CN112490322B - 柔性p型单壁碳纳米管/n型硅异质结太阳能电池的制备方法 - Google Patents

柔性p型单壁碳纳米管/n型硅异质结太阳能电池的制备方法 Download PDF

Info

Publication number
CN112490322B
CN112490322B CN201910857318.4A CN201910857318A CN112490322B CN 112490322 B CN112490322 B CN 112490322B CN 201910857318 A CN201910857318 A CN 201910857318A CN 112490322 B CN112490322 B CN 112490322B
Authority
CN
China
Prior art keywords
flexible
carbon nanotube
type
walled carbon
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910857318.4A
Other languages
English (en)
Other versions
CN112490322A (zh
Inventor
侯鹏翔
胡显刚
刘畅
成会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201910857318.4A priority Critical patent/CN112490322B/zh
Publication of CN112490322A publication Critical patent/CN112490322A/zh
Application granted granted Critical
Publication of CN112490322B publication Critical patent/CN112490322B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及柔性太阳能电池领域,具体为一种制备柔性P型单壁碳纳米管/N型硅异质结太阳能电池的方法。首先利用湿刻蚀法制备厚度为20~40μm的柔性N型硅片;再将浮动催化剂化学气相沉积法制备的高性能(高透光率、低方块电阻)柔性单壁碳纳米管薄膜,通过无损、洁净的转移技术,转移至柔性硅片上;然后制备上电极和下电极,即得柔性P型单壁碳纳米管/N型硅异质结太阳能电池。本发明结合了单壁碳纳米管薄膜和超薄硅片的优异柔性,构建P型碳纳米管/N型硅异质结柔性电池,有效地将太阳能转化为电能,有望应用于柔性可穿戴领域。

Description

柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法
技术领域
本发明涉及柔性太阳能电池领域,具体为一种制备柔性P型单壁碳纳米管/N型硅异质结太阳能电池的方法。
背景技术
近几年,轻便、柔性及可穿戴的电子器件受到越来越多的关注。在太阳能电池行业中,柔性太阳能电池不仅用料少、成本低,而且重量轻、机械性能好,引起了研究者的极大兴趣。2013年,Wang等人利用质量浓度为50%的KOH溶液将厚度为300~375μm的单晶硅片刻蚀成超薄的单晶硅片;对其进行弯折、甚至对折,该超薄硅片展现出良好的柔韧性(文献1:Wang,S.,Weil,B.D.,Li,Y.,Wang,K.X.,Garnett,E.,Fan,S.,Cui,Y.Nano Lett.2013,13(9),4393.)。通过钝化技术和纳米织构技术构建了柔性硅太阳能电池,最高的光电转换效率能达10%左右(文献2.Jeong S.,McGehee M.D.,Cui Y.,Nature Communication,2013,4:2950-2956.文献3.Wang,S.,Weil,B.D.,Li,Y.,Wang,K.X.,Garnett,E.,Fan,S.,Cui,Y.Nano Lett.2013,13(9),4393.)。但是传统柔性硅太阳能电池在制备过程中,为形成PN结需要进行高温扩散,这极大地增加了工艺成本,在一定程度上限制了其发展和应用。同时,硅的本征脆性也限制了柔性硅太阳能电池的柔韧性。
单壁碳纳米管拥有优异的柔韧性和光电性能,可望在柔性光电器件中获得广泛应用。P型碳纳米管/N型硅异质结太阳能电池由于制备工艺简单、可利用低质量硅等优点,引起广泛的研究兴趣(文献4.Hu,X.G.,Hou,P.X.,Liu,C.,Zhang,F.,Liu,G.,Cheng,H.M.NanoEnergy 2018,521-527.文献5.Xu W,Wu S,Li X,et al.Advanced Energy Materials,2016;文献6.Yu L,Batmunkh M,Grace T,et al.Journal of Materials Chemistry A,2017,5(18):8624-8634.)。目前,关于P型碳纳米管/N型硅异质结太阳能电池的构建均基于硬质硅基片,鲜有柔性P型碳纳米管/N型硅异质结太阳能电池的报道。其原因主要在于高性能单壁碳纳米管薄膜的可控制备及其在柔性硅片上的转移等难题仍有待突破。
发明内容
本发明的目的在于提供一种柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,该太阳能电池质量轻、硅用量少、制备过程简单,有助于降低制备成本;此外,该太阳能电池光电转换效率性能良好,并具有优异的柔韧性。
本发明的技术方案:
一种柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,包括如下步骤:
(1)柔性硅片的制备和绝缘层的转移:首先将厚度为300~500μm的N型硅片分别用丙酮、无水乙醇和去离子水超声清洗10~20min;然后置于质量浓度为40~60%的KOH水溶液中刻蚀,刻蚀温度为80~100℃,刻蚀时间为30~110min;刻蚀后,将具有柔性的N型硅片置于质量分数为10%的HCl水溶液中5~15min,去除残留在柔性N型硅片上的KOH;然后用去离子水冲洗,并用氮气枪吹干;采用的绝缘层为聚对苯二甲酸乙二醇酯薄膜,直接转移至柔性的N型硅片上;
(2)柔性P型单壁碳纳米管薄膜的制备及转移:利用浮动催化剂化学气相沉积法制备单壁碳纳米管薄膜,并通过无损、洁净的转移方法将该薄膜转移到具有绝缘层的柔性硅片上;
(3)电极的制备:上电极为银胶电极或者钛/金电极,下电极为铟镓合金电极或者蒸镀钛/金电极;
(4)该柔性太阳能电池的构成自上而下包括:上电极、P型单壁碳纳米管薄膜、绝缘层、柔性N型硅片和下电极;其中,绝缘层拥有窗口,窗口内P型单壁碳纳米管薄膜直接与柔性N型硅片接触。
所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,所用硅片掺杂类型为N型,电阻率为0.05~0.2Ω·cm。
所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,绝缘层为聚对苯二甲酸乙二醇酯薄膜,厚度为3~6μm,开有直径为3~4mm的圆形窗口。
所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,制备的单壁碳纳米管薄膜在空气中与氧气作用,形成P型单壁碳纳米管薄膜。
所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,所用单壁碳纳米管薄膜由浮动催化剂化学气相沉积法制备,并直接收集到微孔滤膜上,其透光率范围为80%~90%,表面电阻范围为80~150Ω/□。
所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,无损、洁净的转移方法为:将沉积有单壁碳纳米管薄膜的微孔滤膜裁成所需尺寸,倒置于带有绝缘层的柔性N型硅片上,并轻轻按压,然后在微孔滤膜上滴加无水乙醇,用镊子移去微孔滤膜。
所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,上电极是在窗口周围绝缘层上的P型单壁碳纳米管薄膜上涂银胶或者蒸镀钛/金的金属薄膜。
所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,下电极是在硅基底背部用金刚石笔刮涂铟镓合金或者蒸镀钛/金的复合金属层。
所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,太阳能电池的光电转化效率为3~5%,经硝酸深度P型掺杂后光电转化效率为7~8%。
本发明的设计思想是:
碳纳米管薄膜具有优异的透光性、导电性和P型掺杂特性。作为P型材料,碳纳米管薄膜与N型硅形成异质结,还可以做为透明电极传输空穴。本发明结合超薄N型硅片的优异光电性能和柔韧性,通过KOH水溶液刻蚀制备具有良好柔性的N型超薄硅片,结合单壁碳纳米管薄膜的优异光电性能、柔韧性和P型掺杂特性,构建柔性P型单壁碳纳米管/N型硅异质结太阳能电池。相比传统柔性硅太阳能电池,本发明的P型碳纳米管/N型硅异质结太阳能电池制备工艺流程简单、成本低、柔韧性更好,在柔性可穿戴电子器件中有很大的应用潜力。
本发明的优点及有益效果是:
(1)本发明的新型柔性太阳能电池结合了P型单壁碳纳米管薄膜和N型单晶硅,两者之间无需高温扩散即可形成异质结,可以有效将太阳能转化为电能;
(2)本发明的柔性P型单壁碳纳米管/N型硅异质结太阳能电池制备过程简单,只需简单按压转移即可获得P型单壁碳纳米管/N型硅异质结结构。
(3)本发明的新型柔性太阳能电池制造成本低,柔韧性能好,适合于一些对柔韧性有要求的器件构建和应用场合。
(4)本发明的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的光电转化效率高,可达7~8%,且稳定性好。
(5)本发明柔性太阳能电池制备工艺简单、成本低、光电转换效率较高,同时具有优异的柔性。
附图说明
图1.柔性硅片实物照片。其中:(a)为无衬底的柔性硅片,(b)为在PET衬底上的柔性硅片。
图2.厚度为26.92μm硅片的扫描电子显微镜照片。
图3.P型碳纳米管/N型硅异质结太阳能电池示意图。图中,1、碳纳米管薄膜,2、上电极,3、PET薄膜,4、柔性硅片,5、下电极,6、PET塑料。
图4.构建的P型碳纳米管/N型硅异质结柔性太阳能电池实物图。
图5.光照等条件下,P型碳纳米管/N型硅异质结柔性太阳能电池的电流-电压测试曲线。
图6.在光照条件下,用硝酸掺杂后的P型碳纳米管/N型硅异质结柔性太阳能电池的电流-电压测试曲线。
具体实施方式
在具体实施过程中,本发明基于本课题组前期的“具有单根或小管束尺寸单壁碳纳米管透明导电薄膜的制备”专利技术(公开号:CN110155986A),制备了柔性、高性能单壁碳纳米管薄膜。进而利用单壁碳纳米管薄膜的优异光电性能和柔韧性及其P型掺杂特性,与N型柔性超薄硅片结合,构建柔性P型单壁碳纳米管/N型硅异质结太阳能电池。首先利用湿刻蚀法制备厚度为20~40μm的柔性N型硅片;再将浮动催化剂化学气相沉积法制备的高性能(高透光率、低方块电阻)柔性单壁碳纳米管薄膜,通过无损、洁净的转移技术,转移至柔性硅片上;然后制备上电极和下电极,即得所述柔性P型碳纳米管/N型硅异质结太阳能电池。
下面,通过实施例进一步详述本发明。
实施例1:
本实施例中,柔性P型碳纳米管/N型硅异质结太阳能电池的制备方法,包括如下步骤:
1、将面积为1.5cm×1.5cm、厚度为400μm的N型硅片(电阻率0.05~0.2Ω·cm),分别经丙酮、无水乙醇和去离子水超声清洗各10分钟,去除硅片表面的污染物;然后置于质量浓度为50%的KOH水溶液中刻蚀,刻蚀温度为90℃,刻蚀时间为30~110min;刻蚀后,将具有柔性的硅片置于质量分数为5%的HCl水溶液中约10min,去除残留在柔性硅片上的KOH;然后用去离子水冲洗,并用氮气枪轻轻吹干。如图1所示,所获得的柔性硅片光学照片,其中:(a)图为无衬底的柔性硅片,(b)为在聚对苯二甲酸乙二醇酯(PET)衬底上的柔性硅片。可见,通过湿法刻蚀,获得了柔性N型超薄硅片。如图2所示,该柔性硅片的扫描电镜照片,可见其厚度均匀,约为26.92μm。
2、以聚对苯二甲酸乙二醇酯薄膜为绝缘层,其厚度为5μm,且带有直径为3.5mm的圆形窗口,面积为0.096cm2。该绝缘层可通过压印的方式直接转移至柔性硅片上。
3、利用浮动催化剂化学气相沉积法制备高性能(如:较高的透光率为80%~90%、较低的表面电阻范围为80~150Ω/□)P型单壁碳纳米管薄膜,并通过无损、洁净的转移方法将该薄膜转移到具有绝缘层的柔性硅片上。
4、在窗口周围的绝缘层上涂银胶作为上电极,并用导线引出;在柔性硅片背面涂铟镓合金并贴到铜片(铜片置于铟镓合金下方,作为电极的一部分与液态铟镓合金相粘合)上形成下电极,并用导线引出;最后,将用胶带固定在厚度为200~300μm的聚对苯二甲酸乙二醇酯塑料上;至此,太阳能电池制作完毕。
如图3所示,本发明太阳能电池主要包括:P型单壁碳纳米管薄膜1、上电极2、PET薄膜3、柔性N型硅片4、下电极5、PET塑料6,PET塑料6上面粘贴下电极5,下电极5涂于柔性N型硅片4下面,柔性N型硅片4上面压印带有圆形窗口的PET薄膜3,PET薄膜3的圆形窗口内的P型单壁碳纳米管薄膜1直接与柔性N型硅片4接触,P型单壁碳纳米管薄膜1上面、PET薄膜3的圆形窗口涂覆上电极。
如图4所示,太阳能电池的实物照片,可见其具有优异的柔韧性。在标准光源(AM1.5,100mW/cm2)下测试所构建的柔性异质结太阳能电池的效率,得到其光电转化效率为4.15%(图5)。该电池在弯曲后和弯曲过程中,光电性能几乎不变,表现了其优异的柔韧性。
实施例2
本实施例的步骤1~4与实施例1完全相同,在此基础上增加了步骤5:对柔性太阳能电池中的单壁碳纳米管薄膜进行深层P型掺杂。具体过程如下:将柔性太阳能电池(碳纳米管薄膜面朝下)置于硝酸蒸气或三氟甲磺酸蒸汽上方进行掺杂,时间为30s。在标准光源(AM1.5,100mW/cm2)下测试所构建的柔性异质结太阳能电池的效率,得到其光电转化效率为7.3%(图6)。同样,该电池在弯曲后和弯曲过程中,光电性能不变,表现了其优异的柔韧性。
实施例3:
本实施例的步骤1~4与实施例1完全相同,在此基础上增加了步骤5:对柔性太阳能电池中的单壁碳纳米管薄膜进行深层P型掺杂。具体过程如下:
将柔性太阳能电池(单壁碳纳米管薄膜面朝上)置于均胶机上,用移液枪取20μL的三氟甲磺酸,旋涂在单壁碳纳米管薄膜上。在标准光源(AM1.5,100mW/cm2)下测试所构建的柔性异质结太阳能电池的效率,得到其光电转化效率为7.6%。同样,该电池在弯曲后和弯曲过程中,光电性能不变,表现了其优异的柔韧性。
实施例结果表明,本发明将单壁碳纳米管薄膜应用在柔性太阳能电池领域,提供一种基于柔性P型碳纳米管/N型硅异质结太阳能电池的构建方法。本发明结合了单壁碳纳米管薄膜和超薄硅片的优异柔性,构建P型碳纳米管/N型硅异质结柔性电池,有效地将太阳能转化为电能,有望应用于柔性可穿戴领域。
本发明并不局限于上述的实施例,涉及在本发明思路下,本领域工程技术人员对本方案做出的各种变型及改进,均应属于本发明权利要求的保护。本发明的新型柔性太阳能电池结合了单壁碳纳米管薄膜和柔性单晶硅的性能,不仅拥有良好的光电转换效率,而且制备工艺简单、成本低、柔韧性好,在柔性及可穿戴电子器件领域具有很大的应用潜力。

Claims (6)

1.一种柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,其特征在于,包括如下步骤:
(1)柔性硅片的制备和绝缘层的转移:首先将厚度为300~500μm的N型硅片分别用丙酮、无水乙醇和去离子水超声清洗10~20min;然后置于质量浓度为40~60%的KOH水溶液中刻蚀,刻蚀温度为80~100℃,刻蚀时间为30~110min,制备厚度为20~40μm的柔性N型硅片;刻蚀后,将具有柔性的N型硅片置于质量分数为10%的HCl水溶液中5~15min,去除残留在柔性N型硅片上的KOH;然后用去离子水冲洗,并用氮气枪吹干;采用的绝缘层为聚对苯二甲酸乙二醇酯薄膜,直接转移至柔性的N型硅片上;
(2)柔性P型单壁碳纳米管薄膜的制备及转移:利用浮动催化剂化学气相沉积法制备单壁碳纳米管薄膜,并通过无损、洁净的转移方法将该薄膜转移到具有绝缘层的柔性硅片上;
无损、洁净的转移方法为:将沉积有单壁碳纳米管薄膜的微孔滤膜裁成所需尺寸,倒置于带有绝缘层的柔性N型硅片上,并轻轻按压,然后在微孔滤膜上滴加无水乙醇,用镊子移去微孔滤膜;
(3)电极的制备:上电极为银胶电极或者钛/金电极,下电极为铟镓合金电极或者蒸镀钛/金电极;
(4)该柔性太阳能电池的构成自上而下包括:上电极、P型单壁碳纳米管薄膜、绝缘层、柔性N型硅片和下电极;其中,绝缘层拥有窗口,窗口内P型单壁碳纳米管薄膜直接与柔性N型硅片接触;
所用硅片掺杂类型为N型,电阻率为0.05~0.2Ω·cm;
绝缘层为聚对苯二甲酸乙二醇酯薄膜,厚度为3~6μm,开有直径为3~4mm的圆形窗口。
2.按照权利要求1所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,其特征在于,制备的单壁碳纳米管薄膜在空气中与氧气作用,形成P型单壁碳纳米管薄膜。
3.按照权利要求1所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,其特征在于,所用单壁碳纳米管薄膜由浮动催化剂化学气相沉积法制备,并直接收集到微孔滤膜上,其透光率范围为80%~90%,表面电阻范围为80~150Ω/□。
4.按照权利要求1所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,其特征在于,上电极是在窗口周围绝缘层上的P型单壁碳纳米管薄膜上涂银胶或者蒸镀钛/金的金属薄膜。
5.按照权利要求1所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,其特征在于,下电极是在硅基底背部用金刚石笔刮涂铟镓合金或者蒸镀钛/金的复合金属层。
6.按照权利要求1至5之一所述的柔性P型单壁碳纳米管/N型硅异质结太阳能电池的制备方法,其特征在于,太阳能电池的光电转化效率为3~5%,经硝酸深度P型掺杂后光电转化效率为7~8%。
CN201910857318.4A 2019-09-11 2019-09-11 柔性p型单壁碳纳米管/n型硅异质结太阳能电池的制备方法 Active CN112490322B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910857318.4A CN112490322B (zh) 2019-09-11 2019-09-11 柔性p型单壁碳纳米管/n型硅异质结太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910857318.4A CN112490322B (zh) 2019-09-11 2019-09-11 柔性p型单壁碳纳米管/n型硅异质结太阳能电池的制备方法

Publications (2)

Publication Number Publication Date
CN112490322A CN112490322A (zh) 2021-03-12
CN112490322B true CN112490322B (zh) 2023-04-07

Family

ID=74919893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910857318.4A Active CN112490322B (zh) 2019-09-11 2019-09-11 柔性p型单壁碳纳米管/n型硅异质结太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN112490322B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540285A (zh) * 2009-04-16 2009-09-23 上海交通大学 碳纳米管薄膜场效应晶体管的制备方法
CN102956737A (zh) * 2011-08-17 2013-03-06 苏州捷迪纳米科技有限公司 碳纳米管太阳能电池及其制备方法
CN104261384A (zh) * 2014-09-23 2015-01-07 中国科学院金属研究所 单壁碳纳米管薄膜的气相连续制备方法及专用装置
CN104671230A (zh) * 2015-02-10 2015-06-03 中国科学院金属研究所 一种单壁碳纳米管薄膜的连续收集方法与专用装置
CN104835835A (zh) * 2015-03-18 2015-08-12 南京华印半导体有限公司 一种固态电解质薄膜晶体管及其制备方法
CN106505115A (zh) * 2016-10-17 2017-03-15 浙江大学 量子点光掺杂石墨烯/氮化硼/氮化镓紫外探测器及其制作方法
CN107658367A (zh) * 2016-07-26 2018-02-02 福建金石能源有限公司 一种异质结电池的湿化学处理方法
CN107863416A (zh) * 2017-10-11 2018-03-30 昆明理工大学 一种柔性石墨烯硅太阳能电池的制备方法
CN109873048A (zh) * 2019-01-09 2019-06-11 厦门瑶光半导体科技有限公司 一种透明紫外光电子器件的制造方法
CN110165011A (zh) * 2018-02-13 2019-08-23 中国科学院金属研究所 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540285A (zh) * 2009-04-16 2009-09-23 上海交通大学 碳纳米管薄膜场效应晶体管的制备方法
CN102956737A (zh) * 2011-08-17 2013-03-06 苏州捷迪纳米科技有限公司 碳纳米管太阳能电池及其制备方法
CN104261384A (zh) * 2014-09-23 2015-01-07 中国科学院金属研究所 单壁碳纳米管薄膜的气相连续制备方法及专用装置
CN104671230A (zh) * 2015-02-10 2015-06-03 中国科学院金属研究所 一种单壁碳纳米管薄膜的连续收集方法与专用装置
CN104835835A (zh) * 2015-03-18 2015-08-12 南京华印半导体有限公司 一种固态电解质薄膜晶体管及其制备方法
CN107658367A (zh) * 2016-07-26 2018-02-02 福建金石能源有限公司 一种异质结电池的湿化学处理方法
CN106505115A (zh) * 2016-10-17 2017-03-15 浙江大学 量子点光掺杂石墨烯/氮化硼/氮化镓紫外探测器及其制作方法
CN107863416A (zh) * 2017-10-11 2018-03-30 昆明理工大学 一种柔性石墨烯硅太阳能电池的制备方法
CN110165011A (zh) * 2018-02-13 2019-08-23 中国科学院金属研究所 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法
CN109873048A (zh) * 2019-01-09 2019-06-11 厦门瑶光半导体科技有限公司 一种透明紫外光电子器件的制造方法

Also Published As

Publication number Publication date
CN112490322A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
CN110993703B (zh) 一种GaN/MoS2二维范德华异质结光电探测器及其制备方法
Putra et al. 18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact
CN103296123B (zh) P-型碳量子点/n-型硅纳米线阵列异质结太阳能电池及其制备方法
CN102270692B (zh) 石墨烯-硒化镉纳米带异质结、电池、组件及制备方法
TW201201393A (en) Solar cell and method for fabricating the heterojunction thereof
US20130153011A1 (en) Solar cell system
KR101223023B1 (ko) 태양전지의 전극 형성방법, 태양전지의 제조방법 및태양전지
CN110244476A (zh) 一种基于硅微纳米结构的太赫兹调制器及其制备方法
CN103618475A (zh) 基于石墨烯/电活性聚合物薄膜的能量采集器
CN115347119A (zh) 一种多模态自供电可穿戴水分感知器件及其制备方法
CN110165011B (zh) 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法
CN105280818A (zh) 一种稳定的平面异质结钙钛矿太阳能电池及其制备方法
CN112490322B (zh) 柔性p型单壁碳纳米管/n型硅异质结太阳能电池的制备方法
CN109904243A (zh) 基于界面优化的类纸基柔性紫外光探测器及其制备方法
Turner‐Evans et al. Flexible, transparent contacts for inorganic nanostructures and thin films
CN102324306A (zh) 银纳米线掺杂的染料敏化太阳能电池工作电极及制备方法
CN107123699A (zh) 一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法
CN102346164A (zh) 一种基于超长氧化锌纳米线的尿酸传感器的构建方法
CN102201465A (zh) 硅微纳米结构光伏太阳能电池
CN104143576A (zh) 一种CVD石墨烯-SiC薄膜的太阳能光伏硅片
CN109103336B (zh) 一种基于头发上的柔性紫外光电探测器及其制备方法
CN115775848A (zh) 垂直结构GaN紫外光探测器及其制备方法
CN114122155B (zh) 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
CN102569474A (zh) 硅纳米线阵列或硅纳米孔阵列肖特基结型太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant