CN110143611B - 锐钛矿/金红石复合相TiO2光催化及储能材料的液相制备方法 - Google Patents

锐钛矿/金红石复合相TiO2光催化及储能材料的液相制备方法 Download PDF

Info

Publication number
CN110143611B
CN110143611B CN201910373796.8A CN201910373796A CN110143611B CN 110143611 B CN110143611 B CN 110143611B CN 201910373796 A CN201910373796 A CN 201910373796A CN 110143611 B CN110143611 B CN 110143611B
Authority
CN
China
Prior art keywords
anatase
titanium dioxide
rutile
composite phase
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910373796.8A
Other languages
English (en)
Other versions
CN110143611A (zh
Inventor
田歌
赵小芳
胡洁
唐宇千
李元洲
石鑫
张凌瑞
阳晓宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910373796.8A priority Critical patent/CN110143611B/zh
Publication of CN110143611A publication Critical patent/CN110143611A/zh
Application granted granted Critical
Publication of CN110143611B publication Critical patent/CN110143611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种锐钛矿/金红石复合相二氧化钛光催化及储能材料的液相制备方法。该方法是在有机溶剂和酸溶液的作用下,通过控制钛源水解,合成高性能的锐钛矿/金红石复合相二氧化钛材料。本发明可以通过改变体系中酸加入量来调节锐钛矿/金红石相的比例,通过有机溶剂甲苯的加入可以实现更精细的相比例调节,最终所制备出金红石/锐钛矿复合相材料的光降解性能和锂离子电池储锂性能均表现优异,且制备方法快速简单,重复性高,易于实现大规模合成。

Description

锐钛矿/金红石复合相TiO2光催化及储能材料的液相制备方法
技术领域
本发明涉及光催化材料合成和锂离子电池负极材料合成技术领域,具体涉及一种锐钛矿 /金红石复合相二氧化钛光催化及储能材料的液相制备方法。
背景技术
二氧化钛是一种重要的半导体材料,有着其独特的物理和化学性能。二氧化钛在光催化,太阳能电池,锂离子电池等领域有着广泛的应用前景,引起人们的关注。研究表明,二氧化钛作为光催化剂,在净化空气,降解有机物,治理水污染等方面,有着很好的作用;二氧化钛作为锂离子电池负极材料,在电池安全性能、长使用寿命以及快速充放电方面有着极好的性能体现。
二氧化钛主要有三种晶相结构,分别为锐钛矿、金红石和板钛矿。其中金红石相作为高温相,是最稳定相,而锐钛矿相和板钛矿相为低温相,在高温退火条件下可向金红石相转变。三种晶相的基本构成单位都是[TiO6]八面体,每个八面体都是以一个Ti原子为中心,被 6个O原子包围,但八面体的崎变程度和连接方式并不相同。它们不同的结构导致了其表面活性以及物理化学性质各不相同,从而各自用途也不尽相同。复合相二氧化钛不仅能改善单个材料的性能,而且能引进单一材料没有的特殊性能,显示出独特的物化性质,其对降解有机污染物、还原有毒性的重金属离子、催化分解水制氢以及提高锂离子电池负极材料的倍率以及稳定的性能都具有显著的作用。目前,复合相二氧化钛在光催化领域发展的相对成熟一些。其中以Degussa公司生产的P25型商业二氧化钛粉应用最为广泛,其比表面积为50 (±15)m2/g,而我们所制备的锐钛矿/金红石复合相二氧化钛材料的比表面积约为P25的2- 3倍。增加二氧化钛的比表面积也能提高其光催化性能和锂离子电池的储锂性能,这是由于大的比表面积增加了二氧化钛与吸附物质的接触面积并增加了反应的活性位点数量并且大比表面积会缓和部分物质的变化,减少因体积膨胀而导致电极材料出现崩解和循环过程中的容量衰减的现象。大量研究事实表明二氧化钛复合相材料具有优于单一晶相二氧化钛材料的光催化性能,这是由于在受紫外光激发后,电子会在两个晶相进行跃迁,进一步阻碍了光生电子-空穴对的复合。二氧化钛具有很高的化学稳定性以及电化学稳定性,是潜在的理想锂离子电池负极材料,由于光催化以及锂离子电池的原理均为材料对电子的利用,在光催化领域已展现出优异性能的复合相二氧化钛材料在锂离子电池上的应用也具有很大的前景。
目前,利用TiCl4为原料气相法生产复合相二氧化钛P25的方法已经实现工业化大规模生产,但是原料成本较高,且实现二相组分的精细调节也存在一定的难度,且P25多用于光催化,在锂电领域涉猎不多。
发明内容
基于以上现有技术的不足,本发明所解决的技术问题在于提供工艺简单,能大规模合成的具有高催化活性以及高储锂性能的锐钛矿/金红石复合相二氧化钛光催化材料和锂离子电池负极材料的制备方法。
为了解决上述技术问题,本发明提供一种锐钛矿/金红石复合相二氧化钛光催化材料和锂离子电池负极材料的制备方法,其特征在于,包含如下步骤:
步骤一、将钛源和有机溶剂按20:(5-13)的摩尔比例混合匀速搅拌10-20min;
步骤二、向步骤一中获得的溶液中加入酸性溶液,所述酸性溶液和有机溶剂的体积比为8:(2-5),均匀搅拌20-30min;
步骤三、将步骤二所得反应液置于180℃-220℃条件下反应20-24h;
步骤四、将步骤三所得产物过滤取固体产物,用无水乙醇清洗并离心分离,重复清洗、离心过程至少三遍,然后在40-70℃条件烘干;
步骤五、将步骤四所得产物于300-500℃煅烧,即得到锐钛矿/金红石复合相二氧化钛光催化及储能材料。
作为上述技术方案的优选,本发明提供的锐钛矿/金红石复合相二氧化钛材料作为光催化材料的应用。的液相制备方法进一步包括下列技术特征的部分或全部:
作为上述技术方案的改进,所述有机溶剂选自苯、甲苯或者对二甲苯等中一种或几种。
作为上述技术方案的改进,所述钛源优选为钛酸四丁酯。
作为上述技术方案的改进,所述酸性溶液选自盐酸或硝酸等,盐酸的浓度为0%~10% (不包含0%和10%的情况),硝酸的浓度为2%~10%(不包含2%和10%的情况)。
上述制备方法所得的二氧化钛材料,是由小纳米颗粒和纳米棒组成的堆积体,比表面积为85-150m2/g,孔径大小为7-8nm。
本发明的基本反应机理及过程如下:反应开始前,钛源与有机溶剂混合,形成一个均匀的油水界面,后加入不同浓度的酸,再次充分混合,酸水混合液使钛源水解出Ti(OH)4,Ti(OH)4快速缩聚生成表面富含-OH的TiO2小颗粒。随着温度升高,构筑成具有小颗粒堆积体的锐钛矿、金红石复合相TiO2的前驱体,此前驱体经煅烧后,表面有机物和无定型物被处理,进一步转化为更纯净的锐钛矿/金红石复合相TiO2,即制备出我们需要的锐钛矿/金红石复合相二氧化钛光催化材料和锂离子电池负极材料。
与现有技术相比,本发明的技术方案具有如下有益效果:
首先,本发明可以通过改变体系中酸加入量来调节锐钛矿/金红石复合相二氧化钛的两相比例,通过有机溶剂的加入,还可以实现更精细的相比例,且合成方法简单,成本低,可以大规模合成,适用于工业生产。
第二,本发明所述制备的锐钛矿/金红石复合相二氧化钛材料具有较高的比表面积,有较好的光降解性能和储锂性能,降解罗丹明B染液的速率约为单相二氧化钛材料的1-3倍,尤其是当锐钛矿/金红石复合相二氧化钛做锂离子电池负极材料时,复合相的充放电比容量约为单相的1-2.5倍。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下结合优选实施例,详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1为实施例1-3所合成的锐钛矿/金红石复合相二氧化钛材料和对比例1-2所合成的单相二氧化钛材料的SEM图;
图1(a)为实施例1中锐钛矿/金红石复合相二氧化钛材料的高分辨SEM图;图1(b)为实施例1中锐钛矿/金红石复合相二氧化钛材料的低分辨SEM图;图1(c)为对比例1中纯锐钛矿相二氧化钛材料的高分辨SEM图;图1(d)为对比例1中纯锐钛矿相二氧化钛材料的低分辨SEM图;图1(e)为对比例2中纯金红石相二氧化钛材料的高分辨SEM图;图1 (f)为对比例2中纯金红石相二氧化钛材料的低分辨SEM图;
图2为实施例1-3、对比例1-2制备的二氧化钛材料的XRD图;
图3(a)为实施例1-3、对比例1-2制备的二氧化钛材料的氮气吸附-脱附曲线图;
图3(b)为实施例1-3、对比例1-2制备的二氧化钛材料的孔径分布图;
图4为实施例1-3、对比例1-2制备的二氧化钛材料的光降解罗丹明B染液性能图;
图5(a)为实施例1-3、对比例1-2制备的二氧化钛材料的锂离子电池充放电循环测试图;
图5(b)为实施例1-3、对比例1-2制备的二氧化钛材料的锂离子电池充放电倍率测试图。
具体实施方式
下面详细说明本发明的具体实施方式,其作为本说明书的一部分,通过实施例来说明本发明的原理,本发明的其他方面、特征及其优点通过该详细说明将会变得一目了然。
实施例1
一种锐钛矿/金红石复合相二氧化钛材料的液相制备方法,具体步骤如下:
(1)取25g的钛酸四丁酯倒入100ml的聚四氟乙烯反应釜中,往里面加入5ml甲苯,匀速搅拌10min;
(2)10min后,往(1)中的聚四氟乙烯反应釜里加入8ml的3wt%浓度的盐酸水溶液,均匀搅拌20min;
(3)步骤(2)搅拌完成后,封装好反应釜,放入鼓风干燥箱中,温度设定为200℃,保温反应24h;
(4)从鼓风干燥箱中取出反应釜,倒掉釜中的上清液,得到纯白色固体,采用无水乙醇和水依次清洗产物,5000r/min的速度离心分离10min,重复此步骤清洗产物三遍,清洗后将产物放入60℃烘箱中烘干;
(5)将干燥后的产物于350℃煅烧,即得到锐钛矿/金红石复合相二氧化钛材料。
(6)将10mg本实施例所得锐钛矿/金红石复合相二氧化钛材料分散于100mL浓度为10-5mol/l的罗丹明B染液中,超声分散10min,制得光降解测试溶液,然后将所得溶液进行暗反应半小时,结束后用300W的氙灯光照,再进行光反应半小时,使用紫外可见光漫反射分光光度计检测罗丹明B染液浓度变化。
(7)将本实施例所得锐钛矿/金红石复合相二氧化钛材料,超级导电炭和聚偏氟乙烯按质量比7:2:1的比例称取,再将其溶解于N-甲基吡咯烷酮中,使样品变得光滑均匀,再均匀涂抹在铜箔上,放入60℃烘箱中干燥2h左右,再放在120℃的真空干燥箱干燥12小时,再将铜箔用切片机切至直径为8mm的铜片。在水、氧含量低于0.1ppm,气氛为氩气的手套箱中组装电池,电池型号为CR2025。然后将电池在多通道测试系统中,进行恒电流充放电测试。
实施例2
一种锐钛矿/金红石复合相二氧化钛材料的液相制备方法,具体步骤如下:
(1)取25g的钛酸四丁酯倒入100ml聚四氟乙烯反应釜中,往里面加入3ml甲苯,匀速搅拌10min;
(2)10min后,往(1)中的聚四氟乙烯反应釜里加8ml的2wt%浓度的盐酸水溶液,均匀搅拌20min;
(3)步骤(2)搅拌完成后,封装好反应釜,放入鼓风干燥箱中,温度设定为200℃,保温反应24h;
(4)从鼓风干燥箱中取出反应釜,倒掉釜中的上清液,得到纯白色固体,采用无水乙醇和水依次清洗产物,5000r/min的速度离心分离10min,重复此步骤清洗产物三遍,清洗后将产物放入60℃烘箱中烘干;
(5)将干燥后的产物于350℃煅烧,即得到所述的锐钛矿/金红石复合相二氧化钛材料;
(6)将10mg本实施例所得锐钛矿/金红石复合相二氧化钛材料分散于100mL浓度为10-5mol/l的罗丹明B染液中,超声分散10min,制得光降解测试溶液,然后将所得溶液进行暗反应半小时,结束后用300W的氙灯光照,再进行光反应半小时,使用紫外可见光漫反射分光光度计检测罗丹明B染液浓度变化;
(7)将本实施例所得锐钛矿/金红石复合相二氧化钛材料,超级导电炭和聚偏氟乙烯按质量比7:2:1的比例称取,再将其溶解于N-甲基吡咯烷酮中,使样品变得光滑均匀,再均匀涂抹在铜箔上,放入60℃烘箱中干燥2h左右,再放在120℃的真空干燥箱干燥12小时,再将铜箔用切片机切至直径为8mm的铜片。在水、氧含量低于0.1ppm,气氛为氩气的手套箱中组装电池,电池型号为CR2025。然后将电池在多通道测试系统中,进行恒电流充放电测试。
实施例3
一种锐钛矿/金红石复合相二氧化钛材料的液相制备方法,具体步骤如下:
(1)取25g的钛酸四丁酯倒入100ml聚四氟乙烯反应釜中,往里面加入2ml甲苯,匀速搅拌10min;
(2)10min后,往(1)中的聚四氟乙烯反应釜里加8ml的1wt%浓度的盐酸水溶液,均匀搅拌20min;
(3)步骤(2)搅拌完成后,封装好反应釜,放入鼓风干燥箱中,温度设定为200℃,保温反应24h;
(4)从鼓风干燥箱中取出反应釜,倒掉釜中的上清液,得到纯白色固体,采用无水乙醇和水依次清洗产物,5000r/min的速度离心分离10min,重复此步骤清洗产物三遍,清洗后将产物放入60℃烘箱中烘干;
(5)将干燥后的产物于350℃煅烧,即得到所述的锐钛矿/金红石复合相二氧化钛材料;
(6)将10mg本实施例所得锐钛矿/金红石复合相二氧化钛材料分散于100mL浓度为10-5mol/l的罗丹明B染液中,超声分散10min,制得光降解测试溶液,然后将所得溶液进行暗反应半小时,结束后用300W的氙灯光照,再进行光反应半小时,使用紫外可见光漫反射分光光度计检测罗丹明B染液浓度变化;
(7)将本实施例所得锐钛矿/金红石复合相二氧化钛材料,超级导电炭和聚偏氟乙烯按质量比7:2:1的比例称取,再将其溶解于N-甲基吡咯烷酮中,使样品变得光滑均匀,再均匀涂抹在铜箔上,放入60℃烘箱中干燥2h左右,再放在120℃的真空干燥箱干燥12小时,再将铜箔用切片机切至直径为8mm的铜片。在水、氧含量低于0.1ppm,气氛为氩气的手套箱中组装电池,电池型号为CR2025。然后将电池在多通道测试系统中,进行恒电流充放电测试。
对比例1
一种锐钛矿相二氧化钛材料的液相制备方法,具体步骤如下:
(1)取25g的钛酸四丁酯倒入100ml聚四氟乙烯反应釜中,往里面加入5ml甲苯,匀速搅拌10min;
(2)10min后,往(1)中的聚四氟乙烯反应釜里加8ml的0%浓度的盐酸水溶液,均匀搅拌20min;
(3)步骤(2)搅拌完成后,封装好反应釜,放入鼓风干燥箱中,温度设定为200℃,保温反应24h;
(4)从鼓风干燥箱中取出反应釜,倒掉釜中的上清液,得到纯白色固体,采用无水乙醇和水依次清洗产物,5000r/min的速度离心分离10min,重复此步骤清洗产物三遍,清洗后将产物放入60℃烘箱中烘干;
(5)将干燥后的产物于350℃煅烧,即得到所述的纯锐钛矿相二氧化钛对比样品;
(6)将10mg本对比例所得锐钛矿相二氧化钛材料分散于100mL浓度为10-5mol/l的罗丹明B染液中,超声分散10min,制得光降解测试溶液,然后将所得溶液进行暗反应半小时,结束后用300W的氙灯光照,再进行光反应半小时,使用紫外可见光漫反射分光光度计检测罗丹明B染液浓度变化;
(7)将本对比例所得锐钛矿相二氧化钛材料,超级导电炭和聚偏氟乙烯按质量比7:2:1 的比例称取,再将其溶解于N-甲基吡咯烷酮中,使样品变得光滑均匀,再均匀涂抹在铜箔上,放入60℃烘箱中干燥2h左右,再放在120℃的真空干燥箱干燥12小时,再将铜箔用切片机切至直径为8mm的铜片。在水、氧含量低于0.1ppm,气氛为氩气的手套箱中组装电池,电池型号为CR2025。然后将电池在多通道测试系统中,进行恒电流充放电测试。
对比例2
一种金红石相二氧化钛材料的液相制备方法,具体步骤如下:
(1)取25g的钛酸四丁酯倒入100ml聚四氟乙烯反应釜中,往里面加入5ml甲苯,匀速搅拌10min。
(2)10min后,往(1)中的聚四氟乙烯反应釜里分别加8ml的16%浓度的盐酸水溶液,均匀搅拌20min。
(3)搅拌完成后,封装好反应釜,放入鼓风干燥箱中,温度设定为200℃,保温反应24h。
(4)从鼓风干燥箱中取出反应釜,倒掉釜中的上清液,得到纯白色固体,采用无水乙醇和水依次清洗产物,5000r/min的速度离心分离10min,重复此步骤清洗产物三遍,清洗后将产物放入60℃烘箱中烘干。
(5)将干燥后的产物于350℃煅烧,即得到所述的纯金红石相二氧化钛对比样品。
(6)将10mg本对比例所得金红石相二氧化钛材料分散于100mL浓度为10-5mol/l的罗丹明B染液中,超声分散10min,制得光降解测试溶液,然后将所得溶液进行暗反应半小时,结束后用300W的氙灯光照,再进行光反应半小时,使用紫外可见光漫反射分光光度计检测罗丹明B染液浓度变化。
(7)将本对比例所得金红石相二氧化钛材料,超级导电炭和聚偏氟乙烯按质量比7:2:1 的比例称取,再将其溶解于N-甲基吡咯烷酮中,使样品变得光滑均匀,再均匀涂抹在铜箔上,放入60℃烘箱中干燥2h左右,再放在120℃的真空干燥箱干燥12小时,再将铜箔用切片机切至直径为8mm的铜片。在水、氧含量低于0.1ppm,气氛为氩气的手套箱中组装电池,电池型号为CR2025。然后将电池在多通道测试系统中,进行恒电流充放电测试。
从图1可以看出实施例1、对比例1-2制备出的大面积多孔二氧化钛材料中,二氧化钛为小颗粒堆积体,大小不一,粒径约为10-100nm。
图2为实施例1-3、对比例1-2所制备出的二氧化钛的XRD图,可见实施例1-3制备出的二氧化钛材料为锐钛矿/金红石复合晶型,对比例1制备出的二氧化钛材料为锐钛矿单相,对比例2制备出二氧化钛材料为金红石单相。
图3(a)为实施例1-3、对比例1-2制备出的二氧化钛的氮气吸附曲线图,图3(b)为实施例1-3、对比例1-2所制备出的二氧化钛的孔径分布图。由测试结果可知:实施例1-3 制备出的复合相二氧化钛材料的比表面积为85-150m2/g,孔径大小为7nm,对比例1制备出的锐钛矿相二氧化钛材料比表面积与孔径大小与实施例3接近,对比例2制备出的金红石相二氧化钛材料比表面积最小,为38m2/g,没有孔径,从而证明了本方法制备出了具有较高比表面积的复合相二氧化钛材料。
图4为实施例1-3、对比例1-2所制备出的二氧化钛材料的光降解罗丹明B染液性能图,其中,复合相二氧化钛材料的光催化降解罗丹明B染液的性能均好于所制单相二氧化钛样品的性能,由公式㏑(c0/c)=kt(c0-染液初始浓度mol/L;c-染液某阶段的浓度mol/L;k-降解速率min-1;t-降解时间min)计算所得k实施例1=0.04283min-1,k实施例2=0.03955min-1,k实施例3=0.0412min-1,k对比例1=0.01209min-1,k对比例2=0.01413min-1,复合相二氧化钛材料的光降解罗丹明B溶液的降解速率常数约为纯锐钛矿相和纯金红石相二氧化钛的1-3倍。
图5(a)为实施例1-3、对比例1-2所制备出二氧化钛的锂离子电池充放电循环测试性能图,图5(b)为实施例1-3、对比例1-2所制备出二氧化钛的锂离子电池充放电倍率测试性能图。从图5中可看出,复合相二氧化钛的储锂性能均好于所制单相二氧化钛样品的性能,材料循环性能好,容量保持率高,充放电比容量高度重合,库伦效率约为99%,其充放电比容量约为单相二氧化钛的1-2.5倍。
另外,从不同实施例的实验数据表明,随着酸反应浓度增加,材料的金红石、锐钛矿相比例在不断增加,直至由纯锐钛矿相二氧化钛全部转变为纯金红石相二氧化钛。
本发明所列举的各原料,以及本发明各原料的上下限、区间取值,以及工艺参数(如温度、时间等)的上下限、区间取值都能实现本发明,在此不一一列举实施例。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (5)

1.一种锐钛矿/金红石复合相二氧化钛材料的液相制备方法,其特征在于,包含如下步骤:
步骤一、将钛源和有机溶剂按照20:(5-13)的摩尔比混合均匀;所述有机溶剂选自苯、甲苯或者二甲苯中的一种或几种;
步骤二、向步骤一中获得的溶液中加入酸性溶液,所述酸性溶液和有机溶剂的体积比为8:(2-5),搅拌20-30min;所述酸性溶液为盐酸或硝酸,其中的盐酸的浓度为小于10%;硝酸的浓度为小于10%,且大于2%;
步骤三、将步骤二所得反应液封装于反应釜中在180℃-220℃条件下反应20-24h;
步骤四、将步骤三所得产物过滤取固体产物,并采用无水乙醇和水洗涤,干燥;
步骤五、将步骤四所得产物于300-500℃煅烧,即得到锐钛矿/金红石复合相二氧化钛材料;
所述锐钛矿/金红石复合相二氧化钛材料为由小纳米颗粒和纳米棒组成的堆积体,比表面积为85-150 m2/g,孔径大小为7-8nm。
2.如权利要求1所述的锐钛矿/金红石复合相二氧化钛材料的液相制备方法,其特征在于:所述钛源为钛酸四丁酯。
3.如权利要求1所述方法制备的锐钛矿/金红石复合相二氧化钛材料。
4.如权利要求3所述的锐钛矿/金红石复合相二氧化钛材料作为光催化材料的应用。
5.如权利要求3所述的锐钛矿/金红石复合相二氧化钛材料作为锂电池储能材料的应用。
CN201910373796.8A 2019-05-07 2019-05-07 锐钛矿/金红石复合相TiO2光催化及储能材料的液相制备方法 Active CN110143611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910373796.8A CN110143611B (zh) 2019-05-07 2019-05-07 锐钛矿/金红石复合相TiO2光催化及储能材料的液相制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910373796.8A CN110143611B (zh) 2019-05-07 2019-05-07 锐钛矿/金红石复合相TiO2光催化及储能材料的液相制备方法

Publications (2)

Publication Number Publication Date
CN110143611A CN110143611A (zh) 2019-08-20
CN110143611B true CN110143611B (zh) 2020-10-30

Family

ID=67594676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910373796.8A Active CN110143611B (zh) 2019-05-07 2019-05-07 锐钛矿/金红石复合相TiO2光催化及储能材料的液相制备方法

Country Status (1)

Country Link
CN (1) CN110143611B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112456551B (zh) * 2020-12-03 2022-11-29 五邑大学 一种基于二维MXene上原位生长TiO2异相结的复合材料及其制备方法与应用
CN113540429A (zh) * 2021-06-28 2021-10-22 华南师范大学 一种锂离子电池负极材料及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1442368A (zh) * 2002-03-01 2003-09-17 徐瑞芬 控制纳米二氧化钛晶型的方法及由此得到的纳米二氧化钛
CN1478725A (zh) * 2003-01-13 2004-03-03 复旦大学 晶相可控的二氧化钛纳米晶的制备方法
JP2007176753A (ja) * 2005-12-28 2007-07-12 Sumitomo Osaka Cement Co Ltd 粒子形状の制御された高結晶性アナターゼ型酸化チタン超微粒子、及びその製造方法
CN101293669A (zh) * 2008-06-20 2008-10-29 南开大学 锐钛矿和金红石可控相比例纳米二氧化钛粉体的制备方法
CN101327951A (zh) * 2008-07-29 2008-12-24 福州大学 可控合成纯相锐钛矿、金红石、板钛矿二氧化钛纳米棒的方法
CN106268734A (zh) * 2016-09-30 2017-01-04 浙江工业大学 一种水分散性三元混晶纳米二氧化钛光催化剂的制备方法
CN107278171A (zh) * 2014-07-10 2017-10-20 沙特基础全球技术有限公司 在混合相二氧化钛纳米颗粒上由水光催化制备氢
CN107963655A (zh) * 2017-11-27 2018-04-27 中国科学院生态环境研究中心 混相介孔二氧化钛、制备方法及采用其光催化去除含砷有机污染物的处理方法
CN108147453A (zh) * 2017-12-28 2018-06-12 苏州大学 一种新型二氧化钛微粒材料及其制备方法、在环保领域中的应用
CN108557876A (zh) * 2018-01-19 2018-09-21 北京工业大学 高效超细TiO2纳米颗粒及光催化纳米涂料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1442368A (zh) * 2002-03-01 2003-09-17 徐瑞芬 控制纳米二氧化钛晶型的方法及由此得到的纳米二氧化钛
CN1478725A (zh) * 2003-01-13 2004-03-03 复旦大学 晶相可控的二氧化钛纳米晶的制备方法
JP2007176753A (ja) * 2005-12-28 2007-07-12 Sumitomo Osaka Cement Co Ltd 粒子形状の制御された高結晶性アナターゼ型酸化チタン超微粒子、及びその製造方法
CN101293669A (zh) * 2008-06-20 2008-10-29 南开大学 锐钛矿和金红石可控相比例纳米二氧化钛粉体的制备方法
CN101327951A (zh) * 2008-07-29 2008-12-24 福州大学 可控合成纯相锐钛矿、金红石、板钛矿二氧化钛纳米棒的方法
CN107278171A (zh) * 2014-07-10 2017-10-20 沙特基础全球技术有限公司 在混合相二氧化钛纳米颗粒上由水光催化制备氢
CN106268734A (zh) * 2016-09-30 2017-01-04 浙江工业大学 一种水分散性三元混晶纳米二氧化钛光催化剂的制备方法
CN107963655A (zh) * 2017-11-27 2018-04-27 中国科学院生态环境研究中心 混相介孔二氧化钛、制备方法及采用其光催化去除含砷有机污染物的处理方法
CN108147453A (zh) * 2017-12-28 2018-06-12 苏州大学 一种新型二氧化钛微粒材料及其制备方法、在环保领域中的应用
CN108557876A (zh) * 2018-01-19 2018-09-21 北京工业大学 高效超细TiO2纳米颗粒及光催化纳米涂料

Also Published As

Publication number Publication date
CN110143611A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
Xiang et al. Interfacial modification of titanium dioxide to enhance photocatalytic efficiency towards H2 production
Yao et al. Photocatalytic activity of CuO towards HER in catalyst from oxalic acid solution under simulated sunlight irradiation
CN108654651B (zh) 一种二氧化钛/二氟氧钛复合气相光催化剂的制备方法
CN110143611B (zh) 锐钛矿/金红石复合相TiO2光催化及储能材料的液相制备方法
CN113387326B (zh) 二硫化锡纳米催化剂在压电催化分解水产氢中的应用
She et al. Spatially separated bimetallic cocatalysts on hollow-structured TiO 2 for photocatalytic hydrogen generation
Nie et al. One-step preparation of C-doped TiO 2 nanotubes with enhanced photocatalytic activity by a water-assisted method
Wang et al. Lignin-assisted solid-phase synthesis of nano-CuO for a photocatalyst with excellent catalytic activity and high performance supercapacitor electrodes
CN110560172A (zh) 一种具有光催化性能的锆金属有机框架异质结材料及其制备方法
Shankar et al. A concise review: MXene-based photo catalytic and photo electrochemical water splitting reactions for the production of hydrogen
Zhou et al. Highly efficient and selective photocatalytic CO 2 reduction using MIL-125 (Ti) and based on LiFePO 4 and CuO QDs surface–interface regulation
CN112047372B (zh) 一种CuO多孔纳米片、其制备方法及其在热催化和光热催化方面的应用
CN110180542B (zh) 一种二氧化钛/石墨烯/金属单质三元复合光催化材料及光还原制备方法
CN112371113A (zh) 一种Bi2WO6-rGO可见光催化剂的制备方法和应用
Wang et al. The template-free synthesis of hierarchically porous anatase TiO 2 via acid-etching for enhancing the cycling stability and reversible capacity of lithium ion batteries
CN115110115B (zh) 一种C、N共掺杂TiO2基复合薄膜光电极及其制备方法和应用
CN114768852B (zh) 一种钾离子梯度掺杂氮化碳材料的制备方法
CN116371433A (zh) 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用
CN113578296B (zh) 一种片层状灰色TiO2光催化材料及其制备方法
CN113117720B (zh) 基于g-C3N4的TiO2晶粒堆积三维贯通孔复合结构及其制备方法
Xu Preparation of ZnS-CdS nanocomposite for photoelectrochemical hydrogen production
CN113559856B (zh) 一种钛酸钡/碘酸银异质结光催化剂的制备方法
CN115010101A (zh) 一种具有宽光谱响应且高结晶度的氮化碳纳米片的制备方法及应用
CN115430462A (zh) PVDF膜负载的Bi基光催化材料及其制备方法和应用
CN113398968A (zh) 一种MOF衍生的TiO2/多孔g-C3N4复合光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant