CN102169910B - 一种基于硫属化合物纳米晶的薄膜太阳能电池 - Google Patents

一种基于硫属化合物纳米晶的薄膜太阳能电池 Download PDF

Info

Publication number
CN102169910B
CN102169910B CN2011100078962A CN201110007896A CN102169910B CN 102169910 B CN102169910 B CN 102169910B CN 2011100078962 A CN2011100078962 A CN 2011100078962A CN 201110007896 A CN201110007896 A CN 201110007896A CN 102169910 B CN102169910 B CN 102169910B
Authority
CN
China
Prior art keywords
sulfur compound
nanocrystalline
film solar
preparation
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011100078962A
Other languages
English (en)
Other versions
CN102169910A (zh
Inventor
梁静
彭生杰
梁衍亮
程方益
陶占良
陈军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN2011100078962A priority Critical patent/CN102169910B/zh
Publication of CN102169910A publication Critical patent/CN102169910A/zh
Application granted granted Critical
Publication of CN102169910B publication Critical patent/CN102169910B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种基于三/四元硫属化合物纳米晶的薄膜太阳能电池,由金属对电极、三/四元硫属化合物纳米晶吸光层、二氧化钛纳米棒阵列、透明导电层和透明基底组成,其中硫属化合物包括CuInSxSe2-x(x=0-2)和AgInS2,纳米晶的平均粒径为(2-12)nm;二氧化钛纳米棒阵列在导电玻璃上生长,在硫属化合物纳米晶和二氧化钛纳米棒阵列之间可设有硫化铟缓冲层。本发明的优点:与传统的无机化合物薄膜太阳能电池相比,本发明具有电极材料合成条件温和、电池制备工艺简便易行等优点,具有应用于廉价薄膜太阳能电池的潜在优势。

Description

一种基于硫属化合物纳米晶的薄膜太阳能电池
技术领域
本发明涉及无机化合物薄膜太阳能电池,具体地说,是一种基于三/四元硫属化合物纳米晶的薄膜太阳能电池。
背景技术
[0002] 太阳能电池由于具有清洁、廉价、高效等特点,作为一种可持续发展的能源替代方式,于近年来得到快速的发展。尽管光伏发电成本很高,但从长期来看,伴随着科学技术的发展和其它资源的慢慢枯竭,太阳能预计在2030之后会成为主要能源之一。硅材料是现在商品化太阳能电池的首选,但硅基太阳能电池所要求的硅材料纯度较高,这就增加了电池的制备成本。随着技术和材料的不断发展,以其它材料为基础的太阳能电池、特别是无机化合物薄膜电池越来越占优势。其中I-III-VI族三/四元硫属半导体化合物具有成本相对低廉、稳定性好和可见光吸收系数高等优点,非常适合于制作薄膜太阳能电池。目前用于太阳能电池制作的该类材料的主要制备技术主要包括真空蒸镀、真空溅射、化学气相沉积、分子束外延、喷射热解和电沉积等。这些传统的制备方法主要是在真空下完成,需要昂贵的设备,高真空系统和使用H2S等有毒气体,限制了硫属化合物半导体薄膜太阳能电池的广泛应用。近年来人们试图通过化学法来沉积三/四元硫属化合物薄膜(Liu W, Mitzi D B, Yuan M, et al. 12% Efficiency CuIn(Se,S)2 photovoltaic device prepared using a hydrazine solution process. Chem. Mater, 2010, 22: 1010-1014)。因此,通过开发溶液加工路线如旋转涂布法和印刷半导体纳米晶墨汁来制备低价太阳能越来越受到人们的关注。确实,许多研究者基于Cu-In-S/Se型化合物研究了不同结构的光伏器件。Korgel等分别制备了Mo/CISe/CdS/ZnO/ITO和ITO/ZnO/CdS/Cu2ZnSnS4/Au型结构的薄膜太阳能电池,获得了0.2%和0.23%效率的光电转换效率(Panthani M G, Akhavan V, Goodfellow B, et al. Synthesis of CuInS2, CuInSe2, and Cu(In x Ga1-x )Se2 (CIGS) nanocrystal “Inks” for printable photovoltaics, J. Am. Chem. Soc., 2008, 130: 16770-16777; Steinhagen C, Panthani M G, Akhavan V, et al. Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics, J. Am. Chem. Soc., 2009, 131: 12554-12555)。Agrawal等制备了具有Mo/CuInGaSSe/CdS/ZnO/ITO/Ag结构的CuInGaSSe型太阳能电池,获得了4.76%的光电转换效率(Guo Q J, Ford G M, Hillhouse H W, et al. Sulfide nanocrystal inks for dense Cu(In1−x Ga x )(S1−y Sey)2 absorber films and their photovoltaic performance, Nano. Lett., 2009, 9: 3060-3065)。虽然这些研究都用CuInS/Se纳米晶做光吸收层材料,但是Mo背电极和ZnO/ITO接触层都是用溅射制备,比较昂贵。因此需要继续探索更简便易行的电池制作方法。
纳米棒基太阳能电池已经被报道具有优于传统的双层电池器件的性能。具有高比表面积的有序结构的纳米材料能够提供更直接的电荷传输通道以有利于电荷的收集效率,这可能导致电池性能的提高(Hochbaum A. I, Yang P D. Semiconductor nanowires for energy conversion, Chem. Rev., 2010, 110: 527-546)。除此之外,纳米棒阵列由于能够提高光的散射效率而提高太阳能电池的光吸收效率。最近,Yang等利用ZnO纳米棒阵列和Cu2O 纳米颗粒制备了一种全新的全氧化物太阳能电池,通过在纳米线阵列和纳米颗粒之间加入一层阻挡层获得了0.053%的光电转化率(Yuhas B D, Yang P D. Nanowire-based all-oxide solar cells, J. Am. Chem. Soc., 2009, 131: 3756-3761)。
发明内容
本发明的目的是针对上述技术分析,提供一种基于硫属化合物纳米晶的薄膜太阳能电池的制备方法,其中粒径为(2-10)nm的三/四元硫属化合物纳米晶采用一步化学法的合成方法制备,具有操作简单、易重复、纯度高和反应条件温和等特点,大大降低了成本,有利于大规模生产;把该纳米晶滴涂于水热合成的二氧化钛纳米棒阵列再经热处理即可制备纳米复合物薄膜太阳能电池,该电池具有简单的电池结构和廉价的制备价格,具有应用于低价薄膜太阳能电池的潜在优势。
本发明的技术方案:
一种基硫属化合物纳米晶的薄膜太阳能电池,其特征在于:由金属对电极、三元或四元硫属化合物纳米晶吸光层、硫化铟缓冲层、二氧化钛纳米棒阵列、透明导电层和透明基底组成;所述金属对电极为金或银或二者任意方式的结合;所述三元或四元硫属化合物纳米晶吸光层中的硫属化合物为CuInSxSe2-x(x = 0-2)或AgInS2,纳米晶的平均粒径为(2-12)nm;所述二氧化钛纳米棒阵列中的纳米棒直径为(50-200)nm,厚度为(1-10)mm,纳米棒之间的空隙为(50-200)nm,纳米棒沿着透明基底垂直生长;所述透明基底为镀有掺氟氧化锡或铟锡氧化物导电层的玻璃。
所述二氧化钛纳米棒阵列与三元或四元硫属化合物纳米晶吸光层之间设有硫化铟缓冲层。
一种所述基硫属化合物纳米晶的薄膜太阳能电池的制备方法,步骤如下:
1)将制备的三元或四元硫属化合物纳米晶溶于有机溶剂后涂布在二氧化钛纳米棒阵列上,然后在(40-150)°C、0.1MPa真空度下干燥0.5-12小时;
2)在饱和硫蒸气和氩气氛压力为1 MPa条件下,于(300-450)°C处理0.5-2小时;
3)在二氧化钛纳米棒阵列和三元或四元硫属化合物纳米晶的混合物上制备金属电极。
所述硫化铟缓冲层的制备方法为:把制备有二氧化钛纳米棒的导电玻璃置于氯化铟、硫代乙酰胺和乙酸的水溶液中,(50-80)°C下浸泡0.5-4小时,其中氯化铟的浓度为(0.02-0.05)mol/L,氯化铟、硫代乙酰胺和乙酸的摩尔比为1:(2-4):(2-4)。
所述有机溶剂为甲苯、二甲苯、氯苯或二氯苯,硫属化合物纳米晶在有机溶剂中的浓度为(0.01-0.2)mol/L;所述金属对电极的制备方法为真空热蒸发或溅射。
所述三/四元硫属化合物纳米晶的制备方法,步骤如下:
1)将油酸铜或硝酸银、油酸铟和油胺溶剂在反应容器中制成溶液;
2)把硫粉和/或硒粉的油胺溶液投入上述溶液中;
3)在氩气或氮气保护下,混合溶液在(120-200)°C搅拌0.5-4小时;
4)自然冷却至室温后,经沉淀、离心、洗涤和干燥后即可得到目标产品。
所述反应物中油酸铜或硝酸银、油酸铟、硫粉和硒粉的摩尔比为1:1:x:(2 - x) (x = 0-2);步骤1中所述油酸铟在油胺中的浓度为(0.2-1)mol/L;步骤2中所述硫粉和/或硒粉在油胺中的浓度为(0.02-0.2)mol/L。
所述二氧化钛纳米棒阵列的制备方法,步骤如下:
1)将盐酸和钛源在反应釜中混合均匀,然后放入导电玻璃;
2)反应釜密封后在(120-200)°C反应1-12小时;
3)自然冷却至室温后,经洗涤、干燥和煅烧即可得到目标产品。
所述盐酸的浓度为(4-10)mol/L;所述钛源为钛酸四丁酯或钛酸四异丙酯,体积含量为(1-5)%,所述煅烧的气氛为空气或氧气,温度为(300-500)°C。
本发明的优点:与传统的无机化合物薄膜太阳能电池相比,本发明具有电极材料合成条件温和、电池制备工艺简便易行等优点,有望应用于低价薄膜太阳能电池。
附图说明
图1 为基于硫属化合物纳米晶的薄膜太阳能电池的结构示意图,
图中:1.金属对电极 2.三元或四元元硫属化合物纳米晶吸光层
3.硫化铟缓冲层 4.二氧化钛纳米棒阵列 5.透明导电层 6.透明基底
图2是CuInS2纳米晶的X射线衍射图。
图3是CuInS2纳米晶的透射电镜图片。
图4是二氧化钛纳米棒的断面扫描电镜图片。
图5是CuInS0.6Se1.4纳米晶的X射线衍射图。
图6是CuInS0.6Se1.4纳米晶的透射电镜图片。
图7是AgInS2纳米晶的X射线衍射图。
图8是AgInS2纳米晶的透射电镜图片。
具体实施方式
实施例1:三元硫属化合物纳米晶CuInS2的制备:
将0.5 mmol油酸铜、0.5 mmol油酸铟和15 mL油胺溶剂在反应容器中制成溶液,然后加入溶解有1 mmol硫粉的油胺溶液15 mL。在氩气保护下,混合溶液在180 °C搅拌1小时。反应混合物自然冷却至室温后,经乙醇沉淀、离心、正己烷洗涤和干燥后即可得到目标产品。X射线衍射图(图2)表明制备的纳米晶对应于黄铜矿结构,透射电镜图片(图3)显示纳米晶的粒径为10 nm。
二氧化钛纳米棒阵列的制备:
将10 mL盐酸(6 mol/L)和0.3 mL钛酸四丁酯在反应釜中混合均匀,然后放入导电玻璃。反应釜密封后在180 °C反应2.5小时,然后自然冷却至室温。经水和乙醇洗涤、干燥并在450 °C煅烧1小时即可得到目标产品。扫描电镜图片(图4)显示该纳米棒阵列中纳米棒的直径约100 nm,棒之间的空隙大约为(50-200)nm,棒沿着基底垂直生长,厚度大约2 mm。
薄膜太阳能电池的制备:
把纳米晶溶解于甲苯中配成0.015 g/mL的溶液,滴涂于二氧化钛纳米棒阵列上,然后在150 °C、0.1 MPa下干燥0.5小时,再于氩/硫氛中400 °C处理1小时。最后在电极表面通过真空热蒸发沉积一层金。在AM1.5G、100 mW/cm2条件下,该电池的短路电流为8.55 mA/cm2,开路电压为456 mV,填充因子为0.62,光电转换效率为2.42%。
实施例2:
在硫属化合物纳米晶和二氧化钛纳米棒阵列之间设有硫化铟缓冲层,方法是:把制备有二氧化钛纳米棒的导电玻璃置于0.025 mol/L氯化铟、0.1 mol/L硫代乙酰胺和0.1 mol/L乙酸的水溶液中,60 °C下浸泡0.5小时。电池其它部分制备方法同上。引入硫化铟缓冲层之后,电池效率上升到3.46%,短路电流密度、开路电压和填充因子均有所提高(表1)。太阳能电池性能比较如表1所示:
表1.
Figure DEST_PATH_IMAGE001
表1显示:在硫属化合物纳米晶和二氧化钛纳米棒阵列之间设有硫化铟缓冲层(实施例2),可有效提高光电转换效率。
实施例3:
本发明所述电池中的CuInS2纳米晶用三/四元CuInSxSe2-x(x = 0-2)纳米晶替代。三/四元CuInSxSe2-x(x = 0-2)纳米晶的合成方法与三元硫属化合物纳米晶CuInS2相同,但以总摩尔量不变、任意比例的硫粉和硒粉代替单一硫粉。其中CuInS0.6Se1.4纳米晶的X射线衍射图(图5)和透射电镜图片(图6)见附图。薄膜太阳能电池的制备方法同实施例2。
实施例4:
本发明所述电池中的CuInS2纳米晶可以用AgInS2纳米晶替代。AgInS2纳米晶的合成方法与CuInS2纳米晶相同,但以硝酸银代替油酸铜。AgInS2纳米晶的X射线衍射图(图7)和透射电镜图片(图8)见附图。薄膜太阳能电池的制备方法同实施例2。

Claims (8)

1.一种基硫属化合物纳米晶的薄膜太阳能电池,其特征在于:由金属对电极、三元或四元硫属化合物纳米晶吸光层、硫化铟缓冲层、二氧化钛纳米棒阵列、透明导电层和透明基底组成,所述金属对电极为金或银或二者任意方式的结合;所述三元或四元硫属化合物纳米晶吸光层中的硫属化合物为CuInSxSe2-x,其中x = 0-2或AgInS2,纳米晶的平均粒径为2-12nm;二氧化钛纳米棒阵列与三元或四元硫属化合物纳米晶吸光层之间设有硫化铟缓冲层;所述二氧化钛纳米棒阵列中的纳米棒直径为50-200nm,厚度为1-10 mm,纳米棒之间的空隙为50-200nm,纳米棒沿着透明基底垂直生长;所述透明基底为镀有掺氟氧化锡或铟锡氧化物导电层的玻璃。
2.一种如据权利要求1所述基硫属化合物纳米晶的薄膜太阳能电池的制备方法,其特征在于步骤如下:
1)将制备的三元或四元硫属化合物纳米晶溶于有机溶剂后涂布在二氧化钛纳米棒阵列上,然后在40-150°C、0.1MPa真空度下干燥0.5-12小时;
2)在饱和硫蒸气和氩气氛压力为1 MPa条件下,于300-450°C处理0.5-2小时;
3)在二氧化钛纳米棒阵列、硫化铟缓冲层、三元或四元硫属化合物纳米晶上制备金属电极。
3.根据权利要求2所述基硫属化合物纳米晶的薄膜太阳能电池的制备方法,其特征在于:所述硫化铟缓冲层的制备方法为:把制备有二氧化钛纳米棒的导电玻璃置于氯化铟、硫代乙酰胺和乙酸的水溶液中,50-80°C下浸泡0.5-4小时,其中氯化铟的浓度为0.02-0.05mol/L,氯化铟、硫代乙酰胺和乙酸的摩尔比为1:2-4:2-4。
4.根据权利要求2所述基硫属化合物纳米晶的薄膜太阳能电池的制备方法,其特征在于:所述有机溶剂为甲苯、二甲苯、氯苯或二氯苯,硫属化合物纳米晶在有机溶剂中的浓度为0.01-0.2mol/L;所述金属电极的制备方法为真空热蒸发或溅射。
5.根据权利要求2所述基硫属化合物纳米晶的薄膜太阳能电池的制备方法,其特征在于:所述三/四元硫属化合物纳米晶的制备方法,步骤如下:
1)将油酸铜或硝酸银、油酸铟和油胺溶剂在反应容器中制成溶液;
2)把硫粉和/或硒粉的油胺溶液投入上述溶液中;
3)在氩气或氮气保护下,混合溶液在120-200°C搅拌0.5-4小时;
4)自然冷却至室温后,经沉淀、离心、洗涤和干燥后即可得到目标产品。
6.根据权利要求5所述基硫属化合物纳米晶的薄膜太阳能电池的制备方法,其中所述三/四元硫属化合物纳米晶的制备方法的特征在于:所述油酸铜或硝酸银、油酸铟、硫粉和硒粉的摩尔比为1:1:x:2 - x ,其中x = 0-2;步骤1)中所述油酸铟在油胺中的浓度为0.2-1mol/L;步骤2)中所述硫粉和/或硒粉在油胺中的浓度为0.02-0.2mol/L。
7.根据权利要求2所述基硫属化合物纳米晶的薄膜太阳能电池的制备方法,其特征在于:所述二氧化钛纳米棒阵列的制备方法,步骤如下:
1)将盐酸和钛源在反应釜中混合均匀,然后放入导电玻璃;
2)反应釜密封后在120-200°C反应1-12小时;
3)自然冷却至室温后,经洗涤、干燥和煅烧即可得到目标产品。
8.根据权利要求7所述基硫属化合物纳米晶的薄膜太阳能电池的制备方法,其中所述二氧化钛纳米棒阵列的制备方法的特征在于:所述盐酸的浓度为4-10mol/L;所述钛源为钛酸四丁酯或钛酸四异丙酯,所述煅烧的气氛为空气或氧气,温度为300-500°C。
CN2011100078962A 2011-01-14 2011-01-14 一种基于硫属化合物纳米晶的薄膜太阳能电池 Expired - Fee Related CN102169910B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100078962A CN102169910B (zh) 2011-01-14 2011-01-14 一种基于硫属化合物纳米晶的薄膜太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100078962A CN102169910B (zh) 2011-01-14 2011-01-14 一种基于硫属化合物纳米晶的薄膜太阳能电池

Publications (2)

Publication Number Publication Date
CN102169910A CN102169910A (zh) 2011-08-31
CN102169910B true CN102169910B (zh) 2013-06-05

Family

ID=44490990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100078962A Expired - Fee Related CN102169910B (zh) 2011-01-14 2011-01-14 一种基于硫属化合物纳米晶的薄膜太阳能电池

Country Status (1)

Country Link
CN (1) CN102169910B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265949B (zh) * 2013-04-28 2015-07-15 温州大学 一种单核AgInS2量子点的制备方法
CN103388139B (zh) * 2013-07-09 2015-08-26 山东建筑大学 一种制备铜锌锡硫光电薄膜的方法
EP2887405A1 (de) * 2013-12-23 2015-06-24 Saint-Gobain Glass France Schichtsystem für Dünnschichtsolarzellen
CN107910393A (zh) * 2017-10-23 2018-04-13 电子科技大学 一种纳米线异质结太阳能电池及其制备方法
CN108485647B (zh) * 2018-03-21 2021-01-15 深圳扑浪创新科技有限公司 一种荧光量子点/氧化物复合材料的制备方法及其产品和用途
CN109293935B (zh) * 2018-09-07 2021-08-03 青岛科技大学 一种四元硫属化合物Ba8Zn4Ga2S15及其制备方法与用途
CN112007659B (zh) * 2020-09-02 2021-11-30 西北大学 一种稀土掺杂硫化铟纳米片/TiO2复合光电阳极薄膜的制备方法及其产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101140957A (zh) * 2007-10-18 2008-03-12 清华大学 基于二氧化钛纳米棒光散射薄膜电极的染料敏化太阳能电池及其制备方法
CN101861654A (zh) * 2007-07-09 2010-10-13 塔林科技大学 基于氧化锌纳米棒的光伏电池及其制造方法
CN101937777A (zh) * 2010-07-20 2011-01-05 东华大学 一种染料敏化太阳能电池的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EE00584U1 (et) * 2004-06-07 2006-01-16 Tallinna Tehnikaülikool CuInS2 absorberkihiga päikeseelemendi valmistamise meetod
CN102057750B (zh) * 2008-04-09 2013-06-05 新加坡科技研究局 用于封装对氧气和/或湿气敏感的电子器件的多层膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861654A (zh) * 2007-07-09 2010-10-13 塔林科技大学 基于氧化锌纳米棒的光伏电池及其制造方法
CN101140957A (zh) * 2007-10-18 2008-03-12 清华大学 基于二氧化钛纳米棒光散射薄膜电极的染料敏化太阳能电池及其制备方法
CN101937777A (zh) * 2010-07-20 2011-01-05 东华大学 一种染料敏化太阳能电池的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bin Liu etc..Growth of Oriented Single-Crystaline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-sensitized Solar Cells.《J.Am.Chem.Soc》.2009,第131卷正文.
Bin Liu etc..Growth of Oriented Single-Crystaline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-sensitized Solar Cells.《J.Am.Chem.Soc》.2009,第131卷正文. *
Christopher C.Landry etc..Sythesis of Chalcopyrite Semiconductors and Their Solid Solutions by Microwave Irradiation.《Chemistry of MAterials》.1995,第7卷摘要和正文. *

Also Published As

Publication number Publication date
CN102169910A (zh) 2011-08-31

Similar Documents

Publication Publication Date Title
Ali et al. Advances in nanostructured thin film materials for solar cell applications
Parize et al. ZnO/TiO2/Sb2S3 core–shell nanowire heterostructure for extremely thin absorber solar cells
CN102169910B (zh) 一种基于硫属化合物纳米晶的薄膜太阳能电池
Pan et al. The flexible-transparent pn junction film device of N-doped Cu2O/SnO2 orderly nanowire arrays towards highly photovoltaic conversion and stability
CN102646745B (zh) 一种光伏器件及太阳能电池
Xu et al. Low-temperature synthesis of CuInSe2 nanotube array on conducting glass substrates for solar cell application
Pawar et al. Preparation of transparent and conducting boron-doped ZnO electrode for its application in dye-sensitized solar cells
Zhou et al. CuInS 2 quantum dot-sensitized TiO 2 nanorod array photoelectrodes: synthesis and performance optimization
Li et al. The transparent SnO/ZnO quantum dots/SnO2 pn junction towards the enhancement of photovoltaic conversion
Thambidurai et al. Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer
CN110649160B (zh) 无机电荷传输层及其制备方法与钙钛矿太阳能电池应用
Yuan et al. Preparation and DSC application of the size-tuned ZnO nanoarrays
CN104795456B (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
CN107369768B (zh) 一种基于新有机铅源的钙钛矿太阳能电池的制备方法
Naveena et al. Tuning the Properties of the CuAl (1–X) Fe X S2 Thin Film as a Potential Absorber for Solar Cell Application
CN103400903A (zh) 一种提高铜锌锡硫薄膜晶粒尺寸和致密度的制备方法
Waleed et al. Performance improvement of solution-processed CdS/CdTe solar cells with a thin compact TiO 2 buffer layer
Al-Zahrani et al. Enhanced photoelectrochemical performance of Bi2S3/Ag2S/ZnO novel ternary heterostructure nanorods
Sheela et al. Progress in transition metal chalcogenides-based counter electrode materials for dye-sensitized solar cells
Chen et al. Morphology selective electrodeposition of Cu2O microcrystals on ZnO nanotube arrays as efficient visible-light-driven photo-electrode
Chander et al. Recent advancement in efficient metal oxide-based flexible perovskite solar cells: a short review
Wang et al. Effective control of the length of ZnO-TiO2 nanorod arrays as electron transport layer of perovskite solar cells with enhanced performance
Elangovan et al. Recent developments in perovskite materials, fabrication techniques, band gap engineering, and the stability of perovskite solar cells
CN102983215A (zh) 具有硅纳米线结构的硅薄膜太阳能电池的制备方法
Chen et al. Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130605