CN110157014A - 一种高性能复合水凝胶在离子液体中的制备方法 - Google Patents

一种高性能复合水凝胶在离子液体中的制备方法 Download PDF

Info

Publication number
CN110157014A
CN110157014A CN201910386649.4A CN201910386649A CN110157014A CN 110157014 A CN110157014 A CN 110157014A CN 201910386649 A CN201910386649 A CN 201910386649A CN 110157014 A CN110157014 A CN 110157014A
Authority
CN
China
Prior art keywords
ionic liquid
cellulose
nano zero
zero valence
valence iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910386649.4A
Other languages
English (en)
Other versions
CN110157014B (zh
Inventor
牛军峰
徐曼曼
徐志豪
张云飞
周玉菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN201910386649.4A priority Critical patent/CN110157014B/zh
Publication of CN110157014A publication Critical patent/CN110157014A/zh
Application granted granted Critical
Publication of CN110157014B publication Critical patent/CN110157014B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/096Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0482Elimination of a frozen liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及一种一种高性能复合凝胶在离子液体中的制备方法,属于新材料科学领域,应用于环境功能材料、结构材料、催化、能源等领域。提供一种高性能复合水凝胶在离子液体中的制备方法,包括如下步骤:(1)将离子液体加热到规定温度T1后,在恒温下加入质量分数为1wt%~6wt%的纤维素,搅拌并超声分散,得到一定浓度的纤维素离子液体溶液;(2)将所述纤维素离子液体的温度降低到规定温度T2后,在恒温下加入纳米零价铁,搅拌并超声分散,得到一定浓度的纳米零价铁和纤维素离子液体混合液;(3)将所得到的最终混合液进行脱泡,用凝固浴再生,洗涤,得到纳米零价铁/纤维素复合水凝胶。

Description

一种高性能复合水凝胶在离子液体中的制备方法
技术领域
本发明涉及一种一种高性能复合凝胶在离子液体中的制备方法,属于新材料科学领域,应用于环境功能材料、结构材料、催化、能源等领域。
背景技术
纳米零价铁具有巨大的活性比表面积,并且兼具还原性和氧化性,适用范围广,已被用于去除地下水中染料、重金属、酚类化合物等污染的去除。但是,目前关于纳米零价铁在环境修复方面仍存在长效性、移动性和潜在的生物毒性等问题,而且在实际应用中,团聚和钝化都会导致纳米零价铁的活性降低。同时,纳米零价铁的分离和恢复仍然是一个需要解决的问题。所以,纳米零价铁在环境修复方面的研究亟需进一步的改善。
离子液体是完全由阴阳离子构成的离子化合物,具有无可燃性、毒性低、电化学窗口宽和热稳定性良好等优点,不仅是纤维素有效溶解的“绿色溶剂”,而且在无机功能纳米材料领域具有广泛的应用。如果利用离子液体作为溶剂,将纤维素和纳米零价铁复合,不仅能溶解纤维素,还能使纳米零价铁均与分散,一举两得。纳米零价铁能够镶嵌在纤维素网络中,则有利于阻止纳米零价铁的团聚,同时得到的一定形状的复合凝胶本身具有一定的比表面积和强的机械性能,更加易于回收和重复利用。
发明内容
本发明的目的在于提供一种性能优异的纳米零价铁/纤维素复合水凝胶和气凝胶及其在不同离子液体中的制备新方法。
本发明的目的在于提供一种高性能复合水凝胶在离子液体中的制备方法,包括如下步骤:
(1)将离子液体加热到规定温度T1后,在恒温下加入质量分数为 1wt%~6wt%的纤维素,搅拌并超声分散,得到一定浓度的纤维素离子液体溶液;
(2)将所述纤维素离子液体的温度降低到规定温度T2后,在恒温下加入纳米零价铁,搅拌并超声分散,得到一定浓度的纳米零价铁和纤维素离子液体混合液;
(3)将所得到的最终混合液进行脱泡,用凝固浴再生,洗涤,得到纳米零价铁/纤维素复合水凝胶。
本发明所述的制备方法,其中,所述离子液体为选自咪唑盐类离子液体、吡啶盐类离子液体、新型胆碱类和非咪唑盐类离子液体中两种以上离子液体的混合液。
本发明所述的制备方法,其中,所述离子液体选自1-丁基-3-甲基咪唑氯化物(BmimCl)、1-烯丙基-3-甲基咪唑氯盐离子液体(AmimCl)、1-乙基-3-甲基咪唑氯化物[C2MIM]Cl、1-羧甲基-3-甲基咪唑氯盐[CMIM]Cl中两种以上离子液体的混合液。
本发明所述的制备方法,其中,所述的纤维素选自棉短绒、针叶木纸浆、阔叶木纸浆、植物秸秆和微晶纤维素中的一种或两种以上。
本发明所述的方法,其特征在于,步骤(1)中,所述温度T1为选自 70℃~130℃的范围,处理时间为2~10小时。
本发明所述的方法,步骤(2)中,所述温度T2为80℃。
本发明所述的方法,步骤(3)中,所述纳米零价铁和纤维素的混合离子液体溶液中,纳米零价铁和纤维素的质量比为0.1%~50%;所述混合温度为60℃~110℃。
本发明所述的方法,所述超声分散用超声波清洗器,超声波清洗器的参数条件为:80~325W超声0.3~3h,超声温度为30~60℃。
本发明的第二方面提供一种高性能复合水凝胶,按照上述的制备方法制备得到。
本发明的第三方面提供一种高性能复合气凝胶在离子液体中的制备方法,包括如下步骤:
(1)将离子液体加热到规定温度T1后,在恒温下加入质量分数为 1wt%~6wt%的纤维素,搅拌并超声分散,得到一定浓度的纤维素离子液体溶液;
(2)将所述纤维素离子液体的温度降低到规定温度T2后,在恒温下加入纳米零价铁,搅拌并超声分散,得到一定浓度的纳米零价铁和纤维素离子液体混合液;
(3)将所得到的最终混合液进行脱泡,用凝固浴再生,洗涤,得到纳米零价铁/纤维素复合水凝胶;
(4)干燥步骤:冷冻干燥,或者,溶剂交换后利用超临界二氧化碳干燥。本发明的第四方面提供一种高性能复合气凝胶,按照上述的方法制备的复合气凝胶。
本发明人经研究,首次发现纳米零价铁能够很好的分散在纤维素网络中。通过该方法制备的复合凝胶具有很好的导电性、机械性能和氧化还原活性,作为污染物的去除材料具有优异的重复利用性能。
本发明相对于现有的技术,有以下优点:
(1)本发明以天然的纤维素为基底,价格便宜,量大,整个过程没有水的参与,有利于纳米零价铁的分散和反应活性的提高。
(2)本发明采用两种以上不同种类的离子液体为溶剂和分散剂,乙醇作为凝固浴,有利于纳米零价铁的分散,减少其团聚,提高纳米零价铁/纤维素复合凝胶的性能。
(3)本发明所制备的复合凝胶兼具有纳米零价铁和纤维素的性质,性能优异,如比表面积高、导电性好、机械性能强等。该复合凝胶有望在催化,吸附,能源储存等多个领域有广泛的应用。
(4)本发明制备方法巧妙,过程绿色,填补了该领域的空白,得到的材料性能优越,原料来源广泛,价格低廉,有望在环境功能材料、结构材料、催化、能源等领域获得应用。
附图说明
图1为实施例1制备的纳米零价铁/纤维素复合水凝胶。
图2为实施例2制备的纳米零价铁/纤维素复合气凝胶。
具体实施方式
下面结合具体实施例对本发明作进一步具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。
本发明中,一种纳米零价铁/纤维素复合凝胶在离子液体中的制备方法,包括如下步骤:(1)制备质量分数为1wt%~6wt%的纤维素离子液体溶液;(2) 将纤维素离子液体溶液的温度控制在一定范围,加入纳米零价铁,搅拌并超声分散,得到一定浓度的纳米零价铁和纤维素离子液体混合液;(3)将所得到的最终混合液进行脱泡,用凝固浴再生,洗涤,得到纳米零价铁/纤维素复合水凝胶。
通过所述方法制备的通过干燥得到纳米零价铁/纤维素复合水凝胶,制备纳米零价铁/纤维素复合气凝胶。
所述离子液体为咪唑盐类离子液体、吡啶盐类离子液体或新型胆碱类和非咪唑盐类离子液体中两种以上离子液体,例如,选自1-丁基-3-甲基咪唑氯化物BmimCl、1-烯丙基-3-甲基咪唑氯盐离子液体(AmimCl)、1-乙基-3-甲基咪唑氯化物[C2MIM]Cl、1-羧甲基-3-甲基咪唑氯盐[CMIM]Cl中两种以上等。
所述的纤维素原料是棉短绒、针叶木纸浆、阔叶木纸浆、植物秸秆和微晶纤维素中的一种或两种以上。
所述的纤维素原料的溶解温度为70℃~130℃,处理时间为2~10小时。
所述的纤维素离子液体溶液的浓度为1%~10wt%。
在本发明中,所述的纳米零价铁可以是市售产品,或制备得到。
所述纳米零价铁和纤维素的离子液体溶液中,纳米零价铁和纤维素的质量比为0.1%~50%,所述混合温度为60℃~110℃。
所述超声分散用超声波清洗器或者细胞破碎仪超声分散,超声波清洗器的参数条件为:80~325W超声0.3~3h;细胞破碎仪的参数条件为400~600W超声3~20min。
在本发明中,所述脱泡的方法包括用超声波清洗器超声40~60℃, 80~100W,3~6h)、真空脱泡(50~60℃,放置一夜)、离心脱泡,也可直接在 50~110℃的烘箱或者加热器里直接静置脱泡等方式。所述再生用凝固浴为无水乙醇或丙酮。
所述的纳米零价铁/纤维素复合水凝胶和气凝胶用于一种或者多种污染物的去除,包括吸附或催化。
在本发明中,一种高性能纳米零价铁/纤维素复合气凝胶的制备方法,将上述制备的水凝胶干燥后,即得到复合气凝胶。干燥的方式可以是真空干燥、冷冻干燥,也可以是溶剂交换后利用超临界二氧化碳干燥。
可以通过改变凝固再生过程中容器的形状,来改变复合水凝胶和气凝胶的形状,可获得薄膜、柱形、方形等多种形状的水/气凝胶;通过再生过程方式的改变,可获得球状、蝌蚪状复合水凝胶和气凝胶。
实施例1
称取25g的1-丁基-3-甲基咪唑氯化物BmimCl、称取25g的1-烯丙基-3- 甲基咪唑氯盐离子液体(AmimCl)于250ml三口瓶中,油浴加热升温至100℃。待离子液体完全溶解,呈淡黄色澄清透明液状后,加入2.5g的溶解浆,在氮气保护下,于100℃油浴磁力搅拌,直到纸浆完全溶解,得到5wt%的纤维素离子液体。
将纤维素离子液体溶液的温度降为90℃,再加入0.25g的纳米零价铁,于氮气氛围下加热搅拌0.5h。将三口瓶转移至超声波清洁器超声分散纳米铁3h (50℃),得到纤维素和纳米零价铁的离子液体混合液。
将得到的混合液转移到烧杯中,脱泡。此后,将混合物浸入到乙醇中再生。得到柱状纳米零价铁/纤维素复合水凝胶,并将其用乙醇浸泡洗涤多次,直至用0.1mol mL-1的AgNO3溶液对浸泡液检测无沉淀为止。冷冻干燥得到柱状纳米零价铁/纤维素复合气凝胶。
实施例2
称取50g的AmimCl于250ml三口瓶中,油浴加热升温至70℃。待离子液体完全溶解,呈淡黄色澄清透明液状后,加入2g的针叶木纸浆,在氮气保护下,于70℃油浴磁力搅拌,直到纸浆完全溶液,得到5wt%的纤维素离子液体。
加入0.1g的纳米零价铁,于氮气氛围下,70℃加热搅拌0.5h。将三口瓶转移至超声波清洁器超声分散纳米铁2h(50℃)。将得到的混合液转移到烧杯中,脱泡。此后,将混合物用注射器滴入乙醇中再生。因混合液的粘度太大,得到蝌蚪状纳米零价铁/纤维素复合水凝胶(图1),并将其用乙醇浸泡洗涤多次,直至用0.1mol mL-1的AgNO3溶液对浸泡液检测无沉淀为止。冷冻干燥得到纳米零价铁/纤维素复合气凝胶(图2)。
研究发现,纳米零价铁能够很好的分散在纤维素网络中。通过该方法制备的复合凝胶具有很好的导电性、机械性能和氧化还原活性,作为污染物的去除材料具有优异的重复利用性能。
本发明相对于现有的技术,有以下优点:
(1)本发明以天然的纤维素为基底,价格便宜,量大,整个过程没有水的参与,有利于纳米零价铁的分散和反应活性的提高。
(2)本发明采用两种以上不同种类的离子液体为溶剂和分散剂,乙醇作为凝固浴,有利于纳米零价铁的分散,减少其团聚,提高纳米零价铁/纤维素复合凝胶的性能。
(3)本发明所制备的复合凝胶兼具有纳米零价铁和纤维素的性质,性能优异,如比表面积高、导电性好、机械性能强等。该复合凝胶有望在催化,吸附,能源储存等多个领域有广泛的应用。
(4)本发明制备方法巧妙,过程绿色,填补了该领域的空白,得到的材料性能优越,原料来源广泛,价格低廉,有望在环境功能材料、结构材料、催化、能源等领域获得应用。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (11)

1.一种高性能复合水凝胶在离子液体中的制备方法,包括如下步骤:
(1)将离子液体加热到规定温度T1后,在恒温下加入质量分数为1wt%~6wt%的纤维素,搅拌并超声分散,得到一定浓度的纤维素离子液体溶液;
(2)将所述纤维素离子液体的温度降低到规定温度T2后,在恒温下加入纳米零价铁,搅拌并超声分散,得到一定浓度的纳米零价铁和纤维素离子液体混合液;
(3)将所得到的最终混合液进行脱泡,用凝固浴再生,洗涤,得到纳米零价铁/纤维素复合水凝胶。
2.根据权利要求1所述的制备方法,其中,所述离子液体为选自咪唑盐类离子液体、吡啶盐类离子液体、新型胆碱类和非咪唑盐类离子液体中两种以上离子液体的混合液。
3.根据权利要求2所述的制备方法,其中,所述离子液体选自1-丁基-3-甲基咪唑氯化物BmimCl、1-烯丙基-3-甲基咪唑氯盐离子液体(AmimCl)、1-乙基-3-甲基咪唑氯化物[C2MIM]Cl、1-羧甲基-3-甲基咪唑氯盐[CMIM]Cl中两种以上离子液体的混合液。
4.根据权利要求1所述的制备方法,其中,所述的纤维素选自棉短绒、针叶木纸浆、阔叶木纸浆、植物秸秆和微晶纤维素中的一种或两种以上。
5.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述温度T1为选自70℃~130℃的范围,处理时间为2~10小时。
6.根据权利要求1所述的方法,其特征在于,步骤(2)中,所述温度T2为80℃。
7.根据权利要求1所述的方法,其特征在于,步骤(3)中,所述纳米零价铁和纤维素的混合离子液体溶液中,纳米零价铁和纤维素的质量比为0.1%~50%;所述混合温度为60℃~110℃。
8.根据权利要求1至7中任一项所述的方法,其特征在于,所述超声分散用超声波清洗器,超声波清洗器的参数条件为:80~325W超声0.3~3h,超声温度为30~60℃。
9.一种高性能复合水凝胶,其特征在于,按照权利要求1~8中任一项所述的方法制备得到。
10.一种高性能复合气凝胶在离子液体中的制备方法,包括如下步骤:
(1)将离子液体加热到规定温度T1后,在恒温下加入质量分数为1wt%~6wt%的纤维素,搅拌并超声分散,得到一定浓度的纤维素离子液体溶液;
(2)将所述纤维素离子液体的温度降低到规定温度T2后,在恒温下加入纳米零价铁,搅拌并超声分散,得到一定浓度的纳米零价铁和纤维素离子液体混合液;
(3)将所得到的最终混合液进行脱泡,用凝固浴再生,洗涤,得到纳米零价铁/纤维素复合水凝胶;
(4)干燥步骤:冷冻干燥,或者,溶剂交换后利用超临界二氧化碳干燥。
11.一种高性能复合气凝胶,其特征在于,按照权利要求10的方法制备的复合气凝胶。
CN201910386649.4A 2019-05-09 2019-05-09 一种高性能复合水凝胶在离子液体中的制备方法 Expired - Fee Related CN110157014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910386649.4A CN110157014B (zh) 2019-05-09 2019-05-09 一种高性能复合水凝胶在离子液体中的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910386649.4A CN110157014B (zh) 2019-05-09 2019-05-09 一种高性能复合水凝胶在离子液体中的制备方法

Publications (2)

Publication Number Publication Date
CN110157014A true CN110157014A (zh) 2019-08-23
CN110157014B CN110157014B (zh) 2020-12-29

Family

ID=67634104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910386649.4A Expired - Fee Related CN110157014B (zh) 2019-05-09 2019-05-09 一种高性能复合水凝胶在离子液体中的制备方法

Country Status (1)

Country Link
CN (1) CN110157014B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110903500A (zh) * 2019-12-05 2020-03-24 齐鲁工业大学 一种基于离子液体改性的纳米纤维素可控导电开关材料的制备
CN111978566A (zh) * 2020-08-15 2020-11-24 重庆市蚕业科学技术研究院 一种桑枝纤维素基水凝胶的制备方法
CN113751492A (zh) * 2021-09-10 2021-12-07 华南农业大学 一种利用磁性木质素水凝胶活化过硫酸盐修复有机污染土壤的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093339A1 (fr) * 2011-12-22 2013-06-27 Centre National De La Recherche Scientifique (C.N.R.S.) Procédé de préparation d'un hydrogel comprenant des particules minérales silico-métalliques et hydrogel
CN103962116A (zh) * 2014-04-25 2014-08-06 南开大学 一种负载有纤维素助体的固体催化剂的制备方法
CN104086783A (zh) * 2014-07-08 2014-10-08 黑龙江大学 一种利用离子液体制备氧化石墨烯/碳纳米管/纤维素复合凝胶的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093339A1 (fr) * 2011-12-22 2013-06-27 Centre National De La Recherche Scientifique (C.N.R.S.) Procédé de préparation d'un hydrogel comprenant des particules minérales silico-métalliques et hydrogel
CN103962116A (zh) * 2014-04-25 2014-08-06 南开大学 一种负载有纤维素助体的固体催化剂的制备方法
CN104086783A (zh) * 2014-07-08 2014-10-08 黑龙江大学 一种利用离子液体制备氧化石墨烯/碳纳米管/纤维素复合凝胶的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110903500A (zh) * 2019-12-05 2020-03-24 齐鲁工业大学 一种基于离子液体改性的纳米纤维素可控导电开关材料的制备
CN111978566A (zh) * 2020-08-15 2020-11-24 重庆市蚕业科学技术研究院 一种桑枝纤维素基水凝胶的制备方法
CN113751492A (zh) * 2021-09-10 2021-12-07 华南农业大学 一种利用磁性木质素水凝胶活化过硫酸盐修复有机污染土壤的方法

Also Published As

Publication number Publication date
CN110157014B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
Nguyen et al. Advanced thermal insulation and absorption properties of recycled cellulose aerogels
Asim et al. Biomass and industrial wastes as resource materials for aerogel preparation: opportunities, challenges, and research directions
CN110157014A (zh) 一种高性能复合水凝胶在离子液体中的制备方法
Wang et al. An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup
CN106853296B (zh) 一种油水分离型海藻酸钠/氧化石墨烯复合气凝胶及其制备方法
Zhang et al. Updating biomass into functional carbon material in ionothermal manner
Ramakrishnan et al. Hierarchically porous bio‐based sustainable conjugate sponge for highly selective oil/organic solvent absorption
CN106084273B (zh) 亲油疏水型水葫芦纤维素气凝胶的制备方法
CN102796274B (zh) 一种耐高温燃料电池的复合质子交换膜及其制备方法
Li et al. Green synthesis of monolithic column incorporated with graphene oxide using room temperature ionic liquid and eutectic solvents for capillary electrochromatography
CN110156432B (zh) 碳纤维复合石墨烯气凝胶及其制备方法和应用
CN108752623A (zh) 聚乙烯醇/蔗渣纳米纤维素气凝胶的制备方法
CN103305568B (zh) 一种淀粉纳米晶酯的制备方法
Paulauskiene et al. Investigation of cellulose-based aerogels for oil spill removal
CN110255540A (zh) 亲油疏水石墨烯气凝胶及其制备方法和应用
CN109759132A (zh) 复合光催化凝胶球的制备方法和复合光催化凝胶球
CN108619921A (zh) 离子液体改性氧化石墨烯/聚合物复合膜及其制备与应用
CN106920696A (zh) 纳米杂化气凝胶超级电容器电极材料及其制备方法和应用
CN110497492A (zh) 一种超疏水木海绵的制备方法
CN107383405A (zh) 一种复合质子交换膜及其制备方法
CN107051339A (zh) 一种纤维增韧SiO 2 气凝胶及其制备方法
CN110527132A (zh) 一种超疏水木海绵及其应用
CN108794799A (zh) 一种多孔吸附吸油材料的制备方法
Wang et al. Alginate-oil gelator composite foam for effective oil spill treatment
Liu et al. Boronate affinity imprinted hydrogel sorbent from biphasic synergistic high internal phase emulsions reactor for specific enrichment of Luteolin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201229

CF01 Termination of patent right due to non-payment of annual fee