CN112485296B - 基于单壁碳纳米管的自供能气体传感器的制备方法 - Google Patents

基于单壁碳纳米管的自供能气体传感器的制备方法 Download PDF

Info

Publication number
CN112485296B
CN112485296B CN201910857326.9A CN201910857326A CN112485296B CN 112485296 B CN112485296 B CN 112485296B CN 201910857326 A CN201910857326 A CN 201910857326A CN 112485296 B CN112485296 B CN 112485296B
Authority
CN
China
Prior art keywords
self
gas sensor
carbon nanotube
walled carbon
powered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910857326.9A
Other languages
English (en)
Other versions
CN112485296A (zh
Inventor
刘畅
郭舒予
胡显刚
侯鹏翔
成会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201910857326.9A priority Critical patent/CN112485296B/zh
Publication of CN112485296A publication Critical patent/CN112485296A/zh
Application granted granted Critical
Publication of CN112485296B publication Critical patent/CN112485296B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic System, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

本发明涉及气体传感器技术,具体为一种基于单壁碳纳米管的自供能气体传感器的制备方法。利用浮动催化剂化学气相沉积法制备并收集高质量单壁碳纳米管薄膜,直接转移担载于柔性透明基体上,以单壁碳纳米管作为气体敏感元件,以单壁碳纳米管薄膜/硅异质结制备太阳能光伏电池,再将电极材料,如:铜、金、银、铝等金属或碳纳米管、石墨烯、ITO等非金属,以磁控溅射、热蒸发、电镀、银胶等方式连接,即完成基于单壁碳纳米管的自供能气体传感器的组装。本发明实现了小而轻、高性能自供能气体传感器的制备,并可进一步通过优化设计集成柔性可弯折的自供能气体传感器,突破了目前金属氧化物气体传感器在柔性、重量、能耗、供能等方面的局限性。

Description

基于单壁碳纳米管的自供能气体传感器的制备方法
技术领域
本发明涉及气体传感器技术,具体为一种利用单壁碳纳米管柔性透明薄膜构建高性能气体传感器、及单壁碳纳米管薄膜/硅异质结太阳能光伏电池构建(含柔性)自供能气体传感器的制备方法。
背景技术
近年来,随着科技的迅速发展,传感器技术无论在精度和广度上已取得快速进步。然而,传统的传感器仍难以满足IoT(Internet of Things)物联网技术提出的巨大需求,新型传感器技术亟待取得突破。自供能传感器就是一种新兴的传感技术。
按供能方式可以将微型传感器分为两种:有源和无源传感器。尽管有源传感器由电源或者电路供电,控制处理灵活方便,已广泛应用当今社会;但对于需长期监测、不能提供电源或电池难以更换、易燃易爆、深空探测等危险环境中的应用,则需要采用无源传感器。此外,由于物联网技术万物互联,节点数量极多,分布范围极广,电池的更换也难以实现。因此,传感器若能自供能,则具有巨大的应用前景,目前也是国内外研究的热点之一。
单壁碳纳米管具有优异的力学、光学性能、弹道输运特性、很好柔韧性及较低的密度,对外界环境变化敏感等,是一种理想的柔性气体敏感材料(文献1.Meyyappan,M.Small,2016,12(16):2118-2129.文献2.Schroeder V,Savagatrup S,He M,et al.Chemicalreviews,2018,119(1):599-663.)。为此,人们开发了多种碳纳米管气体传感器。相比于传统气体传感器,碳纳米管气体传感器具有轻质、小型、柔性、低能耗等特点;单壁碳纳米管(含柔性)气体传感器所需的工作电压很低,低至可在0.1V正常工作。(文献3.Feng X,IrleS,Witek H,et al.Journal of the American Chemical Society,2005,127(30):10533-10538.文献4.Ammu S,Dua V,Agnihotra S R,et al.Journal of the American ChemicalSociety,2012,134(10):4553-4556.文献5.Xiao M,Liang S,Han J,et al.ACS sensors,2018,3(4):749-756.)。此外,随着碳纳米管薄膜光电性能的提升和器件结构的改进,碳纳米管/硅异质结太阳能电池的转换效率已达10%~17%。(文献6.Hu X G,Hou P X,Liu C,et al.Nano energy,2018,50:521-527.文献7.Cui K,Qian Y,Jeon I,et al.AdvancedEnergy Materials,2017,7(18):1700449.文献8.Wang F,Kozawa D,Miyauchi Y,etal.Nature communications,2015,6:6305.)。这种转化效率的碳纳米管/硅异质结太阳能电池能够提供0.5~0.6V的电压;因此,碳纳米管/硅异质结太阳能电池完全能够提供碳纳米管柔性气体传感器稳定工作所需的电压。然而,目前尚无将此两种技术结合的报道。
发明内容
本发明的目的在于提供一种基于单壁碳纳米管的自供能气体传感器的制备方法,在单壁碳纳米管薄膜气体传感器的小型化、稳定持久、便携式、低功耗、室温下使用、高灵敏度等特性的基础上,首次实现了自供能模式。在光照条件下,自供能模块可实现稳定的电源供给,无需外加电源即可使用,有利于其在深空探测等极端环境下的应用,可节约人力成本,也能降低能源的消耗,有利于节能减排。
本发明的技术方案是:
一种基于单壁碳纳米管的自供能气体传感器的制备方法,利用单壁碳纳米管薄膜作为气体敏感材料与基体构建气体传感单元,同时利用单壁碳纳米管薄膜与硅构建的异质结太阳能光伏电池自供能单元作为供电系统,利用电极材料将两部分连接,即获得供电、传感一体化的气体传感器。
所述的基于单壁碳纳米管的自供能气体传感器的制备方法,单壁碳纳米管薄膜为采用浮动催化剂化学气相沉积法制备的直接收集在滤膜上的薄膜宏观体,再经压印转移至基体上,形成单壁碳纳米管/基体复合膜,即构建出基于单壁碳纳米管的气体传感单元。
所述的基于单壁碳纳米管的自供能气体传感器的制备方法,基体为刚性基体或者柔性、透明基体,刚性基体包括但不限于硅片、玻璃片或电路板,柔性、透明基体包括但不限于聚对苯二甲酸乙二酯薄膜、聚萘二甲酸乙二醇酯、聚二甲基硅氧烷或聚酰亚胺。
所述的基于单壁碳纳米管的自供能气体传感器的制备方法,单壁碳纳米管薄膜/硅异质结太阳能光伏电池的制备方法如下:首先将沉积于滤膜上的碳纳米管透明导电薄膜裁剪成需要的尺寸;再将其直接转移至硅基体上,滴加无水乙醇,使碳纳米管透明导电薄膜与硅基体紧密接触;然后制备上电极和下电极,即得太阳能光伏电池自供能单元,在光照条件下稳定提供输出电压。
所述的基于单壁碳纳米管的自供能气体传感器的制备方法,将气体传感单元裁减成需要的尺寸,利用电极材料将气体传感单元与太阳能光伏电池自供能单元,以磁控溅射、热蒸发、电镀或银胶方式连接,即完成基于单壁碳纳米管的自供能气体传感器的组装。
所述的基于单壁碳纳米管的自供能气体传感器的制备方法,电极材料为金属或非金属,金属包括但不限于铜、金、银或铝,非金属包括但不限于碳纳米管、石墨烯或ITO。
所述的基于单壁碳纳米管的自供能气体传感器的制备方法,在光照条件下,该自供能气体传感器集成的基于碳纳米管薄膜的太阳能光伏电池模块输出供气体传感器工作的稳定电压,无需其他外接电源可使传感器正常工作。
所述的基于单壁碳纳米管的自供能气体传感器的制备方法,该自供能气体传感器检测ppm甚至ppb量级的气体,响应时间在10秒以内。
所述的基于单壁碳纳米管的自供能气体传感器的制备方法,该自供能气体传感器进行大角度0~180°、无限次弯折时,不影响传感器性能。
本发明的设计思想是:
利用单壁碳纳米管薄膜/硅异质结(含柔性)太阳能光伏电池作为自供能组件,与基于单壁碳纳米管的柔性传感器组件集成为自供能气体传感器;在光照条件下,太阳能光伏电池为传感器提供稳定的电源,驱动传感器正常工作。
本发明的优点及有益效果是:
1.在光照条件下,基于碳纳米管的自供能气体传感器无需外电源;单壁碳纳米管薄膜/硅异质结太阳能光伏电池直接将光能转化为电能,驱动传感器工作,效果不弱于甚至优于外接电源供电。
2.本发明方法适用于不同材质的基体,如:硅片、石英玻璃等刚性基体,亦适用于PET、PEN、PDMS等柔性基体,使集成系统升级为柔性器件,有应用于可穿戴器件领域的潜力。
3.本发明集成的基于单壁碳纳米管薄膜/硅异质结的太阳能光伏电池能够提供0.5~0.6V的稳定电压,可稳定驱动气体传感部件正常工作。
4.本发明方法简便、洁净、器件集成过程简单,易于量产。
5.本发明传感器还具有结构简单、功耗极低(μW级别)、可批量生产、成本低等众多优点,且便于组合为阵列结构,更好的提高其对多种气体的分辨能力。
6.本发明传感器在光照条件下,集成的基于碳纳米管薄膜的太阳能光伏电池模块输出供气体传感器工作的稳定电压,无需其他外接电源即可使传感器正常工作。
附图说明
图1.自供能气体传感器的结构示意图。
图2.单壁碳纳米管自供能气体传感器的光学照片。
图3.在光照等条件下,单壁碳纳米管自供能气体传感器对NO2气体的响应性能测试曲线。图中,横坐标time代表时间(s),纵坐标current代表电流(A)。
图4.无光照等条件下,利用外加电源,传感器对NO2气体的响应性能测试曲线。图中,横坐标time代表时间(s),纵坐标current代表电流(A)。
具体实施方式
在具体实施过程中,本发明利用浮动催化剂化学气相沉积法制备并收集高质量单壁碳纳米管薄膜,直接转移担载于柔性透明基体上,以单壁碳纳米管(CNT)作为气体敏感元件,以单壁碳纳米管薄膜/硅异质结制备太阳能光伏电池,再将电极材料,如:铜、金、银、铝等金属或碳纳米管、石墨烯、氧化铟锡(ITO)等非金属,以磁控溅射、热蒸发、电镀、银胶等方式连接,即完成基于单壁碳纳米管的自供能气体传感器的组装。
如图1所示,自供能气体传感器的结构示意图,它包括气体传感单元(传感器模块)、太阳能光伏电池自供能单元(自供能模块)以及两单元的连接部分,下面分别详细阐述。
基于碳纳米管的气体传感单元的构建:将浮动催化剂化学气相沉积法制备得到的沉积在微孔滤膜(本发明中,微孔滤膜可以为普通水系/有机混合纤维微孔滤膜其技术指标如下:直径30mm~70mm,平均孔径0.45μm)上的碳纳米管薄膜,通过压印转移方法转移到基体上,基体可以是硅片、玻璃片、电路板等刚性基体或者柔性、透明基体(包括但不限于聚对苯二甲酸乙二酯薄膜(PET)、聚萘二甲酸乙二醇酯(PEN)、聚二甲基硅氧烷(PDMS)、聚酰亚胺(PI)等),碳纳米管薄膜的厚度可根据透光率确定,透光率为60~98%,基体厚度为200μm~1000μm。从而,形成碳纳米管/基体复合膜,即构建出基于碳纳米管的气体传感单元(含柔性)。本发明中,“含柔性”是指基于结合柔性自供能单元和柔性气体传感器单元升级成为柔性自供能气体传感器。
基于碳纳米管的太阳能光伏电池自供能单元的构建:首先将沉积于微孔滤膜上的高质量(如:高透明导电性、G/D比大于100)碳纳米管透明导电薄膜裁剪成合适尺寸;再将碳纳米管透明导电薄膜转移至硅基体(含柔性)上,滴加无水乙醇,使碳纳米管薄膜与硅基体紧密接触;然后,制备上电极(如:银胶)和下电极(如:铟镓合金),即得单壁碳纳米管薄膜/硅异质结太阳能光伏电池自供能单元,在光照等条件下可稳定提供输出电压。
基于碳纳米管的(含柔性)自供能气体传感器的构建:如图2所示,将上述两个基本单元:气体传感单元、太阳能光伏电池自供能单元,利用电极材料,如:铜、金、银、铝等金属或碳纳米管、石墨烯、ITO等非金属,以磁控溅射、热蒸发、电镀、银胶等方式连接为一个基本的(含柔性)自供能的气体传感器单元,而且可集成两个以上气体传感器单元并构成传感器阵列。
本发明通过优化器件结构,利用柔性薄膜硅和其他柔性透明基底,可分别构建基于单壁碳纳米管薄膜/硅异质结的柔性太阳能光伏电池和基于单壁碳纳米管的柔性透明传感器组件,并照上述方式集成即可获得基于单壁碳纳米管的柔性自供能气体传感器,该传感器组件可进行大角度0~180°、无限次弯折,且不影响传感器性能。
下面,通过实施例进一步详述本发明。
实施例1:利用气体传感器测试系统,将上述制备得到的自供能气体传感器放入透明的传感器测试系统内。在光照条件下,不施加外加电源,测试本发明自供能气体传感器对100ppm NO2的响应性能。
该自供能传感器在光照条件下,直接将光能转换为电能,驱动传感器组件工作,得到了不弱于甚至优于外加电源的响应性能曲线(图3),对比外加电源的条件,该集成的自供能气体传感器有着更明显的响应幅值,更快的响应时间和回复时间,以及极弱的曲线偏移,更接近理想的方波曲线。
实施例2:利用气体传感器测试系统,将制备的柔性自供能传感器放入透明的传感器测试系统内。在光照条件下,不施加外加电源,测试本发明自供能气体传感器对100ppmNH3的响应性能。
该柔性自供能传感器在光照条件下,直接将光能转换为电能,驱动传感器组件工作,得到了与实施例1类似的的曲线,区别则是实施例1在100ppm的NO2气氛下,电流增大;而实施例2中,当传感器暴露在100ppm的NH3气氛下,电流减小。
实施例3:利用气体传感器测试系统,将制备得到的传感器放入透明的传感器测试系统腔体内。在光照等条件下,不施加外加电源,测试本发明自供能气体传感器对100ppmO2的响应性能。
该柔性自供能传感器在光照条件下,直接将光能转换为电能,驱动传感器组件工作,得到了与实施例1类似的响应曲线。
比较例1:利用气体传感器测试系统,将上述制备得到的传感器放入透明的传感器测试系统腔体内。在不施加外加电源和黑暗条件下,测试本发明自供能气体传感器对100ppm NO2的响应性能。实验结果表明,没有输出的电流信号。
比较例2:利用气体传感器测试系统,将上述制备得到的传感器放入透明的传感器测试系统腔体内。利用外加电源,测试本发明自供能气体传感器对100ppm NO2的响应性能测试曲线,见图4。
从电流时间曲线上可以看到,在外加0.1V电压的条件下,传感器对100ppm的二氧化氮气体有着较好的响应值,较快的响应时间和回复时间,但却存在着一个较大幅度的曲线偏移。
实施例结果表明,本发明将基于碳纳米管的低能耗气体传感器和基于碳纳米管的太阳能光伏电池相结合,提出、设计一种自供能传感器,实现了传感器自供能一体化。此外,通过进一步的器件结构设计优化,可实现基于碳纳米管的柔性自供能传感器一体化。本发明实现了小而轻、高性能自供能气体传感器的制备,并可进一步通过优化设计集成柔性可弯折的自供能气体传感器,突破了目前金属氧化物气体传感器在柔性、重量、能耗、供能等方面的局限性。
本发明并不局限于上述的实施例,并非为对本发明的范围进行限定,涉及在本发明思路下,本领域工程技术人员对本方案做出的各种变型及改进,均应属于本发明的权利要求的保护。

Claims (5)

1.一种基于单壁碳纳米管的自供能气体传感器的制备方法,其特征在于,利用单壁碳纳米管薄膜作为气体敏感材料与基体构建气体传感单元,同时利用单壁碳纳米管薄膜与硅构建的异质结太阳能光伏电池自供能单元作为供电系统,利用电极材料将两部分连接,即获得供电、传感一体化的气体传感器;
单壁碳纳米管薄膜为采用浮动催化剂化学气相沉积法制备的直接收集在滤膜上的薄膜宏观体,再经压印转移至基体上,形成单壁碳纳米管/基体复合膜,即构建出基于单壁碳纳米管的气体传感单元;
单壁碳纳米管薄膜/硅异质结太阳能光伏电池的制备方法如下:首先将沉积于滤膜上的碳纳米管透明导电薄膜裁剪成需要的尺寸;再将其直接转移至硅基体上,滴加无水乙醇,使碳纳米管透明导电薄膜与硅基体紧密接触;然后制备上电极和下电极,即得太阳能光伏电池自供能单元,在光照条件下稳定提供输出电压;
该自供能气体传感器检测ppm甚至ppb量级的气体,响应时间在10秒以内;
该自供能气体传感器进行大角度0~180°、无限次弯折时,不影响传感器性能。
2.按照权利要求1所述的基于单壁碳纳米管的自供能气体传感器的制备方法,其特征在于,基体为刚性基体或者柔性、透明基体,刚性基体包括但不限于硅片、玻璃片或电路板,柔性、透明基体包括但不限于聚对苯二甲酸乙二酯薄膜、聚萘二甲酸乙二醇酯、聚二甲基硅氧烷或聚酰亚胺。
3.按照权利要求1至2之一所述的基于单壁碳纳米管的自供能气体传感器的制备方法,其特征在于,将气体传感单元裁减成需要的尺寸,利用电极材料将气体传感单元与太阳能光伏电池自供能单元,以磁控溅射、热蒸发、电镀或银胶方式连接,即完成基于单壁碳纳米管的自供能气体传感器的组装。
4.按照权利要求3所述的基于单壁碳纳米管的自供能气体传感器的制备方法,其特征在于,电极材料为金属或非金属,金属包括但不限于铜、金、银或铝,非金属包括但不限于碳纳米管、石墨烯或ITO。
5.按照权利要求1所述的基于单壁碳纳米管的自供能气体传感器的制备方法,其特征在于,在光照条件下,该自供能气体传感器集成的基于碳纳米管薄膜的太阳能光伏电池模块输出供气体传感器工作的稳定电压,无需其他外接电源可使传感器正常工作。
CN201910857326.9A 2019-09-11 2019-09-11 基于单壁碳纳米管的自供能气体传感器的制备方法 Active CN112485296B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910857326.9A CN112485296B (zh) 2019-09-11 2019-09-11 基于单壁碳纳米管的自供能气体传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910857326.9A CN112485296B (zh) 2019-09-11 2019-09-11 基于单壁碳纳米管的自供能气体传感器的制备方法

Publications (2)

Publication Number Publication Date
CN112485296A CN112485296A (zh) 2021-03-12
CN112485296B true CN112485296B (zh) 2022-04-05

Family

ID=74920540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910857326.9A Active CN112485296B (zh) 2019-09-11 2019-09-11 基于单壁碳纳米管的自供能气体传感器的制备方法

Country Status (1)

Country Link
CN (1) CN112485296B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115520855A (zh) * 2022-09-20 2022-12-27 中国科学院金属研究所 一种对单壁碳纳米管薄膜进行高效、可控氮掺杂的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677879A (zh) * 2015-02-11 2015-06-03 中国科学院金属研究所 一种基于半导体性单壁碳纳米管的柔性、透明气体传感器
CN105489386A (zh) * 2016-01-13 2016-04-13 肖白玉 一种具有快速检测气体功能的太阳能电池边框
JP2016090510A (ja) * 2014-11-10 2016-05-23 富士通株式会社 ガスセンサ及びその製造方法
CN110165011A (zh) * 2018-02-13 2019-08-23 中国科学院金属研究所 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090510A (ja) * 2014-11-10 2016-05-23 富士通株式会社 ガスセンサ及びその製造方法
CN104677879A (zh) * 2015-02-11 2015-06-03 中国科学院金属研究所 一种基于半导体性单壁碳纳米管的柔性、透明气体传感器
CN105489386A (zh) * 2016-01-13 2016-04-13 肖白玉 一种具有快速检测气体功能的太阳能电池边框
CN110165011A (zh) * 2018-02-13 2019-08-23 中国科学院金属研究所 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金属催化剂控制生长单壁碳纳米管研究进展;吉忠海 等;《金属学报》;20181130;第56卷(第11期);1665-1682 *

Also Published As

Publication number Publication date
CN112485296A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
Tang et al. Recent progress in power generation from water/liquid droplet interaction with solid surfaces
Tulliani et al. Carbon-based materials for humidity sensing: A short review
Stanford et al. Laser-induced graphene for flexible and embeddable gas sensors
Zhong et al. A self-powered flexibly-arranged gas monitoring system with evaporating rainwater as fuel for building atmosphere big data
Chen et al. Foldable all‐solid‐state supercapacitors integrated with photodetectors
Zhang et al. A lightweight polymer solar cell textile that functions when illuminated from either side
Han et al. Carbon nanotube based humidity sensor on cellulose paper
Chen et al. Surface effects on optical and electrical properties of ZnO nanostructures
Jiao et al. Emerging hydrovoltaic technology based on carbon black and porous carbon materials: A mini review
Hu et al. Wearable power source: a newfangled feasibility for perovskite photovoltaics
Cao et al. Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption
Zhao et al. Facile primary battery-based humidity sensor for multifunctional application
Demir et al. Humidity sensing properties of CdS nanoparticles synthesized by chemical bath deposition method
CN112485296B (zh) 基于单壁碳纳米管的自供能气体传感器的制备方法
Zhang et al. Voltage distribution in porous carbon black films induced by water evaporation
CN102097218A (zh) 一种量子点敏化太阳能电池
Yuen et al. A fully-flexible solution-processed autonomous glucose indicator
Falco et al. Low-cost gas sensing: Dynamic self-compensation of humidity in cnt-based devices
Li et al. Carbon nano thorn arrays based water/cold resisted nanogenerator for wind energy harvesting and speed sensing
Gao et al. 2D Graphene‐Based Macroscopic Assemblies for Micro‐Supercapacitors
Zheng et al. Materials for evaporation‐driven hydrovoltaic technology
Jia et al. Carbon nanotube-silicon nanowire heterojunction solar cells with gas-dependent photovoltaic performances and their application in self-powered NO 2 detecting
Zhang et al. Laser processing of crumpled porous graphene/MXene nanocomposites for a standalone gas sensing system
CN111505062B (zh) 一种基于有机-无机异质结的光伏自驱动柔性气体传感器及其制备方法
CN101556257A (zh) 直热式碳纳米管气体传感器及敏感膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant