CN110165011A - 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法 - Google Patents

一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法 Download PDF

Info

Publication number
CN110165011A
CN110165011A CN201810149487.8A CN201810149487A CN110165011A CN 110165011 A CN110165011 A CN 110165011A CN 201810149487 A CN201810149487 A CN 201810149487A CN 110165011 A CN110165011 A CN 110165011A
Authority
CN
China
Prior art keywords
carbon nano
tube film
solar battery
silicon
heterojunction solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810149487.8A
Other languages
English (en)
Other versions
CN110165011B (zh
Inventor
刘畅
胡显刚
侯鹏翔
成会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201810149487.8A priority Critical patent/CN110165011B/zh
Publication of CN110165011A publication Critical patent/CN110165011A/zh
Application granted granted Critical
Publication of CN110165011B publication Critical patent/CN110165011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及碳纳米管/硅异质结太阳能电池领域,具体为一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法。首先将沉积于微孔滤膜上的高性能(如:高透光率、低方块电阻)碳纳米管透明导电薄膜裁剪成合适尺寸;再将其置于SiO2/Si基底上,滴加无水乙醇,使碳纳米管薄膜与硅基底紧密接触;待乙醇自然蒸发后,再利用碳纳米管薄膜与硅基底之间的作用力大于碳纳米管薄膜与微孔滤膜的作用力,用镊子直接移去滤膜;然后制备上电极(银胶)和下电极(铟镓合金)即得所述太阳能电池。本发明在转移碳纳米管薄膜的过程中未使用无水乙醇外的其他溶剂,过程简单,提高碳纳米管与基底的结合,所构建的太阳能电池具有优异的光电转换性能及稳定性。

Description

一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法
技术领域
本发明涉及碳纳米管/硅异质结太阳能电池领域,具体为一种简便、洁净、无损转移碳纳米管薄膜及制备高性能单壁碳纳米管/硅异质结太阳能电池的方法。
背景技术
随着化石能源的枯竭及环境污染问题日益严重,新能源(如:新型太阳能电池)的发展受到越来越广泛的关注。传统硅基太阳能电池的实验室效率已高于20%,但其制造工艺复杂,对硅材料的纯度要求苛刻,这极大地提高该类太阳能电池的制造成本。而且,材料制备过程对环境污染严重,在一定程度上限制硅基太阳能电池的发展。为了降低成本、减少材料制备过程中对环境的污染,发展新型太阳能电池具有重要意义。
碳纳米管可看成是由一层或者多层石墨烯沿着一定的卷曲向量无缝卷曲而成的准一维中空管。根据构成碳纳米管管壁的石墨烯片层数,可将其分为单壁碳纳米管和多壁碳纳米管。其中单壁碳纳米管的管壁仅由一层石墨烯构成,直径一般为1~3nm,其具有优异的电学性质:带隙随螺旋结构或直径变化,电子在管中形成无散射的弹道输运,电阻振幅随磁场变化的AB效应,低温下具有库仑阻塞效应和吸附气体对能带结构的影响。同时,因为单壁碳纳米管的电子波矢量在径向被量子化,存在较多的范霍夫奇点,因而产生的光学吸收峰多且强烈;并且碳纳米管的波矢量在其轴向连续,电子和声子散射容易发生,所以碳纳米管具有独特的光学性能。由于单壁碳纳米管的上述优异电学和光学特性,其被广泛用于聚合物、钙钛矿及异质结太阳能电池领域。参见文献:文献1,Pfohl M,Glaser K,Ludwig J,etal.Performance Enhancement of Polymer‐Free Carbon Nanotube Solar Cells viaTransfer Matrix Modeling[J].Advanced Energy Materials,2015,6(1);文献2,ZhangL,Jia Y,Wang S,et al.Carbon Nanotube and CdSe Nanobelt Schottky JunctionSolar Cells[J].Nano Letters,2010,10(9);文献3,Zheng X,Chen H,Li Q,et al.BoronDoping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extractionin Carbon-Based Perovskite Solar Cells[J].Nano Letters,2017,17(4);文献4,WangF,Kozawa D,Miyauchi Y,et al.Considerably improved photovoltaic performance ofcarbon nanotube-based solar cells using metal oxide layers[J].Naturecommunications,2015,6。其中,碳纳米管-硅异质结太阳能电池由于制备成本低、过程简单、可利用低质量硅等优点,引起科研人员的极大研究兴趣。
但是,目前碳纳米管-硅太阳能电池中的碳纳米管薄膜一般是经过双氧水/浓硝酸和去离子水清洗再转移,而且转移后的薄膜需用丙酮多次溶解滤膜,每次至少20分钟。这种转移过程不但繁琐、耗时长、容易引入杂质,而且降低薄膜的透光率和电导率,因而极大地限制碳纳米管-硅异质结太阳能电池的性能提升及批量制备。参见文献:文献1,Xu W,Wu S,Li X,et al.High‐Efficiency Large‐Area Carbon Nanotube‐Silicon Solar Cells[J].Advanced Energy Materials,2016;文献2,Yu L P,Grace T,Jazi M D,etal.Optimization of the Metal Front Contact Designfor Single‐WalledCarbonNanotube‐Silicon Heterojunction Solar Cells[J].Solar Rrl,2017;文献3,YuL,BatmunkhM,Grace T,et al.Application of a hole transporting organicinterlayer in graphene oxide/single walled carbon nanotube–siliconheterojunction solar cells[J].Journal of Materials Chemistry A,2017,5(18):8624-8634;文献4,Yu L P,Tune D D,Shearer C J,et al.Implementation ofantireflection layers for improved efficiency of carbon nanotube–siliconheterojunction solar cells[J].Solar Energy,2015,118:592-599.。
所以,目前面临的主要问题是:如何在不引入其它杂质和不影响碳纳米管光学性质及电学性质的情况下,利用简单的方法将碳纳米管薄膜尤其是超薄(透光率>90%)碳纳米管薄膜一步转移到硅基底表面,进而获得高性能单壁碳纳米管/硅异质结太阳能电池。
发明内容
本发明的目的在于提供一种简便、洁净、无损转移碳纳米管薄膜及制备高性能单壁碳纳米管/硅异质结太阳能电池的方法,只需简单的步骤即可将碳纳米管薄膜转移到硅基底上,转移过程中不接触除无水乙醇外的其他溶剂,大幅降低杂质的引入,解决碳纳米管薄膜尤其是超薄碳纳米管薄膜(透光率>90%)洁净转移难的问题;并且提高电池的效率和稳定性。
本发明的技术方案是:
一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法,将浮动催化剂化学气相沉积法制备的高透光率、低方块电阻的碳纳米管薄膜裁剪成合适尺寸,然后利用无水乙醇辅助的洁净转移方法将该薄膜转移到硅基底上,再通过制备上电极和下电极构建单壁碳纳米管/硅异质结太阳能电池;该太阳能电池自上而下包括:上电极、碳纳米管薄膜、热氧化层、硅片和下电极,硅基底为热氧化层与硅片组成,硅片位于热氧化层下部,碳纳米管薄膜中间带有凹形结构,碳纳米管薄膜上表面外侧分别设置上电极,碳纳米管薄膜下表面外侧与硅片上表面之间设置热氧化层,碳纳米管薄膜直接置于预先在硅基底上表面中心开好的窗口上,所述窗口与碳纳米管薄膜中间的凹形结构相对应。
所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,所用碳纳米管薄膜由浮动催化剂化学气相沉积法制备,并直接收集到微孔滤膜上;其透光率范围为72%~95%,表面电阻范围为52~560Ω/□。
所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,所用硅基底掺杂类型为N型,电阻率为2~4Ω·cm,表面热氧化层厚度为100~400nm,在硅基底上表面中心的窗口作为单壁碳纳米管/硅异质结太阳能电池的活性窗口。
所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,硅基底的活性窗口制备方法为:先利用绝缘胶带在硅基底表面围成面积为2.3mm2或9mm2的方格图案,再用BOE溶液刻蚀掉暴露的热氧化层,露出的新鲜硅片即为活性窗口。
所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,洁净转移方法具体为:将沉积有碳纳米管薄膜的微孔滤膜裁成合适尺寸,倒置于硅基底上,在微孔滤膜上滴加无水乙醇,将碳纳米管薄膜压紧在硅基底表面上,再利用碳纳米管薄膜与硅基底之间的作用力大于碳纳米管薄膜与微孔滤膜间的作用力,直接用镊子移去微孔滤膜。
所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,上电极是在窗口周围的热氧化层上涂银胶或者蒸镀钛/金的金属薄膜。
所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,下电极是在硅基底背部用金刚石笔刮涂铟镓合金或者蒸镀钛/金的复合金属层。
所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,硅基底采用PET塑料基底或石英玻璃基底替换,碳纳米管薄膜与该基底的作用力大于与其背面微孔滤膜的作用力,即实现转移。
所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,其特征在于,太阳能电池光电转化效率为10.3%~14.2%,在空气中放置9天后,性能衰减不到1%;在空气中放置30天后,性能衰减不到2%。
本发明的设计思想是:
采用浮动催化剂化学气相沉积法(FCCVD)技术制备高质量、高纯度的碳纳米管薄膜,避免双氧水/浓硝酸和去离子水的清洗过程;利用无水乙醇使碳纳米管薄膜很好地铺展在硅基底上,增加碳纳米管薄膜与硅基底的接触面积;利用碳纳米管薄膜与上下接触面作用力的不同,即碳纳米管薄膜与硅基底之间的作用力大于其与微孔滤膜的作用力,可直接用镊子移去滤膜;从而,实现碳纳米管薄膜的简便、洁净、无损转移。
本发明的优点及有益效果是:
1、本发明中所使用碳纳米管薄膜纯度高(催化剂含量<7%),无需使用H2O2,浓HNO3等溶液纯化,保证高透光率下的低表面电阻特征,有利于构建高性能硅异质结太阳能电池,所构建的太阳能电池具有优异的光电转换性能及稳定性。
2、本发明的简便、洁净、无损转移方法过程简单,只需将有碳纳米管薄膜的滤膜置于硅基底上,滴加无水乙醇,并用洗耳球轻轻吹干后,用镊子移去微孔滤膜,即可完成碳纳米管薄膜的转移。
3、本发明的简便、洁净、无损转移方法可用于转移超薄碳纳米管薄膜(透光率可高至95%),转移过程中无需使用无水乙醇外的其他溶剂,避免转移过程中对碳纳米管薄膜的二次污染。
4、本发明方法适用于不同材质的基底,如:硅片、PET、石英玻璃等;只要碳纳米管薄膜与该基底的作用力大于与滤膜的作用力,就可以实现转移。
5、本发明制备的单壁碳纳米管/硅异质结太阳能电池效率高(最高达14.2%),耗时短、稳定性好(可在空气中放置九天而几乎不发生变化,放置一个月效率下降小于~2%)。
附图说明
图1(a)是微孔滤膜上直接收集的不同厚度碳纳米管薄膜的光学照片,图1(b)是转移到硅基底上的不同厚度碳纳米管薄膜的光学照片,其中:w/o CNT film代表硅基底上面无碳纳米管薄膜,T=95%代表硅基底上面覆盖透光率为95%的碳纳米管薄膜,T=90%代表硅基底上面覆盖透光率为90%的碳纳米管薄膜,T=80%代表硅基底上面覆盖透光率为80%的碳纳米管薄膜,T=72%代表硅基底上面覆盖透光率为72%的碳纳米管薄膜。
图2是FCCVD制备的碳纳米管的扫描电镜照片(a)和透射电镜照片(b)。
图3是碳纳米管薄膜的转移过程示意图。
图4是碳纳米管/硅异质结太阳能电池的结构示意图,其中:Sunlight代表太阳照方向,Ⅰ代表上电极,Ⅱ代表碳纳米管薄膜,Ⅲ代表热氧化层,Ⅳ代表硅片,Ⅴ代表下电极。
图5是由透光率为90%的碳纳米管薄膜制备的太阳能电池在标准光源(AM1.5,100mW/cm2)下测试的电流密度-电压曲线,横坐标Voltage代表电压(V),纵坐标Currentdensity代表电流密度(mA/cm2);(a)图中,光电转化效率PCE=11.8%,短路电流密度Jsc=31.5mA/cm2,开路电压Voc=0.584V,填充因子FF=64.1%,窗口面积S=9mm2;(b)图中,光电转化效率PCE=14.2%,短路电流密度Jsc=33.8mA/cm2,开路电压Voc=0.589V,填充因子FF=71.2%,窗口面积S=2.3mm2
具体实施方式
在具体实施过程中,本发明简便、洁净、无损转移碳纳米管薄膜及制备单壁碳纳米管/硅异质结太阳能电池的方法分为以下几步:(1)采用FCCVD法制备高质量的碳纳米管,通过调节收集时间,在微孔滤膜上收集不同透光率的碳纳米管薄膜(图1a);(2)利用碳纳米管薄膜与硅基底和微孔滤膜之间作用力的差异,简便地将不同厚度的碳纳米管薄膜置于预先开好窗口的硅基底上(见图1b、图2);(3)制备上电极和下电极并引出导线。本发明中,微孔滤膜的孔径约为0.45μm。
如图3所示,碳纳米管薄膜的转移过程如下:
首先将沉积于微孔滤膜上的高性能(高透光率、低方块电阻)碳纳米管透明导电薄膜裁剪成合适尺寸;再将其置于SiO2/Si基底上,滴加无水乙醇,使碳纳米管薄膜与硅基底紧密接触;待乙醇自然蒸发后,再利用碳纳米管薄膜与硅基底之间的作用力大于碳纳米管薄膜与微孔滤膜的作用力,用镊子直接移去微孔滤膜;然后制备上电极(银胶)和下电极(铟镓合金)即得所述太阳能电池。
如图4所示,该太阳能电池自上而下包括:上电极Ⅰ、碳纳米管薄膜Ⅱ、热氧化层Ⅲ、硅片Ⅳ和下电极Ⅴ,硅基底为热氧化层Ⅲ与硅片Ⅳ组成,硅片Ⅳ位于热氧化层Ⅲ下部,碳纳米管薄膜Ⅱ中间带有凹形结构,碳纳米管薄膜Ⅱ上表面外侧分别设置上电极Ⅰ,碳纳米管薄膜Ⅱ下表面外侧与硅片Ⅳ上表面之间设置热氧化层Ⅲ,碳纳米管薄膜Ⅱ直接置于预先在硅基底Ⅳ上表面中心开好的窗口上,所述窗口与碳纳米管薄膜Ⅱ中间的凹形结构相对应。
下面,通过实施例进一步详述本发明。
实施例1
本实施例中,无损转移碳纳米管薄膜制备异质结太阳能电池的方法,包括如下步骤:
1、采用FCCVD法制备高纯度碳纳米管(图2),通过调节收集时间,得到透光率范围为72~95%,表面电阻范围为52~560Ω/□(方块电阻)的碳纳米管薄膜;将沉积在微孔滤膜基底的碳纳米管薄膜裁剪成合适尺寸。
2、将面积为1.5cm×1.5cm、厚度为500μm的N型硅片(电阻率2~4Ω·cm,上有厚度为300nm的热氧化层(二氧化硅)),分别经丙酮、无水乙醇和去离子水超声处理各10分钟,去除硅基底表面的污染物,然后利用绝缘胶带在硅基底表面围成方格图案,面积为9mm2。将暴露的热氧化层用BOE溶液(BOE,Buffered Oxide Etch,缓冲氧化物刻蚀液)刻蚀掉,露出新鲜的硅表面,并用去离子水冲洗三次,用氮气枪吹干硅表面,然后揭掉绝缘胶带。将步骤1裁好的透光率为95%的碳纳米管薄膜置于硅基底上,滴一滴无水乙醇,使碳纳米管薄膜与硅基底接触,待乙醇蒸发后,用镊子移去微孔滤膜(图3)。在窗口周围的热氧化层上涂银胶电极,并用导线引出;在硅片背面刮涂铟镓合金并贴到铜片(铜片置于铟镓合金下方,作为电极与液态铟镓合金相粘合)上作为下电极,用导线引出,至此太阳能电池制作完毕(图4)。在标准光源(AM1.5,100mW/cm2)下测试所构建异质结太阳能电池的效率,得到其光电转化效率为10.3%;在空气中放置30天后,性能衰减不到2%。
实施例2
本实施例中,无损转移碳纳米管薄膜制备异质结太阳能电池的方法,包括如下步骤:
步骤1同实施例1。
将面积为1.5cm×1.5cm、厚度为500μm的N型硅片(电阻率2~4Ω·cm,上有厚度为300nm的热氧化层(二氧化硅)),分别经丙酮、无水乙醇和去离子水各超声处理10分钟,去除硅基底表面的污染物,然后利用光刻法在硅基底表面暴露方格图案,面积为9mm2。将暴露的热氧化层用BOE溶液刻蚀掉,露出新鲜的硅表面,并用去离子水冲洗三次,然后用丙酮洗去光刻胶,氮气枪吹干硅表面。将透光率为90%的碳纳米管薄膜置于硅基底上,滴一滴无水乙醇,使碳纳米管薄膜与硅基底接触,待乙醇蒸发后,用镊子移去微孔滤膜(图3)。在硅基底表面有热氧化层处蒸镀10nm钛和50nm金作为上电极,在硅基底背部蒸镀10nm钛和50nm金作为下电极,分别用导线引出;至此太阳能电池制作完毕。在标准光源(AM1.5,100mW/cm2)下测试所构建异质结太阳能电池的效率,得到其光电转化效率为11.8%(图5a);在空气中放置30天后,性能衰减不到2%。
实施例3
本实施例中,无损转移碳纳米管薄膜制备异质结太阳能电池的方法,包括如下步骤:
步骤1同实施例1。
将面积为1.5cm×1.5cm、厚度为500μm的N型硅片(电阻率2~4Ω·cm,上有厚度为300nm的热氧化层(二氧化硅)),分别经丙酮、无水乙醇和去离子水各超声处理10分钟,去除硅基底表面的污染物,然后利用光刻法在硅基底表面暴露方格图案,面积为2.3mm2。将暴露的热氧化层用BOE溶液刻蚀掉,露出新鲜的硅表面,并用去离子水冲洗三次,然后用丙酮洗去光刻胶,氮气枪吹干硅表面。将透光率为90%的碳纳米管薄膜置于硅基底上,滴一滴无水乙醇,使碳纳米管薄膜与硅基底接触,待乙醇蒸发后,用镊子移去微孔滤膜(图3)。在硅基底表面有热氧化层处蒸镀10nm钛和50nm金作为上电极,在硅基底背部蒸镀10nm钛和50nm金作为下电极,分别用导线引出;至此太阳能电池制作完毕。在标准光源(AM1.5,100mW/cm2)下测试所构建异质结太阳能电池的效率,得到其光电转化效率为14.2%(图5b);在空气中放置30天后,性能衰减不到2%。
比较例
本比较例中,太阳能电池的制备方法,包括如下步骤:
将面积为1.5cm×1.5cm、厚度为500μm的N型硅片(电阻率2~4Ω·cm,上有厚度为300nm的热氧化层(二氧化硅)),分别经丙酮、无水乙醇和去离子水各超声处理10分钟,去除硅基底表面的污染物,然后利用光刻法在硅基底表面暴露方格图案,面积为9mm2。将暴露的热氧化层用BOE溶液刻蚀掉,露出新鲜的硅表面,并用去离子水冲洗三次,然后用丙酮洗去光刻胶,氮气枪吹干硅表面。将透光率为90%的碳纳米管薄膜置于硅基底(碳纳米管与硅接触)上,用丙酮将滤膜溶解掉(每次20min,共三次);在硅基底表面有热氧化层处蒸镀10nm钛和50nm金作为上电极,在硅基底背部蒸镀10nm钛和50nm金作为下电极,分别用导线引出;至此太阳能电池制作完毕。在标准光源(AM1.5,100mW/cm2)下测试所构建异质结太阳能电池的效率,得到其光电转化效率为9.4%。与实施例2相比,电池转化效率降低2.4%,在空气中放置1天后,性能衰减15%。
实施例和比较例结果表明,本发明提出的简便、洁净、无损转移碳纳米管薄膜方法,利用碳纳米管薄膜与硅基底和微孔滤膜之间作用力的不同,改善碳纳米管薄膜与基底的接触,以无水乙醇为介质实现单壁碳纳米管薄膜无厚度限制的洁净、无损转移,提高碳纳米管/硅异质结太阳能电池的转换效率及稳定性,对于推动碳纳米管在太阳能领域的基础和应用研究具有重要的意义。本发明太阳能电池的最佳光电转化效率可达14.2%,是已报道无掺杂碳纳米管/硅异质结太阳能电池最佳性能的1.3倍;在空气中放置9天后,性能衰减不到1%(而现有掺杂碳纳米管/硅异质结太阳能电池在空气中放置1天,性能衰减约50%)。

Claims (9)

1.一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法,其特征在于,将浮动催化剂化学气相沉积法制备的高透光率、低方块电阻的碳纳米管薄膜裁剪成合适尺寸,然后利用无水乙醇辅助的洁净转移方法将该薄膜转移到硅基底上,再通过制备上电极和下电极构建单壁碳纳米管/硅异质结太阳能电池;该太阳能电池自上而下包括:上电极、碳纳米管薄膜、热氧化层、硅片和下电极,硅基底为热氧化层与硅片组成,硅片位于热氧化层下部,碳纳米管薄膜中间带有凹形结构,碳纳米管薄膜上表面外侧分别设置上电极,碳纳米管薄膜下表面外侧与硅片上表面之间设置热氧化层,碳纳米管薄膜直接置于预先在硅基底上表面中心开好的窗口上,所述窗口与碳纳米管薄膜中间的凹形结构相对应。
2.按照权利要求1所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,其特征在于,所用碳纳米管薄膜由浮动催化剂化学气相沉积法制备,并直接收集到微孔滤膜上;其透光率范围为72%~95%,表面电阻范围为52~560Ω/□。
3.按照权利要求1所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,其特征在于,所用硅基底掺杂类型为N型,电阻率为2~4Ω·cm,表面热氧化层厚度为100~400nm,在硅基底上表面中心的窗口作为单壁碳纳米管/硅异质结太阳能电池的活性窗口。
4.按照权利要求3所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,其特征在于,硅基底的活性窗口制备方法为:先利用绝缘胶带在硅基底表面围成面积为2.3mm2或9mm2的方格图案,再用BOE溶液刻蚀掉暴露的热氧化层,露出的新鲜硅片即为活性窗口。
5.按照权利要求1所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,其特征在于,洁净转移方法具体为:将沉积有碳纳米管薄膜的微孔滤膜裁成合适尺寸,倒置于硅基底上,在微孔滤膜上滴加无水乙醇,将碳纳米管薄膜压紧在硅基底表面上,再利用碳纳米管薄膜与硅基底之间的作用力大于碳纳米管薄膜与微孔滤膜间的作用力,直接用镊子移去微孔滤膜。
6.按照权利要求1所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,其特征在于,上电极是在窗口周围的热氧化层上涂银胶或者蒸镀钛/金的金属薄膜。
7.按照权利要求1所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,其特征在于,下电极是在硅基底背部用金刚石笔刮涂铟镓合金或者蒸镀钛/金的复合金属层。
8.按照权利要求1所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,其特征在于,硅基底采用PET塑料基底或石英玻璃基底替换,碳纳米管薄膜与该基底的作用力大于与其背面微孔滤膜的作用力,即实现转移。
9.按照权利要求1至8之一所述的无损转移碳纳米管薄膜制备异质结太阳能电池的方法,其特征在于,太阳能电池光电转化效率为10.3%~14.2%,在空气中放置9天后,性能衰减不到1%;在空气中放置30天后,性能衰减不到2%。
CN201810149487.8A 2018-02-13 2018-02-13 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法 Active CN110165011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810149487.8A CN110165011B (zh) 2018-02-13 2018-02-13 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810149487.8A CN110165011B (zh) 2018-02-13 2018-02-13 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法

Publications (2)

Publication Number Publication Date
CN110165011A true CN110165011A (zh) 2019-08-23
CN110165011B CN110165011B (zh) 2021-01-08

Family

ID=67635320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810149487.8A Active CN110165011B (zh) 2018-02-13 2018-02-13 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法

Country Status (1)

Country Link
CN (1) CN110165011B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420933A (zh) * 2020-11-05 2021-02-26 中国科学院金属研究所 基于单壁碳纳米管薄膜的异质结光电探测器的制备方法
CN112490322A (zh) * 2019-09-11 2021-03-12 中国科学院金属研究所 柔性p型单壁碳纳米管/n型硅异质结太阳能电池的制备方法
CN112485296A (zh) * 2019-09-11 2021-03-12 中国科学院金属研究所 基于单壁碳纳米管的自供能气体传感器的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110212308A1 (en) * 2007-06-25 2011-09-01 Canatu Oy Fibrous networks and a method and apparatus for continuous or batch fibrous network production
CN102360957A (zh) * 2011-08-02 2012-02-22 复旦大学 以取向碳纳米管膜为对电极的染料敏化太阳能电池
CN102810360A (zh) * 2012-07-31 2012-12-05 中国科学院物理研究所 一种减薄碳纳米管薄膜的方法
CN104538203A (zh) * 2014-12-31 2015-04-22 天津大学 一种透明超级电容器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110212308A1 (en) * 2007-06-25 2011-09-01 Canatu Oy Fibrous networks and a method and apparatus for continuous or batch fibrous network production
CN102360957A (zh) * 2011-08-02 2012-02-22 复旦大学 以取向碳纳米管膜为对电极的染料敏化太阳能电池
CN102810360A (zh) * 2012-07-31 2012-12-05 中国科学院物理研究所 一种减薄碳纳米管薄膜的方法
CN104538203A (zh) * 2014-12-31 2015-04-22 天津大学 一种透明超级电容器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANTTI KASKELA: ""Aerosol-Synthesized SWCNT Networks with unable Conductivity and Transparency by a Dry Transfer Technique"", 《NANO LETTER》 *
ERI MURAMOTO: ""Carbon nanotube–silicon heterojunction solar cells with surface-textured Si and solution processed carbon nanotube films"", 《RSC ADVANCES》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490322A (zh) * 2019-09-11 2021-03-12 中国科学院金属研究所 柔性p型单壁碳纳米管/n型硅异质结太阳能电池的制备方法
CN112485296A (zh) * 2019-09-11 2021-03-12 中国科学院金属研究所 基于单壁碳纳米管的自供能气体传感器的制备方法
CN112485296B (zh) * 2019-09-11 2022-04-05 中国科学院金属研究所 基于单壁碳纳米管的自供能气体传感器的制备方法
CN112490322B (zh) * 2019-09-11 2023-04-07 中国科学院金属研究所 柔性p型单壁碳纳米管/n型硅异质结太阳能电池的制备方法
CN112420933A (zh) * 2020-11-05 2021-02-26 中国科学院金属研究所 基于单壁碳纳米管薄膜的异质结光电探测器的制备方法
CN112420933B (zh) * 2020-11-05 2023-11-10 中国科学院金属研究所 基于单壁碳纳米管薄膜的异质结光电探测器的制备方法

Also Published As

Publication number Publication date
CN110165011B (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
Lin et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function
Hu et al. Small-bundle single-wall carbon nanotubes for high-efficiency silicon heterojunction solar cells
CN103579419B (zh) 一种石墨烯/MoS2/Si 异质结薄膜太阳能电池及其制备方法
Tsakalakos et al. Silicon nanowire solar cells
CN103996739B (zh) 用纳米/微球光刻制造纳米/微线太阳能电池
CN110165011A (zh) 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法
CN107946470A (zh) 一种异质结太阳能电池及其制备方法
Hsueh et al. Crystalline-Si photovoltaic devices with ZnO nanowires
CN102254963A (zh) 一种石墨烯/硅柱阵列肖特基结光伏电池及其制造方法
CN103579415A (zh) 一种氧化锌纳米线阵列紫外光电探测器的制备方法
CN103681965A (zh) 柔性基底硅纳米线异质结太阳电池的制备方法
Chen et al. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell
CN102169910B (zh) 一种基于硫属化合物纳米晶的薄膜太阳能电池
CN111584719A (zh) 一种碳纳米管/砷化镓异质结宽光谱超薄太阳能电池及其构筑方法
WO2013086963A1 (zh) 太阳能电池及其制备方法
Chen et al. Three-dimensional radial junction solar cell based on ordered silicon nanowires
CN103137770B (zh) 一种石墨烯/Si p-n双结太阳能电池及其制备方法
CN114823931A (zh) 一种碳纳米管/银纳米线复合薄膜及其砷化镓基异质结太阳电池和制备方法
Li et al. CuI-Si heterojunction solar cells with carbon nanotube films as flexible top-contact electrodes
CN108963021A (zh) 一种基于化学修饰的黑磷材料太阳能电池及制备方法
Zhang et al. Self-catalyzed GaAs (P) nanowires and their application for solar cells
CN104064619B (zh) 一种微晶硅非晶硅径向双结纳米线太阳能电池
CN103489941A (zh) 一种硅纳米线阵列结构硅薄膜太阳电池及其制备方法
Wang et al. Preparation of CuI particles and their applications in carbon nanotube-Si heterojunction solar cells
Cui et al. Carbon nanotube-silicon solar cells: improving performance for next-generation energy systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant