力学稳定的水外相乳状液,在高含水率条件(60~80%)乳状液的黏度是原油黏度的1~1.5倍,而在低含水条件(<60%)乳状液黏度略低于原油黏度而显著大于水相黏度,体现流度的自控性能:在高渗区域形成黏度高的水外相乳状液提高渗流阻力,而在低渗区域形成黏度较低的水外相乳状液降低排驱阻力,实现高渗区域、低渗区域的高效驱替,大幅度提高水驱油藏的采收率。
原位乳化增黏体系的黏度自控机理为:①水外相中的悬浮剂与超细胶态粒子均增加水相的黏度;②原位乳化增黏体系与原油的界面张力达到10-2mN/m数量级及以下,促使乳化剂体系在油-水界面吸附的吉布斯自由能很低,极易形成水外相乳状液;③乳化剂在超细胶态粒子表面的吸附形成大尺度乳化复合物,从而实现乳化剂与原油形成的较小尺度水外相乳状液与乳化剂+超细胶态粒子与原油形成的较大尺度的水外相乳状液在三维空间的堆积。原位乳化增黏体系通过上述机理对乳状液黏度控制,实现高渗区域(高含水、低含油饱和度)、低渗区域(低含水、高含油饱和度)的高效驱替。
与现有技术相比,本发明具有以下有益效果:
(1)黏度可控原位乳化增黏体系直接用矿化水溶解或者分散,不受矿化水矿化度的影响,注入性好,能在油藏深部驻留;
(2)黏度可控原位乳化增黏体系与原油的界面张力达10-2mN/m数量级及以下;
(3)该体系在剪切诱导下与原油在20~90%含水条件形成动力学稳定的水外相乳状液,在高含水率条件(60~80%)乳状液的黏度适度高于原油黏度,而在低含水条件(<60%)乳状液黏度略低于原油黏度而显著大于水相黏度,体现流度自控性;
(4)本发明适用于黏度小于50mPa·s的水驱油藏,覆盖油藏的范围十分宽广;
(5)原材料均从市场购买,经济效益突出,能够大幅度提高水驱油藏的采收率,应用前景非常广阔。
附图说明
图1为黏度可控的原位乳化增黏体系微观图。
图2为黏度可控的原位乳化增黏体系形成乳状液的微观图。
图3为黏度可控原位乳化增黏体系用于水驱油藏的驱油效果图。
具体实施方式
下面根据附图和实例进一步说明本发明,以便于本技术领域的技术人员理解本发明。但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,均在保护之列。
除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
黏度可控的原位乳化增黏体系的配制,包括如下步骤:按重量百分比计,配制99.4%矿化度为0.5~24×104mg/L的矿化水,搅拌0.5~2小时,确保充分溶解并混合均匀;向所配制的矿化水中依次加入0.4%的乳化剂,0.15%的超细胶态粒子,0.05%的悬浮剂,搅拌0.5~3小时,确保各组分充分溶解并均匀混合,完成黏度可控原位乳化增黏体系的配制。
实施例1黏度可控的原位乳化增黏体系的油水界面张力
分别配制矿化度为0.5×104mg/L(Ca2+、Mg2+浓度为0.01×104mg/L)编号1#,3×104mg/L(Ca2+、Mg2+浓度为0.1×104mg/L)编号2#,5×104mg/L(Ca2+、Mg2+浓度为0.5×104mg/L)编号3#,10×104mg/L(Ca2+、Mg2+浓度为1.0×104mg/L)编号4#及24×104mg/L(Ca2+、Mg2+浓度为1.5×104mg/L)编号5#的矿化水,搅拌1小时。在1#中依次加入0.2%的石油磺酸钠、0.2%的十二烷基磺酸钠,0.15%的超细二氧化硅,0.05%的部分水解聚丙烯酰胺;在2#中依次加入0.2%的脂肪醇醚羧酸钠、0.2%的十二烷基苯磺酸钠,0.15%的超细蒙脱土,0.05%的羟甲基纤维素;在3#中依次加入0.4%的十二烷基羟基磺基甜菜碱,0.15%的超细氧化铁,0.05%的黄原胶;在4#中依次加入0.4%的烷醇酰胺,0.15%超细四氧化三铁,0.05%的海藻酸钠;在5#中依次加入0.4%的C12/C14烷基糖苷,0.15%超细二氧化钛,0.05%的羧甲基壳聚糖;搅拌1.5小时,获得黏度可控的原位乳化增黏体系。
在80℃条件用TX500C旋转滴界面张力仪测定黏度可控原位乳化增黏体系与两种脱气原油(80℃条件的黏度分别为10.3mPa·s,21.2mPa·s)的界面张力,测定时间2h,获得稳定的界面张力值。该体系在0.5~24×104mg/L的矿化水条件,均能使油水的界面张力保持为10-2mN/m数量级及以下,表现为优异的洗油性能,结果见表1。
表1黏度可控原位乳化增黏体系与原油的稳定界面张力
实施例2黏度可控的原位乳化增黏体系的表观黏度
分别配制矿化度为0.5×104mg/L(Ca2+、Mg2+浓度为0.01×104mg/L)编号1#,3×104mg/L(Ca2+、Mg2+浓度为0.1×104mg/L)编号2#,5×104mg/L(Ca2+、Mg2+浓度为0.5×104mg/L)编号3#,10×104mg/L(Ca2+、Mg2+浓度为1.0×104mg/L)编号4#及24×104mg/L(Ca2+、Mg2+浓度为1.5×104mg/L)编号5#的矿化水,搅拌1小时。在1#中依次加入0.2%的脂肪醇醚羧酸钠、0.2%的十二烷基磺酸钠,0.15%的超细蒙脱土,0.05%的直链淀粉;在2#中依次加入0.2%的脂肪醇醚磺酸钠、0.2%的十二烷基苯磺酸钠,0.15%的超细四氧化三铁,0.05%的海藻酸钠;在3#中依次加入0.4%的烷醇酰胺,0.15%的超细氧化铁,0.05%的羟甲基纤维素;在4#中依次加入0.4%的十二烷基羟基磺基甜菜碱,0.15%超细二氧化钛,0.05%的黄原胶;在5#中依次加入0.2%的C12/C14烷基糖苷、0.2%的烷醇酰胺,0.15%超细二氧化硅,0.05%的羧甲基壳聚糖;搅拌1.5小时,获得黏度可控的原位乳化增黏体系。
用光学显微镜观察5#的溶液可知超细胶态粒子均匀分散在液相中,如图1所示。黏度可控的原位乳化增黏体系在90℃条件用高温高压哈克流变仪测试表观黏度(剪切速率7.34s-1);0.5~24×104mg/L矿化水在90℃的黏度为0.3~0.8mPa·s;黏度可控原位乳化增黏体系在0.5~24×104mg/L矿化水条件的表观黏度为1.2~5.0mPa·s(见表2),结果表明黏度可控原位乳化增黏体系在地层中有良好的注入性。
表2黏度可控原位乳化增黏体系的表观黏度(90℃)
矿化度(10<sup>4</sup>mg/L) 体系表观黏度(mPa·s)
0.5 1.89
3 2.52
5 4.69
10 3.14
24 1.26
实施例3黏度可控原位乳化增黏体系与原油形成乳状液的黏度
分别配制矿化度为0.5×104mg/L(Ca2+、Mg2+浓度为0.01×104mg/L)编号1#,3×104mg/L(Ca2+、Mg2+浓度为0.1×104mg/L)编号2#,5×104mg/L(Ca2+、Mg2+浓度为0.5×104mg/L)编号3#,10×104mg/L(Ca2+、Mg2+浓度为1.0×104mg/L)编号4#及24×104mg/L(Ca2+、Mg2+浓度为1.5×104mg/L)编号5#的矿化水,搅拌1小时。在1#中依次加入0.4%的石油羧酸钠,0.15%的超细蒙脱土,0.05%的直链淀粉;在2#中依次加入0.4%的脂肪醇醚磺酸钠,0.15%的超细二氧化硅,0.05%的羟甲基纤维素;在3#中依次加入0.4%的十二烷基羟基磺基甜菜碱,0.15%的超细氧化铁,0.05%的海藻酸钠;在4#中依次加入0.4%的烷醇酰胺,0.15%超细二氧化钛,0.05%的黄原胶;在5#中依次加入0.4%的C12/C14烷基糖苷,0.15%超细四氧化三铁,0.05%的羧甲基壳聚糖;搅拌1.5小时,获得黏度可控的原位乳化增黏体系。
将黏度可控原位乳化增黏体系和原油按水油比为2:8、3:7、4:6、5:5、6:4、7:3、8:2、9:1(含水率依次为20%、30%、40%、50%、60%、70%、80%、90%)配置、密封,放置在带有磁力搅拌装置的油浴锅中;然后在90℃油浴条件,搅拌1h,观察乳化情况,搅拌结束后,用高温高压哈克流变仪模拟油藏温度条件测试乳状液和原油,见表3-7。
在油藏温度条件下(45~140℃),矿化水的黏度0.36~0.82mPa·s,水油流度差异大。黏度可控原位乳化增黏体系在剪切诱导下与原油在20~90%含水条件形成动力学稳定的水外相乳状液;在高含水率条件(60~80%)乳状液的黏度是原油黏度的1~1.5倍,而在低含水条件(<60%)乳状液黏度略低于原油黏度而显著大于水相黏度;体现流度的自控性能。胶态粒子与乳化剂分子稳定的乳状液液滴较大,而乳化剂稳定的乳状液液滴较小,这两种液滴的同时存在,构建了紧密稳定的空间堆积,矿化度为5×104mg/L(Ca2+、Mg2+浓度为0.5×104mg/L)含水率为80%的乳状液经过稀释10倍后的粒径如图2所示,大、小乳状液能以动力学稳定的形式存在。
表3水矿化度0.5×104mg/L条件不同水油比形成乳状液的黏度
表4水矿化度3×104mg/L条件不同水油比形成乳状液的黏度
表5水矿化度5×104mg/L条件不同水油比形成乳状液的黏度
表6水矿化度10×104mg/L条件不同水油比形成乳状液的黏度
表7水矿化度24×104mg/L条件不同油水比形成乳状液的黏度
实施例4黏度可控原位乳化增黏体系的提高采收率性能
分别配制矿化度为5×104mg/L(Ca2+、Mg2+浓度为0.5×104mg/L)编号3#,24×104mg/L(Ca2+、Mg2+浓度为1.5×104mg/L)编号5#的矿化水,搅拌1小时。在3#中依次加入0.4%的十二烷基羟基磺基甜菜碱,0.15%的超细氧化铁,0.05%的羟甲基纤维素;在5#中依次加入0.2%的C12/C14烷基糖苷、0.2%的烷醇酰胺,0.15%超细二氧化硅,0.05%的羧甲基壳聚糖;搅拌1.5小时,获得黏度可控的原位乳化增黏体系。
人造模拟岩心两根(45×45×300mm长岩心,平均孔隙度20%,平均气测渗透率300mD),温度90℃,原油黏度15.6mPa·s,平均原始含油水饱和度75%,在水驱阶段(水驱速度1.5mL/min),受到不利的水油流度比,水驱的原油采出程度低,含水率98%的原油采收率为48%左右;随后注入原位乳化增黏体系(90℃原位乳化增黏体系的黏度1.2~5.0mPa·s,注入速度1.5mL/min),在体系注入过程中注入压力升高、含水率降低,重新出油,在岩心的出口端用观察到明显的水外相乳状液,证明原位乳化增黏体系与原油原位乳化,显著改善驱替介质的流度,同时乳状液的贾敏效应改善了岩心的非均质性,增强驱替液的波及体积,从而显著提高原油采收率33%左右,累计采收率达80%以上。
原位乳化增黏体系在超高矿度(24×104mg/L,其中Ca2+、Mg2+浓度为1.5×104mg/L)高温(90℃)条件的驱替效果见图3。

Claims (6)

1.黏度可控的原位乳化增黏体系,包括与原油形成(超)低界面张力10-2mN/m数量级及以下的乳化剂、亲水性超细胶态粒子和悬浮剂,该体系由以下组分按重量百分比组成:
乳化剂 0.3~1.5%;
超细胶态粒子 0.05~0.5%;
悬浮剂 0.01~0.1%;
其余为矿化水。
2.如权利要求1所述的黏度可控的原位乳化增黏体系,其特征在于,所述乳化剂为石油磺酸盐、石油羧酸盐、十二烷基磺酸钠、十二烷基苯磺酸钠、烷基糖苷、脂肪醇醚羧酸盐、脂肪醇醚磺酸盐、羟基磺基甜菜碱、烷醇酰胺的一种或组合。
3.如权利要求1所述的黏度可控的原位乳化增黏体系,其特征在于,所述超细胶态粒子为超细二氧化硅、超细蒙脱土、超细氧化铁、超细四氧化三铁、超细氧化铝、超细二氧化钛的一种。
4.如权利要求3所述的黏度可控的原位乳化增黏体系,其特征在于,所述超细胶态粒子的粒径为10nm~1.0μm。
5.如权利要求1所述的黏度可控的原位乳化增黏体系,其特征在于,所述悬浮剂为部分水解聚丙烯酰胺、直链淀粉、羧甲基壳聚糖、羟甲基纤维素、黄原胶、海藻酸钠的一种。
6.如权利要求1、2、3、4或5所述的黏度可控的原位乳化增黏体系在水驱油藏中的应用,该油藏为温度最高达140℃,水的矿化度最高达24×104mg/L,地层原油黏度小于50mPa·s的水驱油藏。
CN201910384440.4A 2019-05-09 2019-05-09 黏度可控的原位乳化增黏体系及其在水驱油藏的应用 Active CN110173244B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910384440.4A CN110173244B (zh) 2019-05-09 2019-05-09 黏度可控的原位乳化增黏体系及其在水驱油藏的应用
PCT/CN2019/098263 WO2020224064A1 (zh) 2019-05-09 2019-07-30 黏度可控的原位乳化增黏体系及其在水驱油藏的应用
US16/961,562 US11268013B2 (en) 2019-05-09 2019-07-30 Insatiability emulsification and viscosity system with controlled viscosity and its application in water-driven reservoir

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910384440.4A CN110173244B (zh) 2019-05-09 2019-05-09 黏度可控的原位乳化增黏体系及其在水驱油藏的应用

Publications (2)

Publication Number Publication Date
CN110173244A true CN110173244A (zh) 2019-08-27
CN110173244B CN110173244B (zh) 2020-03-27

Family

ID=67690799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910384440.4A Active CN110173244B (zh) 2019-05-09 2019-05-09 黏度可控的原位乳化增黏体系及其在水驱油藏的应用

Country Status (3)

Country Link
US (1) US11268013B2 (zh)
CN (1) CN110173244B (zh)
WO (1) WO2020224064A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776899A (zh) * 2019-11-26 2020-02-11 西南石油大学 一种高温高盐油藏原位乳化增黏体系及其应用
CN110929395A (zh) * 2019-11-15 2020-03-27 中国石油化工股份有限公司 一种自乳化体系粘浓关系描述方法
CN111073622A (zh) * 2019-12-03 2020-04-28 德仕能源科技集团股份有限公司 一种提高采收率用表面活性剂组合物及其制备方法和应用
CN112147309A (zh) * 2020-09-22 2020-12-29 中国石油大学(北京) 用于评价化学体系原位乳化对提高原油采收率的贡献程度的方法和装置
CN112169694A (zh) * 2020-09-22 2021-01-05 新沂市锡沂高新材料产业技术研究院有限公司 一种石英砂除杂用起泡剂的制备方法
CN112210358A (zh) * 2020-10-23 2021-01-12 西南石油大学 一种纳米乳化驱油剂及其制备方法
CN112940701A (zh) * 2021-01-27 2021-06-11 河北光大石化有限公司 一种高流变连续相调驱剂及其制备方法
CN113136194A (zh) * 2021-04-26 2021-07-20 中国石油大学(华东) 一种基于纳米纤维素的乳状液及其制备方法和应用
CN113356814A (zh) * 2021-07-14 2021-09-07 西南石油大学 一种高相变油水原位乳化液提高稠油采收率的方法
CN114622861A (zh) * 2020-12-14 2022-06-14 中国石油化工股份有限公司 一种地层原位自乳化复合堵调方法
CN114940893A (zh) * 2022-07-04 2022-08-26 西南石油大学 一种增粘型纳米碳酸钙驱油剂及其制备方法
CN115558475A (zh) * 2022-12-05 2023-01-03 山东石油化工学院 一种基于纳米微晶纤维素的可逆乳化剂及制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308234A (zh) * 2021-06-15 2021-08-27 中国石油化工股份有限公司 一种w/o/w型多重乳状液驱油体系及其制备方法
CN113917116B (zh) * 2021-09-29 2024-01-02 中国海洋石油集团有限公司 一种确定油井稠油乳化后提液能力的方法
CN114774096B (zh) * 2022-05-27 2023-07-25 山东新港化工有限公司 低渗透油藏驱油用耐温抗盐纳米渗吸排驱剂及其制备方法和应用
CN116622355B (zh) * 2022-11-07 2024-01-12 中国石油大学(北京) 一种驱油剂组合物及其制备方法与应用
CN116042201A (zh) * 2022-11-29 2023-05-02 合肥全景泰益新材料科技有限公司 一种耐温耐盐复合驱油剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014039467A1 (en) * 2012-09-10 2014-03-13 M-I L.L.C. Method for increasing density of brine phase in oil-based and synthetic-based wellbore fluids
CN106281283A (zh) * 2016-08-16 2017-01-04 梅庆波 一种长效稳定微胶囊驱油剂的制备方法
CN106833591A (zh) * 2017-03-28 2017-06-13 四川光亚聚合物化工有限公司 一种水包油缔合型驱油用浓缩增稠剂及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964692A (en) * 1989-08-24 1999-10-12 Albright & Wilson Limited Functional fluids and liquid cleaning compositions and suspending media
US5807810A (en) * 1989-08-24 1998-09-15 Albright & Wilson Limited Functional fluids and liquid cleaning compositions and suspending media
BR112012004679A2 (pt) * 2009-09-01 2020-08-11 Rhodia Operations composições poliméricas
EP2861691A1 (en) * 2012-06-18 2015-04-22 Akzo Nobel Chemicals International B.V. Composition containing an emulsified chelating agent and process to treat a subterranean formation
MX365430B (es) * 2013-06-04 2019-06-03 Akzo Nobel Chemicals Int Bv Proceso para tratar formaciones subterraneas usando un agente quelante.
CN104140790B (zh) * 2013-10-28 2017-11-17 中国石油化工集团公司 一种油田用水溶性聚合物增粘剂及其制备方法
US10344202B2 (en) * 2015-07-13 2019-07-09 Saudi Arabian Oil Company Stabilized nanoparticle compositions comprising ions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014039467A1 (en) * 2012-09-10 2014-03-13 M-I L.L.C. Method for increasing density of brine phase in oil-based and synthetic-based wellbore fluids
CN106281283A (zh) * 2016-08-16 2017-01-04 梅庆波 一种长效稳定微胶囊驱油剂的制备方法
CN106833591A (zh) * 2017-03-28 2017-06-13 四川光亚聚合物化工有限公司 一种水包油缔合型驱油用浓缩增稠剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕杭等: "黏度可控凝胶体系注入参数优化", 《新疆石油地质》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110929395A (zh) * 2019-11-15 2020-03-27 中国石油化工股份有限公司 一种自乳化体系粘浓关系描述方法
CN110929395B (zh) * 2019-11-15 2023-06-23 中国石油化工股份有限公司 一种自乳化体系粘浓关系描述方法
CN110776899B (zh) * 2019-11-26 2022-09-13 西南石油大学 一种高温高盐油藏原位乳化增黏体系及其应用
CN110776899A (zh) * 2019-11-26 2020-02-11 西南石油大学 一种高温高盐油藏原位乳化增黏体系及其应用
CN111073622B (zh) * 2019-12-03 2021-11-23 德仕能源科技集团股份有限公司 一种提高采收率用表面活性剂组合物及其制备方法和应用
CN111073622A (zh) * 2019-12-03 2020-04-28 德仕能源科技集团股份有限公司 一种提高采收率用表面活性剂组合物及其制备方法和应用
CN112169694B (zh) * 2020-09-22 2022-07-26 新沂市锡沂高新材料产业技术研究院有限公司 一种石英砂除杂用起泡剂的制备方法
CN112169694A (zh) * 2020-09-22 2021-01-05 新沂市锡沂高新材料产业技术研究院有限公司 一种石英砂除杂用起泡剂的制备方法
CN112147309A (zh) * 2020-09-22 2020-12-29 中国石油大学(北京) 用于评价化学体系原位乳化对提高原油采收率的贡献程度的方法和装置
CN112210358A (zh) * 2020-10-23 2021-01-12 西南石油大学 一种纳米乳化驱油剂及其制备方法
CN114622861A (zh) * 2020-12-14 2022-06-14 中国石油化工股份有限公司 一种地层原位自乳化复合堵调方法
CN112940701A (zh) * 2021-01-27 2021-06-11 河北光大石化有限公司 一种高流变连续相调驱剂及其制备方法
CN113136194A (zh) * 2021-04-26 2021-07-20 中国石油大学(华东) 一种基于纳米纤维素的乳状液及其制备方法和应用
CN113356814A (zh) * 2021-07-14 2021-09-07 西南石油大学 一种高相变油水原位乳化液提高稠油采收率的方法
CN113356814B (zh) * 2021-07-14 2022-03-11 西南石油大学 一种高相变油水原位乳化液提高稠油采收率的方法
US11536123B1 (en) 2021-07-14 2022-12-27 Southwest Petroleum University Method for enhancing the recovery factor of heavy oil by in-situ oil-water emulsion with high phase inversion point
CN114940893A (zh) * 2022-07-04 2022-08-26 西南石油大学 一种增粘型纳米碳酸钙驱油剂及其制备方法
CN115558475A (zh) * 2022-12-05 2023-01-03 山东石油化工学院 一种基于纳米微晶纤维素的可逆乳化剂及制备方法和应用
CN115558475B (zh) * 2022-12-05 2023-02-24 山东石油化工学院 一种基于纳米微晶纤维素的可逆乳化剂及制备方法和应用

Also Published As

Publication number Publication date
WO2020224064A1 (zh) 2020-11-12
CN110173244B (zh) 2020-03-27
US20210115324A1 (en) 2021-04-22
US11268013B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
CN110173244A (zh) 黏度可控的原位乳化增黏体系及其在水驱油藏的应用
CN112266775B (zh) 一种原位纳米乳化剂的制备及油藏应用方法
Pal et al. Phase behaviour and characterization of microemulsion stabilized by a novel synthesized surfactant: Implications for enhanced oil recovery
CN110079291A (zh) 含高相变点原位乳化增黏体系及在水驱油藏的应用
Mohajeri et al. An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel
Bera et al. Screening of microemulsion properties for application in enhanced oil recovery
CA2707263C (en) Breaker fluids and methods of using the same
CN110776899B (zh) 一种高温高盐油藏原位乳化增黏体系及其应用
US11802233B2 (en) Permeability-enhancing flooding system for tight oil reservoirs, and preparation and use thereof
CN111454707B (zh) 一种2d纳米片驱油剂的制备方法及其应用
CN109233788B (zh) 一种非常规气藏压裂用纳米乳液助排剂及其制备方法
CN108410442A (zh) 一种低渗油气藏控水用疏水纳米二氧化硅乳液及其制备方法
CN110016329A (zh) 一种高温高盐油藏原位乳化体系及其应用
CN115151623A (zh) 用于油气生产的表面活性剂
CN107652963B (zh) 一种天然气泡沫稳泡剂体系及其制备方法
CN106833566A (zh) 一种超低密度油基钻井液及其制备方法
WO2018102679A1 (en) Microemulsions and uses thereof to displace oil in heterogeneous porous media
CN104694103A (zh) 一种具有油藏适应性的表面活性剂复配体系
CN108559478A (zh) 一种高阶煤压裂用微乳液型助排剂的制备方法
CN111647392A (zh) 一种碳基纳米润湿反转剂及其制备方法和应用
Liu et al. Solution properties and phase behavior of a combination flooding system consisting of hydrophobically amphoteric polyacrylamide, alkyl polyglycoside and n-alcohol at high salinities
CN113462375A (zh) 一种化学干预原位乳化体系
CN112694874B (zh) 一种固-液往复相变深部液流转向剂
CN113136194B (zh) 一种基于纳米纤维素的乳状液及其制备方法和应用
CN115029122A (zh) 一种纤维素纳米晶增效乳化驱油剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191030

Address after: No. 8 Road, Xindu Xindu District of Chengdu city of Sichuan Province in 610000

Applicant after: Southwest Petroleum University

Applicant after: Sichuan kunao Petroleum Technology Co., Ltd

Address before: No. 8 Road, Xindu Xindu District of Chengdu city of Sichuan Province in 610500

Applicant before: Southwest Petroleum University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant