CN110120423B - 一种ldmos器件及其制备方法 - Google Patents

一种ldmos器件及其制备方法 Download PDF

Info

Publication number
CN110120423B
CN110120423B CN201910366995.6A CN201910366995A CN110120423B CN 110120423 B CN110120423 B CN 110120423B CN 201910366995 A CN201910366995 A CN 201910366995A CN 110120423 B CN110120423 B CN 110120423B
Authority
CN
China
Prior art keywords
region
type
layer
variable doping
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910366995.6A
Other languages
English (en)
Other versions
CN110120423A (zh
Inventor
姚佳飞
张泽平
郭宇锋
杨可萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University Of Posts And Telecommunications Nantong Institute Co ltd
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University Of Posts And Telecommunications Nantong Institute Co ltd
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University Of Posts And Telecommunications Nantong Institute Co ltd, Nanjing University of Posts and Telecommunications filed Critical Nanjing University Of Posts And Telecommunications Nantong Institute Co ltd
Priority to CN201910366995.6A priority Critical patent/CN110120423B/zh
Publication of CN110120423A publication Critical patent/CN110120423A/zh
Application granted granted Critical
Publication of CN110120423B publication Critical patent/CN110120423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66704Lateral DMOS transistors, i.e. LDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7823Lateral DMOS transistors, i.e. LDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提出了一种LDMOS器件,包括半导体衬底、埋层、外延层、源极金属、漏极金属和场氧化层,所述外延层上设置有PN变掺杂降场层、P型半导体体区和N型半导体漏区,所述PN变掺杂降场层的左半部分为P型变掺杂区,右半部分为N型变掺杂区,所述P型变掺杂区中的P型杂质浓度从左到右逐渐减小到0 cm‑3,所述N型变掺杂区中的N型杂质浓度从右至左逐渐减小到0 cm‑3。通过在外延层内制备PN变掺杂降场层,在漂移区中部产生一个均匀的电场分布,同时消除了主结处的高的电场峰值,优化了漂移区的表面电场分布,从而能够提高器件的反向击穿电压;此外,PN变掺杂降场层能够提高常规器件的漂移区浓度,有效的提高了器件的电流能力并降低器件的导通电阻。

Description

一种LDMOS器件及其制备方法
技术领域
本发明涉及一种LDMOS器件及其制备方法,属于集成电路技术领域。
背景技术
随着功率电子技术的发展,功率集成电路对半导体功率器件的性能也提出了更高的要求,作为功率集成电路的核心器件,横向半导体功率器件需要提供高的耐压,和低的导通电阻。LDMOS(横向扩散金属氧化物半导体晶体管)由于其具有良好的工艺兼容性,并且易于通过内部连线将分布在表面的源极、栅极和漏极与低压逻辑电路单片集成而被广泛应用。但是LDMOS击穿电压提高的同时往往使得导通电阻同时增加。这一矛盾关系限制了该类器件在高压和大电流领域的应用。为了克服这个矛盾关系,J.A.APPLES 等人提出了RESURF(Reduced Surface Field) 降低表面场技术,图1给出了一个典型的常规SOI RESURFLDMOS器件结构示意图,它由半导体衬底A1、埋层A2、外延层A3、P型半导体体区A4、N型半导体漏区A5,其中P型半导体体区A4中具有半导体源区A6和半导体体接触区A7,栅极A8、源极金属A9和漏极金属A10,栅极和外延层之间的是栅氧化层A11,以及场氧化层A12组成。但是此技术只能在一定程度上降低导通电阻,仍然满足不了高速发展的功率集成电路对高压LDMOS器件的技术要求。
为了改善RESURF结构的导通特性,文献:Zingg R P, Weijland I, Zwol H V, etal. 850V DMOS-switch in silicon-on-insulator with specific Ron of 13Ω ·mm2.Proceeding of International SOI Conference, 2000, pp.62-63,提出了一种新的高压低导通电阻设计技术——D-RESURF技术。图2给出了现有的具有PN变掺杂降场层的高压LDMOS器件结构示意图。其P型PN变掺杂降场层B13位于N型外延层B3中,该P型PN变掺杂降场层B13能够在一定程度上降低LDMOS器件的导通电阻,但由其表面电场的分布可知,其在正偏的PN结处将出现一个电场低谷,从而影响器件表面电场分布。此外,为了优化表面电场分布,PN变掺杂降场层B13要尽量接近P型半导体体区B4两者之间的电流通道随着两者之间的距离的减小而减小,因此会导致增大导通电阻,这些缺点严重影响了器件工作电压的进一步提高。
发明内容
为了解决上述问题,本发明提供了一种LDMOS器件,其能够优化漂移区的表面电场分布,从而能够提高器件的击穿电压,有效提高器件的电流能力并降低器件的导通电阻,还能够消除了传统D-RESURF LDMOS器件中正向PN结产生的电场峰值。
本发明提供一种LDMOS器件,包括半导体衬底、埋层、外延层、源极金属、漏极金属和场氧化层,所述埋层设置于所述半导体衬底上,所述外延层设置于所述埋层上,所述外延层上设置有PN变掺杂降场层、P型半导体体区和N型半导体漏区,所述P型半导体体区中设置有半导体源区和半导体体接触区,所述半导体源区和半导体体接触区均与所述源极金属接触;所述漏极金属与所述N型半导体漏区接触;所述外延层上方设置有场氧化层;所述PN变掺杂降场层的左半部分为P型变掺杂区,所述PN变掺杂降场层的右半部分为N型变掺杂区,所述P型变掺杂区中的P型杂质浓度从左到右逐渐减小到0cm-3,所述N型变掺杂区中的N型杂质浓度从右至左逐渐减小到0cm-3
作为本发明的进一步技术方案,所述P型变掺杂区中的P型杂质浓度为从左到右降低的线性分布,所述N型变掺杂区中的N型杂质浓度为从右到左降低的线性分布。
进一步地,所述PN变掺杂降场层中的P型变掺杂区中的P型杂质浓度为从左到右降低的高斯分布,所述N型变掺杂区中的N型杂质浓度为从右到左降低的高斯分布。
进一步地,还包括有栅极,所述栅极设置于外延层侧面靠近所述半导体区的一侧,所述外延层、P型半导体体区以及半导体体接触区均与所述栅极接触,所述栅极中设置有金属槽栅。
进一步地,所述PN变掺杂降场层的一端与所述P型半导体体区相连,另一端与所述N型半导体漏区相连。
进一步地,所述栅极的材料为SiO2、Si3N4、Al2O3、TiO2、Y2O3、La2O3、Ta2O5、HfO2或PZT中的任意一种。
进一步地,所述外延层的材料为硅、碳化硅、砷化镓、氮化镓、氧化镓或锗硅中的任意一种。
本发明还提供了一种制备上述LDMOS器件的方法,包括以下步骤:
刻蚀外延层形成沟槽;
在沟槽内淀积介质材料;
形成PN变掺杂降场层,具体包括:步骤一、利用窗口离子注入法在整个外延层顶部注入III族元素,掺杂浓度从左至右逐渐降低;步骤二、利用窗口离子注入法在整个外延层顶部注入V族元素,掺杂浓度从左至右逐渐升高;
形成P型半导体体区和半导体源区;
形成N型半导体漏区和半导体接触区;
制作金属槽栅;
制作源极和漏极。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:通过在外延层内制备PN变掺杂降场层,在漂移区中部产生一个完全均匀的电场分布,同时消除了主结处的高的电场峰值,优化了漂移区的表面电场分布,从而能够提高器件的反向击穿电压;此外,PN变掺杂降场层能够提高常规器件的漂移区浓度,有效的提高了器件的电流能力并降低器件的导通电阻。
此外,由于栅极处于器件侧边,能够使得P型半导体体区和PN变掺杂降场层相连,消除了D-RESURF器件中正向PN结产生的电场峰值。
附图说明
图1为现有技术中常规的LDMOS结构示意图;
图2为现有技术中D-RESURF LDMOS结构示意图;
图3为本发明实施例1提供的LDMOS器件截面示意图;
图4为本发明实施例2提供的LDMOS器件截面示意图;
图5为本发明提供的LDMOS器件制备方法的流程示意图;
图6为本发明的LDMOS器件制备方法中利用刻蚀形成沟槽后的截面示意图;
图7为本发明的LDMOS器件制备方法中在沟槽中淀积介质材料后的截面示意图;
图8为本发明的LDMOS器件制备方法中使用窗口离子注入法形成变掺杂的P型区域后的截面示意图;
图9为本发明的LDMOS器件制备方法中使用第二次窗口离子注入法形成PN变掺杂降场层后的截面示意图;
图10为本发明的LDMOS器件制备方法中P型半导体体区和半导体源区形成后的截面示意图;
图11为本发明的LDMOS器件制备方法中N型半导体漏区和半导体接触区形成后的截面示意图;
图12为本发明的LDMOS器件制备方法中制作金属槽栅后的截面示意图;
图13为本发明的LDMOS器件制备方法中制作源极,漏极的金属电极后的截面示意图;
图14是相同结构参数的常规LDMOS器件结构与本发明提供的LDMOS器件结构的电场分布示意图。
图15是常规LDMOS器件结构与本发明提供的LDMOS器件结构的IV特性示意图。
其中:A1、半导体衬底;A2、埋层;A3外延层;A4、P型半导体体区;A5、N型半导体漏区;A4、P型半导体体区;A6、半导体源区;A7、半导体体接触区;A8、栅极;A9、源极金属;A10、漏极金属;A11、栅氧化层;A12、场氧化层;B13、P型PN变掺杂降场层;B3、N型外延层;B4、P型半导体体区;1、半导体衬底;2、埋层;3、外延层;4、P型半导体体区;5、N型半导体漏区;6、半导体体接触区;7、半导体源区;9、源极金属;10、漏极金属;12、场氧化层;14、栅极;15、金属槽栅;16、PN变掺杂降场层;16-1、P型变掺杂区;16-2、N型变掺杂区;17、沟槽;18、P型变掺杂PN变掺杂降场层。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明。
实施例1:
本实施例提出了一种具有变掺杂PN变掺杂降场层的LDMOS,图3为本发明实施例1提供的LDMOS器件截面示意图,如图3所示,包括位于最下方的半导体衬底1;p型衬底上的埋层2;位于埋层上方的外延层3;所述外延层3包括一个变掺杂的PN变掺杂降场层16,PN变掺杂降场层的左半部分16-1为P型变掺杂区,浓度从左至右线性减小到0cm-3,PN变掺杂降场层的右半部分16-2为N型掺杂区,浓度从右至左线性减小到0cm-3
PN变掺杂降场层16与P型半导体体区4和N型半导体漏区5相连;所述P型半导体体区4中具有半导体源区7和半导体体接触区6;外延层3中除去P型半导体体区4、N型半导体漏区5、半导体体接触区6和半导体源区7的部分称为漂移区,PN变掺杂降场层16设置于漂移区的上部。
半导体源区7和半导体体接触区6接触的是源极金属9;与N型半导体漏区5接触的是漏极金属10;外延层3左侧和P型半导体体区4以及半导体体接触区6接触的是栅极14,介质层中的是金属槽栅15;外延层上方的是场氧化层12。从图中可以看出,本发明提供的具有PN变掺杂降场层的LDMOS器件结,其PN变掺杂降场层16与位于顶部一侧的N型半导体漏区5和位于另一侧的P型半导体体区4相连,PN变掺杂降场层16的左半部分为P型变掺杂区16-1,浓度从左至右逐渐减小到0cm-3,PN变掺杂降场层16的右半部分为N型变掺杂区16-2,浓度从左至右从0cm-3开始逐渐升高。能够在漂移区中形成一个均匀的电场分布,从而能够提高器件的击穿电压;并能够提高常规器件的漂移区浓度,有效的提高了器件的电流能力并降低器件的导通电阻。
实施例2:
其他均同实施例1,不同之处在于PN变掺杂降场层16中P型变掺杂区16-1的P型杂质浓度为从左至右降低的高斯分布,所述N型变掺杂区16-2的N型杂质浓度分布为从右至左降低的高斯分布,如图4所示。
此外,本发明还在传统的LDMOS器件的制备工艺基础上做了一些改进,以优化器件的击穿电压和导通电阻。主要的工艺流程如图5所示。主要的改进包括在外延层3内通过两次窗口离子注入形成PN变掺杂降场层16,并将栅极14制作在侧向沟槽17内,使得PN变掺杂降场层16与位于顶部一侧的N型半导体漏区5和位于另一侧的P型半导体体区4相连。下面主要阐述该器件的主要制备步骤:
首先采用干法刻蚀工艺在外延层3中刻蚀出所需的沟槽17,如图6所示;
其次在沟槽17中淀积介质材料形成栅极14,该介质材料可以是常用的SiO2,也可以是SI3N4、Al2O3、TiO2、Y2O3、La2O3、Ta2O5、HfO2或PZT等介质材料,如图7所示。
然后利用窗口离子注入法在漂移区中注入III族元素形成P型变掺杂PN变掺杂降场层18,掺杂浓度从左至右逐渐降低,如图8所示;
接着利用窗口离子注入法在P型变掺杂PN变掺杂降场层18中注入V族元素,掺杂剂量从左至右逐渐升高。使P型PN变掺杂降场层18的浓度在中部降为0,然后在右部变成N型并且浓度逐渐升高,形成PN变掺杂降场层16,如图9所示;
之后利用离子注入形成P型半导体体区4和半导体源区7,如图10所示;
再利用离子注入及退火形成N型半导体漏区5和半导体接触区6,如图11所示;
然后通过刻蚀和淀积工艺形成金属槽栅15,如图12所示;
最后制作源极金属9、漏极金属10,如图13所示。
下面以SOI LDMOS器件为例,对本发明的工作机理进行说明。
图14是相同结构参数的常规LDMOS器件结构与本发明提供的LDMOS器件结构的电场分布示意图。图14比较了常规的LDMOS器件结构与本发明提供的LDMOS器件结构的表面电场分布。两种结构具有相同的几何尺寸,而漂移区浓度分布则进行了优化。其中虚线为常规LDMOS器件表面电场分布曲线,实线为本发明提供的LDMOS器件表面电场分布曲线。由图可知,对于常规的LDMOS器件结构,电场在漂移区中部较低,其在漂移区的两侧产生两个高的电场峰值。而对于本发明提供的高压LDMOS器件结构,PN变掺杂降场层能够在漂移区的中形成一个均匀的电场分布,而且由于该PN变掺杂降场层与体区和漏区相连,消除了两端的电场峰值,因此优化了漂移区的表面电场分布,从而能够在一定程度上提高器件的击穿电压。
图15是常规的LDMOS器件结构与本发明提供的LDMOS器件结构的IV特性。图15比较了常规的LDMOS器件结构与本发明提供的LDMOS器件结构在漏断电压为8V时的输出特性曲线。其中虚线为常规的LDMOS器件漏源电流与漏源电压关系曲线,实线为本发明提供的LDMOS器件漏源电流与漏源电压关系曲线。由图可知,本发明提供的LDMOS器件的饱和电流高于常规LDMOS器件的饱和电流,说明本发明提供的LDMOS器件具有较好的电流能力。通过输出特性曲线可得常规的LDMOS器件的导通电阻为46.8ohm·cm2;本发明提供的LDMOS器件导通电阻为25.1ohm·cm2,导通电阻降低了46.4%。
综上所述,本发明通过在漂移区引入PN变掺杂降场层16。一方面PN变掺杂降场层16能够在漂移区中部产生一个均匀的电场分布,同时由于PN变掺杂降场层16与N型半导体漏区5和P型半导体体区4相连,消除了主结处的高的电场峰值,优化了漂移区的表面电场分布,从而能够提高器件的击穿电压;另一方面,PN变掺杂降场层16能够提高常规器件的漂移区浓度,有效的提高了器件的电流能力并降低器件的导通电阻。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (6)

1.一种LDMOS器件,包括半导体衬底、埋层、外延层、源极金属、漏极金属和场氧化层,所述外延层上设置有PN变掺杂降场层、P型半导体体区和N型半导体漏区,所述P型半导体体区中设置有半导体源区和半导体体接触区,所述半导体源区和半导体体接触区均与所述源极金属接触;所述漏极金属与所述N型半导体漏区接触;其特征在于:所述PN变掺杂降场层的左半部分为P型变掺杂区,所述PN变掺杂降场层的右半部分为N型变掺杂区,所述P型变掺杂区中的P型杂质浓度从左到右逐渐减小到0cm-3,所述N型变掺杂区中的N型杂质浓度从右至左逐渐减小到0cm-3
所述LDMOS器件还包括栅极,所述栅极设置于外延层侧面靠近所述P型半导体体区的一侧,所述外延层、P型半导体体区以及半导体体接触区均与所述栅极接触,所述栅极中设置有金属槽栅;
所述PN变掺杂降场层的一端与所述P型半导体体区相连,另一端与所述N型半导体漏区相连。
2.根据权利要求1所述的一种LDMOS器件,其特征在于:所述P型变掺杂区中的P型杂质浓度为从左到右降低的线性分布,所述N型变掺杂区中的N型杂质浓度为从右到左降低的线性分布。
3.根据权利要求1所述的一种LDMOS器件,其特征在于:所述P型变掺杂降场层中的P型杂质浓度为从左到右降低的高斯分布,所述的N型变掺杂区中的N型杂质浓度分布为从右到左降低的高斯分布。
4.根据权利要求1所述的一种LDMOS器件,其特征在于:所述栅极的材料为SiO2、Si3N4、Al2O3、TiO2、Y2O3、La2O3、Ta2O5、HfO2或PZT中的任意一种。
5.根据权利要求1所述的一种LDMOS器件,其特征在于:所述外延层的材料为硅、碳化硅、砷化镓、氮化镓、氧化镓或锗硅中的任意一种。
6.一种制备权利要求1-5中任意一项所述LDMOS器件的方法,其特征在于:包括以下步骤:
刻蚀外延层形成沟槽;
在沟槽内淀积介质材料;
形成PN变掺杂降场层,具体包括:步骤一、利用窗口离子注入法在整个外延层顶部注入III族元素,掺杂浓度从左至右逐渐降低;步骤二、利用窗口离子注入法在整个外延层顶部注入V族元素,掺杂浓度从左至右逐渐升高;
形成P型半导体体区和半导体源区;
形成N型半导体漏区和半导体接触区;
制作金属槽栅;
制作源极和漏极。
CN201910366995.6A 2019-05-05 2019-05-05 一种ldmos器件及其制备方法 Active CN110120423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910366995.6A CN110120423B (zh) 2019-05-05 2019-05-05 一种ldmos器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910366995.6A CN110120423B (zh) 2019-05-05 2019-05-05 一种ldmos器件及其制备方法

Publications (2)

Publication Number Publication Date
CN110120423A CN110120423A (zh) 2019-08-13
CN110120423B true CN110120423B (zh) 2022-03-22

Family

ID=67521793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910366995.6A Active CN110120423B (zh) 2019-05-05 2019-05-05 一种ldmos器件及其制备方法

Country Status (1)

Country Link
CN (1) CN110120423B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117614432B (zh) * 2023-10-30 2024-05-28 南京邮电大学 提升体硅ldmos性能的动态背栅控制系统及体硅ldmos的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8200464A (nl) * 1982-02-08 1983-09-01 Philips Nv Halfgeleiderinrichting met gereduceerde oppervlakteveldsterkte.
US5304827A (en) * 1991-10-15 1994-04-19 Texas Instruments Incorporated Performance lateral double-diffused MOS transistor
CN101599462A (zh) * 2009-06-13 2009-12-09 无锡中微爱芯电子有限公司 基于薄外延的高低压器件生产方法
CN104183646A (zh) * 2014-08-29 2014-12-03 电子科技大学 一种具有延伸栅结构的soi ldmos器件
CN106887466A (zh) * 2017-01-11 2017-06-23 南京邮电大学 一种二维类超结ldmos器件及其制备方法
CN107680996A (zh) * 2017-09-14 2018-02-09 电子科技大学 横向功率器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340200B2 (ja) * 2014-01-27 2018-06-06 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8200464A (nl) * 1982-02-08 1983-09-01 Philips Nv Halfgeleiderinrichting met gereduceerde oppervlakteveldsterkte.
US5304827A (en) * 1991-10-15 1994-04-19 Texas Instruments Incorporated Performance lateral double-diffused MOS transistor
CN101599462A (zh) * 2009-06-13 2009-12-09 无锡中微爱芯电子有限公司 基于薄外延的高低压器件生产方法
CN104183646A (zh) * 2014-08-29 2014-12-03 电子科技大学 一种具有延伸栅结构的soi ldmos器件
CN106887466A (zh) * 2017-01-11 2017-06-23 南京邮电大学 一种二维类超结ldmos器件及其制备方法
CN107680996A (zh) * 2017-09-14 2018-02-09 电子科技大学 横向功率器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高k介质阶梯变宽度SOI LDMOS;姚佳飞;郭宇锋等;《电子学报》;20180731;1781-1786 *

Also Published As

Publication number Publication date
CN110120423A (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
US10727334B2 (en) Lateral DMOS device with dummy gate
TWI595651B (zh) 具有增強流動性之半導體裝置及方法
US20180350961A1 (en) Semiconductor device and manufacturing method of semiconductor device
US6103578A (en) Method for forming high breakdown semiconductor device
KR101324855B1 (ko) 수퍼접합 전력 mosfet
US20200020798A1 (en) Power mosfet with an integrated pseudo-schottky diode in source contact trench
US20070012983A1 (en) Terminations for semiconductor devices with floating vertical series capacitive structures
CN113611750B (zh) Soi横向匀场高压功率半导体器件及制造方法和应用
CN111048420B (zh) 横向双扩散晶体管的制造方法
KR100762545B1 (ko) Lmosfet 및 그 제조 방법
JPH0613621A (ja) 半導体装置及びその製造方法
CN111969043A (zh) 高压三维耗尽超结ldmos器件及其制造方法
CN106024905A (zh) 一种低导通电阻横向双扩散金属氧化物半导体器件
CN110504260B (zh) 一种具有自偏置pmos的横向沟槽型igbt及其制备方法
CN109273364B (zh) 一种半导体结构及其形成方法
CN110120423B (zh) 一种ldmos器件及其制备方法
US10355132B2 (en) Power MOSFETs with superior high frequency figure-of-merit
CN111755497B (zh) 一种jte和掩埋flr复合终端结构功率器件及其制备方法
KR20010102278A (ko) 게이트 항복을 방지한 실리콘 탄화물 횡형 금속 산화물반도체 전계 효과 트랜지스터
US8421149B2 (en) Trench power MOSFET structure with high switching speed and fabrication method thereof
CN111524798B (zh) 一种具有纵向线性变掺杂的深槽横向耐压区的制备方法
CN117652033A (zh) 功率半导体器件及制造方法
WO2018033034A1 (en) Semiconductor device with hybrid channel configuration
CN112599600A (zh) 垂直双扩散晶体管及其制造方法
CN111446299A (zh) 一种ldmos器件及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190813

Assignee: Nanjing Zouma Information Technology Co.,Ltd.

Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS|NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS NANTONG INSTITUTE Co.,Ltd.

Contract record no.: X2023980051173

Denomination of invention: A LDMOS device and its preparation method

Granted publication date: 20220322

License type: Common License

Record date: 20231209

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190813

Assignee: Nanjing Shuhui Technology Co.,Ltd.

Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS|NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS NANTONG INSTITUTE Co.,Ltd.

Contract record no.: X2023980052157

Denomination of invention: A LDMOS device and its preparation method

Granted publication date: 20220322

License type: Common License

Record date: 20231215

EE01 Entry into force of recordation of patent licensing contract