CN110092854A - 一种内嵌三维无机骨架的聚合物复合材料及其制备方法 - Google Patents

一种内嵌三维无机骨架的聚合物复合材料及其制备方法 Download PDF

Info

Publication number
CN110092854A
CN110092854A CN201910362138.9A CN201910362138A CN110092854A CN 110092854 A CN110092854 A CN 110092854A CN 201910362138 A CN201910362138 A CN 201910362138A CN 110092854 A CN110092854 A CN 110092854A
Authority
CN
China
Prior art keywords
inorganic
polymer
preparation
embedded
microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910362138.9A
Other languages
English (en)
Other versions
CN110092854B (zh
Inventor
王瑞
宫艺
丁欣
汪凤宇
张献
郑康
陈林
田兴友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201910362138.9A priority Critical patent/CN110092854B/zh
Publication of CN110092854A publication Critical patent/CN110092854A/zh
Application granted granted Critical
Publication of CN110092854B publication Critical patent/CN110092854B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明公开了一种内嵌三维无机骨架的聚合物复合材料及其制备方法,首先以无机填充纳米材料为稳定剂,聚合物单体为油相,水为分散相,制备皮克林乳液,然后以乳液液滴为模板,采用原位微乳液聚合法制备表面覆盖无机纳米颗粒的聚合物复合微球,最后将所得复合微球在聚合物玻璃化转变温度附近热压成型,形成无机填充和聚合物的复合材料。本发明采用乳液界面作为构建无机三维骨架的模板,一方面避免了无机纳米颗粒的化学改性,简化了工艺流程;另一方面实现了超低无机填充量的功能聚合物复合制备。复合材料中三维无机骨架结构可以通过无机纳米填充和聚合物纳米球共组装实现精细调控,为优化复合材料的综合性能提供可能。

Description

一种内嵌三维无机骨架的聚合物复合材料及其制备方法
技术领域
本发明属于复合材料合成技术领域,尤其涉及一种内嵌三维无机骨架的聚合物复合材料及其制备方法。
背景技术
受下游高尖端应用驱动,产业对基础材料的要求不断提高,功能性复合材料的需求不断显现。例如,随着电子产业的快速发展,电子产品功率迅猛提升,导致产热量剧增。电子器件封装材料散热性能不足严重威胁电子产品的工作稳定性和使用寿命。目前聚合物因为其电绝缘性、低成本、加工便利性以及轻质等特性在电子封装材料中占有绝对主导的份额,然而聚合物一般为热的不良导体。因此,开发具有高热导性能的复合材料需求迫切。一些无机材料例如氮化硼,氧化铝,碳等具有优良的导热性能,在聚合物基体材料中添加该类无机导热填料是提高复合材料导热系数的有效方法。
现有文献显示,通过简单共混的方式复合导热填料与聚合物基质,理论上一般需要较高的填充量(约25 vol%)才可达到热渗值。然而随着无机填充量的上升,复合材料逐渐偏离聚合物的特性,引起黏度上升,失去加工便利和轻质的特性,以及力学性能降低。因此如何优化聚合物基质中导热填充的分布,构建三维导热网络,在低无机填充下实现复合材料导热提升是该领域最具挑战的技术之一。
目前,一些在聚合物基质中构筑无机导热网络构建技术已见报道,大致可分为以下几类: (1)表面改性自组装法。通过在导热填充表面引入羟基,进而利用其与聚乙烯醇的氢键作用构建复合材料。 (2)微球模板法。利用静电吸附混合聚苯乙烯和导热填充颗粒,通过平板热压法制备复合聚合物。(3)外场协助自组装法。通过在导热填充颗粒表面接枝磁性粒子,在磁场诱导下于环氧树脂中形成有序结构。所得复合材料导热增强依赖于磁场方向,展现强烈的各向异性。
上述方法一般都依赖于导热填充颗粒的化学改性,同时三维网络结构可控性较弱。皮克林乳液为一种由纳米粒子作为稳定剂而形成的乳液,利用皮克林乳液界面为模板,本发明实现不依赖于无机填充颗粒的化学特性的便捷方法制备内嵌三维无机网络结构的复合聚合物。
发明内容
本发明的目的是提供一种内嵌三维无机骨架的聚合物复合材料及其制备方法,实现在超低无机填充量下具有三维无机骨架的复合物复合材料的制备,该类复合材料在导热聚合物领域具有较高的应用价值。
同时本发明通过一种简单易行的乳液模板方法,解决氮化硼填料的难以改性以及在聚合物基体中不易分散的问题,实现低填充量下的高导热率氮化硼/聚苯乙烯复合材料。
为了实现上述的目的,本发明提供以下技术方案:
一种内嵌三维无机骨架的聚合物复合材料,所述聚合物复合材料中的无机纳米颗粒在聚合物基质中呈现三维网络结构,且无机填充量在20vol%以下。
所述无机纳米颗粒包括接触角在45-135°之间的,尺寸在0.1-10μm之间的氮化硼、氮化硅、氧化铝、氮化镓等中的任意一种或几种。
一种上述内嵌三维无机骨架的聚合物复合材料的制备方法,包括以下步骤:
(1)皮克林乳液的制备:称取一定量的无机纳米颗粒单独或者与聚合物纳米球共同分散于蒸馏水中,超声分散后,得到均匀的水相分散液,称取一定量的引发剂溶解于5%氢氧化钠水溶液碱洗后的一定量的油性聚合物单体中,得到均匀的油相,将上述两种液体混合乳化后得到稳定分散的皮克林乳液;
(2)复合微球的制备:以皮克林乳液为模板,将皮克林乳液转移到反应器中,在氮气氛围下将温度提升到引发剂分解温度以上,利用引发剂触发原位聚合反应,聚合一定时间,将反应产物洗涤后,在真空烘箱中干燥,形成表面覆盖有无机纳米颗粒聚合物复合微球,其中无机纳米颗粒的表面覆盖率可由在步骤1皮克林乳液的制备时无机纳米颗粒和聚合物纳米球的比例控制;
(3)在平板热压机上将复合微球在聚合物玻璃转变温度以上、一定条件下热压成型,得到内嵌三维无机骨架的复合材料,其中三维无机骨架的结构可以由复合微球表面覆盖率控制,三维骨架的密度可由复合微球的平均粒径控制。
所述步骤1中聚合物纳米球为用于调整无机纳米颗粒在微球表面覆盖率的一种或几种聚合物纳米球,优选为聚苯乙烯纳米球。
所述步骤1中聚合物单体为乙烯类油相单体中的一种或几种,优选为苯乙烯。
所述步骤2中的引发剂为过氧化二苯甲酰、偶氮二异丁腈、过氧化二烷基、过氧化二酰、叔胺或者其他油溶性引发剂中的任意一种或几种。
所述无机纳米颗粒与聚合物单体的质量比为1:(1-50)。
所述步骤3中微球中的聚合物为热塑性聚合物。
一种由权利要求3所得的表面无机填充覆盖率可控的复合微球材料。
一种由权利要求3所得的复合微球材料的表面无机颗粒覆盖率的控制方法。
一种由权利要求3所得的聚合物复合材料的内嵌无机骨架的结构和密度的控制方法。
如权利要求1所述的内嵌三维无机骨架的聚合物复合材料在导热聚合物领域中的应用。
本发明的优点是:
与现有的技术相比,本发明提供的方法主要利用乳液液滴的油水界面对纳米粒子的吸附作用,通过原位聚合形成无机填充表面覆盖率可调的聚合物微球。然后经过热压成型后实现内嵌三维无机网络的聚合物复合材料。
第一,经测试发现,所得复合材料在超低无机填充下(5-20vol%)即可实现聚合物导热率4-10倍提升。
第二,经测试发现,无机填充颗粒在复合微球表面覆盖率可以通过皮克林乳液制备中稳定剂的比例调节,进而实现复合材料中无机骨架的调控。
第三,本发明工艺操作简单,容易实现聚合物复合材料的规模化生产,无需对无机填充颗粒化学改性,无需苛刻的反应条件。
附图说明
图1所示为以氮化硼@聚苯乙烯复合微球为例的复合微球制备示意图。
图2所示为由氮化硼纳米颗粒稳定的皮克林乳液的光学显微镜照片。
图3所示为不同放大倍数下氮化硼@聚苯乙烯复合微球的扫描电子显微镜(SEM)图: (a)(b)低倍数;(c)(d)高倍数。
图4所示为氮化硼(BN)和氮化硼@聚苯乙烯(BN@PS)复合微球的X射线衍射(XRD)图。
图5其中a为复合微球的SEM照片;b、c分别为相应的复合微球的表面碳、氮元素分布图;d为由复合微球热压所得的复合材料断面图;e、f分别为相应的复合材料中碳、氮元素分布。
图6所示为复合材料断面的SEM照片。
具体实施方式
以下结合具体的实例对本发明的技术方案做进一步说明:
实施例1
一种内嵌三维无机骨架的聚合物复合材料的制备方法,包括以下步骤:
(1)皮克林乳液的制备:称取1 g氮化硼粉体(尺寸为3μm)分散于100ml蒸馏水中,超声分散30 min后,得到均匀的分散液;称取1 g引发剂过氧化苯甲酰溶解于5%氢氧化钠水溶液碱洗后的10 mL苯乙烯单体中;将两种溶液混合在烧杯中,乳化2 min后得到稳定分散的皮克林乳液;
其中图1为乳液模板法制备复合微球的示意图,图2的光学显微镜图显示氮化硼片可以作为稳定剂吸附在水和苯乙烯相界面处形成稳定的皮克林乳液,乳液粒径大约为20-30 μm;
(2)复合微球的制备:将皮克林乳液转移到250 mL三口烧瓶中,在氮气气氛下升温至70℃,聚合10小时;将反应产物用无水乙醇洗涤3-4次,离心后取沉淀物,在40℃真空烘箱中干燥24小时,得到复合微球;
图3显示的是乳液聚合后得到的复合微球的SEM图,可以观察到复合微球表面粗糙且包覆了一层氮化硼,粒径约为20-30μm,这与乳液的光学显微镜图结果一致;图4展示了聚苯乙烯PS和所得复合微球粉末的XRD衍射图,聚苯乙烯在2θ=19.8°处有宽衍射峰,氮化硼(002)和(100)面的衍射峰分别位于2θ=27.1°、2θ=42°处(ACS Appl. Mater. Interfaces2017,9,19934−19944);由图4可知,BN@PS粉末的X-射线衍射图中相应位置有衍射峰出现,证明了复合微球的成功制备。
(3)在平板热压机上将所得复合微球在80℃、25MPa条件下热压成型。
通过乳液模板法,使氮化硼作为稳定剂吸附在油水界面处,再通过原位聚合得到氮化硼片包覆的聚苯乙烯微球;这种方法无需添加有机溶剂、氮化硼填料不用改性,有效的构建了三维的导热网络,提高复合材料的导热性能,方法简单易行、环境友好。
实施例2
制备方法同实施例1,不同点在于步骤(1)制备皮克林乳液时,称取1 g氮化硼粉体(尺寸为1μm),超声分散30 min后,得到均匀的分散液;随着氮化硼尺寸减小,乳液液滴尺寸随之降低,导致所得复合微球尺寸减小,从而增加聚合物复合材料中氮化硼网络密度,实现三维骨架密度的调控。
实施例3
制备方法同实施例1,不同点在于步骤(3)中将制备的复合微球在95℃、25MPa条件下热压成型;图6为典型的复合材料样品断面SEM图;研究显示当热压温度过低时,样品中微球单元之间存在孔隙,氮化硼之间接触不完全;当温度提升临界值时,热压后,微球相界面处完全由氮化硼填充,形成完整的三维导热网络,有利于热量的传输,降低了材料的界面热阻,提高了基板材料的整体热导率。
实施例4
制备方法同实施例2,不同点在于步骤(1)制备皮克林乳液时,将1g聚苯乙烯纳米球和5g氮化硼粉体(尺寸为3μm)共同分散于200mL蒸馏水中,超声分散30 min后,得到均匀的分散液;图5为复合微球热压前后的样品元素分布图。其中,图5a为复合微球的SEM照片,图5b和5c分别为相应的复合微球的表面碳,氮元素分布图;由图可见,微球表面碳、氮元素呈现互补分布,表明复合微球表面由氮化硼和聚苯乙烯纳米球交替分布;图5d为由复合微球热压所得的复合材料断面图,图5e和5f分别为相应的复合材料中碳,氮元素分布,图中氮元素形成了超薄的网络结构,证明氮化硼在聚苯乙烯基质中形成有效的三维骨架,这种三维骨架的结构可以通过氮化硼和聚苯乙烯纳米球之间的配比实现调节。

Claims (10)

1.一种内嵌三维无机骨架的聚合物复合材料,其特征在于,所述聚合物复合材料中的无机纳米颗粒在聚合物基质中呈现三维网络结构,且无机填充量在20vol%以下。
2.根据权利要求1所述的内嵌三维无机骨架的聚合物复合材料,其特征在于,所述无机纳米颗粒包括接触角在45-135°之间的,尺寸在0.1-10μm之间的氮化硼、氮化硅、氧化铝、氮化镓中的任意一种或几种。
3.一种内嵌三维无机骨架的聚合物复合材料的制备方法,其特征在于,包括以下步骤:
(1)皮克林乳液的制备:称取一定量的无机纳米颗粒分散于一定量的去离子水中,根据需求决定是否加入一定比例的聚合物纳米球,超声分散一定时间后,得到均匀的水相分散液;称取一定量的引发剂溶解于一定量的油性聚合物单体中,得到均匀的油相;将水油两项混合乳化后得到皮克林乳液;
(2)复合微球的制备:以皮克林乳液为模板,利用引发剂触发原位聚合反应,形成表面覆盖有无机纳米颗粒聚合物复合微球,其中无机纳米颗粒的表面覆盖率可由在步骤1皮克林乳液的制备时无机纳米颗粒和聚合物纳米球的比例控制;
(3)将复合微球热压成型,得到内嵌三维无机骨架的复合材料,其中三维无机骨架的结构可以由复合微球表面覆盖率控制,三维骨架的密度可由复合微球的平均粒径控制。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤1中聚合物纳米球为用于调整无机纳米颗粒在微球表面覆盖率的一种或几种聚合物纳米球,所述聚合物单体为乙烯类油相单体中的一种或几种。
5.根据权利要求3所述的制备方法,其特征在于,所述步骤2中的引发剂包括过氧化二苯甲酰、偶氮二异丁腈、过氧化二烷基、过氧化二酰、叔胺中的任意一种或几种。
6.根据权利要求3所述的制备方法,其特征在于,所述无机纳米颗粒与聚合物单体的质量比为1:(1-50)。
7.一种由权利要求3所得的表面无机填充覆盖率可控的复合微球材料。
8.一种由权利要求3所得的复合微球材料的表面无机颗粒覆盖率的控制方法。
9.一种由权利要求3所得的聚合物复合材料的内嵌无机骨架的结构和密度的控制方法。
10.如权利要求1所述的内嵌三维无机骨架的聚合物复合材料在导热聚合物领域中的应用。
CN201910362138.9A 2019-04-30 2019-04-30 一种内嵌三维无机骨架的聚合物复合材料及其制备方法 Active CN110092854B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910362138.9A CN110092854B (zh) 2019-04-30 2019-04-30 一种内嵌三维无机骨架的聚合物复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910362138.9A CN110092854B (zh) 2019-04-30 2019-04-30 一种内嵌三维无机骨架的聚合物复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110092854A true CN110092854A (zh) 2019-08-06
CN110092854B CN110092854B (zh) 2021-08-10

Family

ID=67446673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910362138.9A Active CN110092854B (zh) 2019-04-30 2019-04-30 一种内嵌三维无机骨架的聚合物复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110092854B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094001A (zh) * 2021-09-29 2022-02-25 华灿光电(浙江)有限公司 基底、发光二极管外延片及其制造方法
CN114874368A (zh) * 2022-05-23 2022-08-09 江南大学 一种导热微球、导热复合材料及其制备方法
CN115417956A (zh) * 2022-08-12 2022-12-02 合肥学院 一种低热阻的氮化硼纳米片/聚合物复合水乳胶的制备方法及其在导热涂层中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106928744A (zh) * 2015-12-30 2017-07-07 广东生益科技股份有限公司 一种含填料的复合材料、片材以及含有它的电路基板
CN109370219A (zh) * 2018-10-24 2019-02-22 镇江龙成绝缘材料有限公司 一种高导热聚酰亚胺薄膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106928744A (zh) * 2015-12-30 2017-07-07 广东生益科技股份有限公司 一种含填料的复合材料、片材以及含有它的电路基板
CN109370219A (zh) * 2018-10-24 2019-02-22 镇江龙成绝缘材料有限公司 一种高导热聚酰亚胺薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FANG JIANG等: "Hydrogen Bond-Regulated Boron Nitride Network Structures for Improved Thermal Conductive Property of Polyamide-imide Composites", 《ACS APPLIDE MATERIALS & INTERFACES》 *
XIONGWEI WANG等: "Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets", 《ACS APPLIED MATERIALS&INTERFACES》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094001A (zh) * 2021-09-29 2022-02-25 华灿光电(浙江)有限公司 基底、发光二极管外延片及其制造方法
CN114094001B (zh) * 2021-09-29 2023-12-01 华灿光电(浙江)有限公司 基底、发光二极管外延片及其制造方法
CN114874368A (zh) * 2022-05-23 2022-08-09 江南大学 一种导热微球、导热复合材料及其制备方法
CN115417956A (zh) * 2022-08-12 2022-12-02 合肥学院 一种低热阻的氮化硼纳米片/聚合物复合水乳胶的制备方法及其在导热涂层中的应用
CN115417956B (zh) * 2022-08-12 2024-02-27 合肥学院 一种低热阻的氮化硼纳米片/聚合物复合水乳胶的制备方法及其在导热涂层中的应用

Also Published As

Publication number Publication date
CN110092854B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
CN110092854A (zh) 一种内嵌三维无机骨架的聚合物复合材料及其制备方法
Wang et al. Highly thermally conductive polymer composite originated from assembly of boron nitride at an oil–water interface
CN108485277B (zh) 一种定向排列的高导热界面材料及其制备方法
Wei et al. Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements
Yu et al. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites
Ahn et al. Thermal conductivity of polymer composites with oriented boron nitride
CN102059083B (zh) 一种壁材镶嵌纳米氧化铝的相变微胶囊的制备方法
CN102603271B (zh) 石墨烯和氧化物陶瓷复合材料及制备方法
Wang et al. Efficient thermal transport highway construction within epoxy matrix via hybrid carbon fibers and alumina particles
CN108976700B (zh) 基于高堆砌度石墨烯改性高导热碳塑合金的可控制备方法
CN108165018A (zh) 一种电磁屏蔽用硅橡胶/石墨烯/银纳米线纳米复合材料及其制备方法
CN109181316A (zh) 导热复合材料及其制备方法
Mohan et al. Effect of zinc oxide nanoparticles on mechanical properties of diglycidyl ether of bisphenol-A
CN109181134A (zh) 一种聚合物基导热复合材料及其制备方法
CN102925100A (zh) 一种高导热性能导电银胶及其制备方法
Si et al. Polydimethylsiloxane/aluminum oxide composites prepared by spatial confining forced network assembly for heat conduction and dissipation
CN106939156B (zh) 一种胶囊/聚合物定形相变储能材料及其制备方法
CN108570202A (zh) 聚四氟乙烯复合基板材料的制备方法
CN102876107A (zh) 一种导热绝缘漆复合材料及其制备方法
Jiang et al. A facile strategy for modifying boron nitride and enhancing its effect on the thermal conductivity of polypropylene/polystyrene blends
CN104119627A (zh) 一种高体积分数导热复合材料及其制备方法
Han et al. Thermal properties of composites filled with different fillers
CN104130753A (zh) 一种高导热导电碳纳米复合材料及其制备方法
CN106543728A (zh) 一种石墨烯有机硅橡胶复合材料及其制备方法
CN110862804A (zh) 一种具有内部热通道的相变材料微胶囊及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20201113

Address after: Room 101, building B, Anhui Industrial Technology Innovation Research Institute, 2221 Changjiang West Road, high tech Zone, Hefei City, Anhui Province

Applicant after: Anhui Zhongke Yuanzhen Technology Co., Ltd

Address before: 230031 Shushan Lake Road, Shushan District, Anhui, China, No. 350, No.

Applicant before: HEFEI INSTITUTES OF PHYSICAL SCIENCE, CAS

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant