CN110092653A - 一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及其制备方法和用途 - Google Patents

一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及其制备方法和用途 Download PDF

Info

Publication number
CN110092653A
CN110092653A CN201910381175.4A CN201910381175A CN110092653A CN 110092653 A CN110092653 A CN 110092653A CN 201910381175 A CN201910381175 A CN 201910381175A CN 110092653 A CN110092653 A CN 110092653A
Authority
CN
China
Prior art keywords
tricalcium phosphate
printing
bata
powder
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910381175.4A
Other languages
English (en)
Inventor
戴红莲
马遇乐
黄孝龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910381175.4A priority Critical patent/CN110092653A/zh
Publication of CN110092653A publication Critical patent/CN110092653A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • C04B35/6313Alkali metal or alkaline earth metal phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种3D打印可降解β‑磷酸三钙多孔生物陶瓷支架及制备方法和用途,包括以下步骤:(1)将c粉末、生物玻璃超微粉末、纳米二氧化硅粉末和打印助剂混合均匀制备3D打印墨水;(2)将3D打印墨水放入打印设备,设计三维支架模型和打印参数,通过三维打印技术打印出多孔陶瓷支架;(3)将打印出的多孔陶瓷支架经常温干燥后,设置烧结制度烧结,即得。与现有技术相比,本发明具有以下有益效果:有效降低了β‑磷酸三钙多孔陶瓷支架的烧结温度,显著提高了β‑磷酸三钙多孔陶瓷支架的降解速率和生物活性;材料利用率大大优于传统减材制造工艺,具有较好经济效益;可根据患者骨缺损需求进行个性化定制,满足个性化医疗需求。

Description

一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及其制备方 法和用途
技术领域
本发明涉及一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及制备方法和用途,属于生物材料领域。
背景技术
长期以来,由于交通事故、骨肿瘤和创伤等原因造成的骨缺损病例逐年增加,成为了一个世界性的健康医疗问题。其中金标准自体骨移植来源有限以及可能引起供体炎症反应,异体骨移植存在着伦理问题和免疫排斥缺点,因此,组织工程被视为解决这一问题的较佳方式。β-磷酸三钙[β-Ca3(PO4)2]为磷酸三钙的低温稳定相,组成成分与人体骨组织无机成分类似,具有可降解、生物相容性良好、骨传导、骨诱导等优点。然而传统方法制备β-磷酸三钙多孔生物陶瓷存在孔隙贯通性差,难以控制孔的形状和尺寸以及β-磷酸三钙降解速率慢与新生骨组织长入速率不匹配的问题。3D(三维)打印技术可以自由设计和制造多孔支架的形状以及孔结构等诸多优势,成为近年来生物材料研究的热点。
中国专利CN107802884A提供了一种作为骨修复生物材料3D打印支架及其制备方法,以β-磷酸三钙、煅自然铜、聚丙烯酸钠、羟丙基甲基纤维素为原料,搅拌均匀制备打印浆料并经3D打印成型。其在3D打印β磷酸三钙的原料中,添加煅自然铜,来提高β-磷酸三钙支架的成骨活性。
中国专利CN107721408A提供了一种3D打印制备β-磷酸三钙多孔生物陶瓷的方法,将β-磷酸三钙粉体、光敏树脂、分散剂通过球磨混合均匀制得陶瓷浆料,再经3D打印光固化成型,烧结后得到致密的β-磷酸三钙多孔陶瓷。
中国专利CN105311673B提供了一种3D打印介孔生物活性玻璃改性的生物陶瓷支架及制备方法,其将β-磷酸三钙粉末与粘接剂进行充分混合,利用三维打印技术制备β-磷酸三钙支架,烧结后在支架表面旋涂介孔生物活性玻璃,通过介孔生物玻璃来增强β-磷酸三钙生物活性支架的力学性能、生物活性。
发明内容
本发明的目的在于提供一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及其制备方法,其在骨修复材料中的应用,以解决现有技术中骨修复材料降解速率慢、生物活性低的问题。
本发明采用的技术方案如下:一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架的制备方法,包括以下步骤:
(1)将c粉末、生物玻璃超微粉末、纳米二氧化硅粉末和打印助剂混合均匀制备3D打印墨水;
(2)将3D打印墨水放入打印设备,设计三维支架模型和打印参数,通过三维打印技术打印出多孔陶瓷支架;
(3)将打印出的多孔陶瓷支架经常温干燥后,设置烧结制度烧结,即得。
按上述方案,β-磷酸三钙粉末为形貌规则接近球形的颗粒,粒径分布范围为0.2μm~2μm,生物玻璃超微粉末粒径分布范围为0.9μm~3μm,纳米二氧化硅粉末粒径分布范围为10nm~50nm。
按上述方案,所述的生物玻璃超微粉末通过以下方法制备:按照质量份Na2O:CaO:MgO:P2O5=18份:10份:7份:65份的比例,以碳酸钠、碳酸钙、碱式碳酸镁、磷酸二氢铵为原料,通过熔融法制备,并进行球磨得到。
按上述方案,步骤(1)中的打印助剂为质量浓度为5%~20%的海藻酸钠溶液、质量浓度为10%~30wt%的普朗尼克F-127溶液和超纯水的混合。
按上述方案,步骤(1)中的打印助剂还包括有起泡剂。
按上述方案,所述的起泡剂为十二烷基硫酸钠、碳酸铵、碳酸氢铵其中的一种或组合。
按上述方案,其中生物玻璃超微粉末的添加量为β-磷酸三钙粉末/生物玻璃超微粉/纳米二氧化硅总质量的1%~50%,纳米二氧化硅的添加量为β-磷酸三钙粉末、生物玻璃超微粉末和纳米二氧化硅粉末总质量的0.1%~5%,步骤(1)中的β-磷酸三钙粉末+生物玻璃超微粉末+纳米二氧化硅粉末、海藻酸钠、普朗尼克F-127、超纯水的质量比例为30~44:18~25:3~9:0~7。
按上述方案,步骤(3)中多孔陶瓷支架的烧结制度为:5℃/min从室温升至500℃~550℃,保温1~4小时,然后10~20℃/min升至700~900℃,保温0.5~2小时,随炉冷却。
上述任意制备方法所得的3D打印可降解β-磷酸三钙多孔生物陶瓷支架,所述的多孔生物陶瓷支架宏观上有100μm~800μm相互连通的大孔,其内部存在1μm~5μm的相互连通的微孔。
所述的3D打印可降解β-磷酸三钙多孔生物陶瓷支架在骨修复材料中的应用。
本发明在3D打印β-磷酸三钙多孔生物陶瓷支架的打印墨水当中添加具有较低熔点的生物玻璃组分,高能球磨后的生物玻璃超微粉具有较高的比表面积和反应活性,能与β-磷酸三钙粉末充分接触并反应,有效降低了β-磷酸三钙多孔生物陶瓷支架的烧结温度;同时,纳米二氧化硅的加入,提升了3D陶瓷墨水的流动性,使得可以制备更高固含量的β-磷酸三钙陶瓷墨水;并提高了β-磷酸三钙多孔生物陶瓷支架的降解活性和生物活性。
与现有技术相比,本发明具有以下有益效果:
本发明通过三维打印技术制备宏观多孔支架,添加低熔点的生物玻璃超微粉以及纳米二氧化硅,有效降低了β-磷酸三钙多孔陶瓷支架的烧结温度,显著提高了β-磷酸三钙多孔陶瓷支架的降解速率和生物活性;
本发明使用三维打印快速成型技术,无多余切削废料产生,材料利用率大大优于传统减材制造工艺,具有较好经济效益;
本发明的多级孔隙生物陶瓷支架可根据患者骨缺损需求进行个性化定制,满足个性化医疗需求。
附图说明
图1为实施例1制备的β-磷酸三钙粉末、生物玻璃超微粉末的粒径分布图;
图2为实施例1制备的β-磷酸三钙多孔陶瓷支架图片;
图3为实施例1制备的β-磷酸三钙多孔陶瓷支架陶瓷扫描电镜微观图;
图4为实施例1~3制备的多孔陶瓷支架和对照组纯β-磷酸三钙陶瓷支架的体外降解速率曲线;
图5为将实施例3制备的β-磷酸三钙多孔陶瓷支架和纯β-磷酸三钙多孔陶瓷支架植入大鼠股骨髁缺损处,4周和8周后经MicroCT测试后得到的新骨生成量BV/TV统计值。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合实施例,对本发明进行进一步说明。应当理解,此处的具体实施例仅用于解释本发明,并不用于限定本发明。本发明多级孔隙生物陶瓷支架用于修复人体硬骨组织的缺损,本发明所采用的孔结构设计及材料组份配比不限于本发明所述方案。
本发明β-磷酸三钙粉末为形貌规则接近球形的颗粒,粒径分布范围为0.2μm~2μm,生物玻璃超微粉末粒径分布范围为0.9μm~3μm,纳米二氧化硅粉末粒径分布范围为10nm~50nm。
实施例1:
(1)将354.23g四水硝酸钙溶解于1.5L超纯水中;将132.06g磷酸氢二铵溶解于1L超纯水中;在40℃下将溶解的硝酸钙溶液逐滴加入磷酸氢二铵溶液中,利用氨水调节溶液pH值并稳定在pH=7.0;静置陈化1天后,过滤并用超纯水清洗前驱体沉淀;干燥去除水分后,将前驱体放入坩埚,在马弗炉中煅烧,10℃/min快速升温至800℃并保温2h,随炉冷却,即得到β-磷酸三钙粉末;
(2)按照Na2O:CaO:MgO:P2O5=18wt%:10wt%:7wt%:65wt%的比例称取碳酸钠、碳酸钙、碱式碳酸镁、磷酸二氢铵,通过熔融法制备生物玻璃;将生物玻璃投入球磨罐中并加入无水乙醇和氧化锆球磨子,高速球磨6h,随后放入干燥箱干燥,即得到生物玻璃超微粉末;
(3)将β-磷酸三钙粉末、生物玻璃超微粉末、平均粒径D50为15nm的纳米二氧化硅按照质量比β-磷酸三钙粉末:生物玻璃超微粉末:纳米二氧化硅粉末=98.9:1:0.1的比例,加入无水乙醇通过球磨混合均匀;随后放入干燥箱干燥,即得到β-磷酸三钙粉末/生物玻璃超微粉末/纳米二氧化硅混合粉末;
(4)将5g海藻酸钠与95g超纯水混合,溶解搅拌2h使之充分溶解,得到海藻酸钠溶液;将10g普朗尼克F-127与90g超纯水混合,溶解搅拌10h使之充分溶解,得到普朗尼克F-127溶液;将44gβ-磷酸三钙粉末/生物玻璃超微粉末/纳米二氧化硅混合粉末、18g海藻酸钠溶液、9g普朗尼克F-127溶液、7g超纯水投入球磨罐,加入适量球磨子,在250rpm转速下高能球磨4h,得到3D打印陶瓷墨水;
(5)将3D打印墨水置入三维打印设备,采用软件设计直径为6mm,高度为10mm的圆柱形模型STL文件,采用喷头直径0.26mm,气压0.5MPa,打印速度3mm/s,层厚0.28mm,相邻间距800μm的打印参数,3D打印多孔陶瓷支架材料,室温下干燥24小时;
(6)将打印好的支架放入马弗炉中,烧结制度为:5℃/min从室温升至500℃,在500℃保温1h,然后10℃/min从500℃升至700℃,在700℃保温4h,随炉冷却,得到多孔生物陶瓷支架。
如图1所示,从中可以看出,制备的β-磷酸三钙粉末、生物玻璃超微粉末粒径分布分别为0.2μm~2μm、0.9μm~3μm。
如图2所示,从中可以看出,3D打印技术可以自由制造不同形状、不同尺寸和不同孔隙率的陶瓷支架,在材料的可定制化制备上具有较大的优势。
如图3所示,从图中可以看出,陶瓷支架为宏观多孔结构,Z轴方向垂直孔隙孔径为~400μm,横截面孔隙孔径为~100μm在陶瓷支架内部,β-磷酸三钙颗粒通过生物玻璃粘接作用,存在1μm~5μm相互连通的微小孔隙。
如图4所示,从图中可以看出,添加1wt%生物玻璃和0.1wt%纳米二氧化硅的β-磷酸三钙多孔陶瓷支架的降解速率较纯β-磷酸三钙多孔陶瓷支架要快。
实施例2:
(1)将354.23g四水硝酸钙溶解于1.5L超纯水中;将132.06g磷酸氢二铵溶解于1L超纯水中;在40℃下将溶解的硝酸钙溶液逐滴加入磷酸氢二铵溶液中,利用氨水调节溶液pH值并稳定在pH=7.0;静置陈化1天后,过滤并用超纯水清洗前驱体沉淀;干燥去除水分后,将前驱体放入坩埚,在马弗炉中煅烧,10℃/min快速升温至800℃并保温2h,随炉冷却,即得到β-磷酸三钙粉末;
(2)按照Na2O:CaO:MgO:P2O5=18wt%:10wt%:7wt%:65wt%的比例称取碳酸钠、碳酸钙、碱式碳酸镁、磷酸二氢铵,通过熔融法制备生物玻璃;将生物玻璃投入球磨罐中并加入无水乙醇和氧化锆球磨子,高速球磨6h,随后放入干燥箱干燥,即得到生物玻璃超微粉末;
(3)将β-磷酸三钙粉末、生物玻璃超微粉末、粒径D50为30nm的纳米二氧化硅按照质量比β-磷酸三钙:生物玻璃超微粉末:纳米二氧化硅=89:10:1的比例,加入无水乙醇通过球磨混合均匀;随后放入干燥箱干燥,即得到β-磷酸三钙粉末/生物玻璃超微粉末/纳米二氧化硅混合粉末;
(4)将10g海藻酸钠与90g超纯水混合,溶解搅拌2h使之充分溶解,得到海藻酸钠溶液;将20g普朗尼克F-127与80g超纯水混合,溶解搅拌10h使之充分溶解,并消除气泡,得到普朗尼克F-127溶液;将30gβ-磷酸三钙粉末/生物玻璃超微粉末/纳米二氧化硅混合粉末、20g海藻酸钠溶液、5g普朗尼克F-127溶液、6g超纯水和和5g十二烷基硫酸钠投入球磨罐,加入适量球磨子,在250rpm转速下高能球磨4h,得到3D打印陶瓷墨水;
(5)将3D打印墨水置入三维打印设备,采用软件设计10mm×10mm×10mm,的立方体模型STL文件,采用喷头直径0.26mm,气压0.5MPa,打印速度3mm/s,层厚0.28mm,孔径100μm的打印参数,3D打印多孔陶瓷支架材料,室温下干燥24小时;
(6)将打印好的支架放入马弗炉中,烧结制度为:5℃/min从室温升至500℃,在550℃保温1h,然后20℃/min从550℃升至800℃,在800℃保温1h,随炉冷却,得到多孔生物陶瓷支架。
如图4所示,从图中可以看出,添加10wt%生物玻璃和1wt%纳米二氧化硅的β-磷酸三钙多孔陶瓷支架的降解速率较纯β-磷酸三钙多孔陶瓷支架、实施例1制备的陶瓷支架要快。
实施例3:
(1)将354.23g四水硝酸钙溶解于1.5L超纯水中;将132.06g磷酸氢二铵溶解于1L超纯水中;在40℃下将溶解的硝酸钙溶液逐滴加入磷酸氢二铵溶液中,利用氨水调节溶液pH值并稳定在pH=7.0;静置陈化1天后,过滤并用超纯水清洗前驱体沉淀;干燥去除水分后,将前驱体放入坩埚,在马弗炉中煅烧,10℃/min快速升温至800℃并保温2h,随炉冷却,即得到β-磷酸三钙粉末。
(2)按照Na2O:CaO:MgO:P2O5=18wt%:10wt%:7wt%:65wt%的比例称取碳酸钠、碳酸钙、碱式碳酸镁、磷酸二氢铵,通过熔融法制备生物玻璃;将生物玻璃投入球磨罐中并加入无水乙醇和氧化锆球磨子,高速球磨6h,随后放入干燥箱干燥,即得到生物玻璃超微粉末。
(3)将β-磷酸三钙粉末、生物玻璃超微粉末和平均粒径D50为50nm的纳米纳米二氧化硅按照质量比β-磷酸三钙粉末:生物玻璃超微粉末:纳米二氧化硅粉末=78:20:2的比例,加入无水乙醇通过球磨混合均匀;随后放入干燥箱干燥,即得到β-磷酸三钙粉末/生物玻璃超微粉末/纳米二氧化硅混合粉末。
(4)将20g海藻酸钠与80g超纯水混合,溶解搅拌2h使之充分溶解,得到海藻酸钠溶液;将30g普朗尼克F-127与70g超纯水混合,溶解搅拌10h使之充分溶解,并消除气泡,得到普朗尼克F-127溶液;将30gβ-磷酸三钙粉末/生物玻璃超微粉末/纳米二氧化硅混合粉末、25g海藻酸钠溶液、3g普朗尼克F-127溶液、7g超纯水和5g碳酸铵投入球磨罐,加入适量球磨子,在250rpm转速下高能球磨4h,得到3D打印陶瓷墨水。
(5)将3D打印墨水置入三维打印设备,采用软件设计直径为6mm,高度为8mm的圆柱形模型STL文件,采用喷头直径0.26mm,气压0.5MPa,打印速度3mm/s,层厚0.28mm,相邻间距700μm的打印参数,3D打印多孔陶瓷支架材料,室温下干燥24小时
(6)将打印好的支架放入马弗炉中,烧结制度为:5℃/min从室温升至500℃,在500℃保温4h,然后20℃/min从500℃升至900℃,在900℃保温0.5h,随炉冷却,得到多孔生物陶瓷支架。
(7)将烧结后的支架经灭菌后,植入大鼠股骨髁缺损模型中,观察4周以及8周后观察骨缺损修复结果。
如图4所示,从图中可以看出,添加20wt%生物玻璃和2wt%纳米二氧化硅的β-磷酸三钙多孔陶瓷支架的降解速率较纯β-磷酸三钙多孔陶瓷支架、实施例1和实施例2制备的陶瓷支架要快。
如图5所示,从图中可以看出,实施例3制备的β-磷酸三钙多孔陶瓷支架在第4周、第8周的新骨生成量均要高于纯β-磷酸三钙多孔陶瓷支架。
实施例4:
(1)将354.23g四水硝酸钙溶解于1.5L超纯水中;将132.06g磷酸氢二铵溶解于1L超纯水中;在40℃下将溶解的硝酸钙溶液逐滴加入磷酸氢二铵溶液中,利用氨水调节溶液pH值并稳定在pH=7.0;静置陈化1天后,过滤并用超纯水清洗前驱体沉淀;干燥去除水分后,将前驱体放入坩埚,在马弗炉中煅烧,10℃/min快速升温至800℃并保温2h,随炉冷却,即得到β-磷酸三钙粉末。
(2)按照Na2O:CaO:MgO:P2O5=18wt%:10wt%:7wt%:65wt%的比例称取碳酸钠、碳酸钙、碱式碳酸镁、磷酸二氢铵,通过熔融法制备生物玻璃;将生物玻璃投入球磨罐中并加入无水乙醇和氧化锆球磨子,高速球磨6h,随后放入干燥箱干燥,即得到生物玻璃超微粉末。
(3)将β-磷酸三钙粉末、生物玻璃超微粉末和平均粒径D50为15nm的纳米二氧化硅按照β-磷酸三钙粉末:生物玻璃超微粉末:纳米二氧化硅粉末=45:50:5的比例,加入无水乙醇通过球磨混合均匀;随后放入干燥箱干燥,即得到β-磷酸三钙粉末/生物玻璃超微粉末/纳米二氧化硅混合粉末。
(4)将10g海藻酸钠与90g超纯水混合,溶解搅拌2h使之充分溶解,得到海藻酸钠溶液;将20g普朗尼克F-127与80g超纯水混合,溶解搅拌10h使之充分溶解,并消除气泡,得到普朗尼克F-127溶液;将30gβ-磷酸三钙粉末/生物玻璃超微粉末/纳米二氧化硅混合粉末、20g海藻酸钠溶液、5g普朗尼克F-127溶液和5g碳酸氢铵投入球磨罐,加入适量球磨子,在250rpm转速下高能球磨4h,得到3D打印陶瓷墨水。
(5)将3D打印墨水置入三维打印设备,采用软件设计直径为6mm,高度为10mm的圆柱形模型STL文件,采用喷头直径0.26mm,气压0.5MPa,打印速度3mm/s,层厚0.28mm,相邻间距1000μm的打印参数,3D打印多孔陶瓷支架材料,室温下干燥24小时(6)将打印好的支架放入马弗炉中,烧结制度为:5℃/min从室温升至500℃,在500℃保温2h,然后10℃/min从500℃升至710℃,在710℃保温2h,随炉冷却,得到多孔生物陶瓷支架。
3D打印参数的设计,与3D打印设备的精度与密切的关系,因此,3D打印过程中,3D打印模型的改变,孔径大小的改变,打印速度的改变,打印喷头的改变,其所解决的技术问题仍然与本发明一致的,均应当包含在本发明的保护范围之内。
上述实施例仅为本发明的优选实施方式之一,不应当用于限制本发明的保护范围,但凡在本发明的主体设计思想和精神上做出的毫无实质意义上的改动和润色,其所解决的技术问题仍然与本发明一致的,均应当包含在本发明的保护范围之内。

Claims (10)

1.一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架的制备方法,包括以下步骤:
(1)将c粉末、生物玻璃超微粉末、纳米二氧化硅粉末和打印助剂混合均匀制备3D打印墨水;
(2)将3D打印墨水放入打印设备,设计三维支架模型和打印参数,通过三维打印技术打印出多孔陶瓷支架;
(3)将打印出的多孔陶瓷支架经常温干燥后,设置烧结制度烧结,即得。
2.根据权利要求1所述的3D打印可降解β-磷酸三钙多孔生物陶瓷支架的制备方法,其特征在于,β-磷酸三钙粉末为形貌规则接近球形的颗粒,粒径分布范围为0.2μm~2μm,生物玻璃超微粉末粒径分布范围为0.9μm~3μm,纳米二氧化硅粉末粒径分布范围为10nm~50nm。
3.根据权利要求1所述的3D打印可降解β-磷酸三钙多孔生物陶瓷支架的制备方法,其特征在于,所述的生物玻璃超微粉末通过以下方法制备:按照质量份Na2O:CaO:MgO:P2O5=18份:10份:7份:65份的比例,以碳酸钠、碳酸钙、碱式碳酸镁、磷酸二氢铵为原料,通过熔融法制备,并进行球磨得到。
4.根据权利要求1所述的3D打印可降解β-磷酸三钙多孔生物陶瓷支架的制备方法,其特征在于,步骤(1)中的打印助剂为质量浓度为5%~20%的海藻酸钠溶液、质量浓度为10%~30wt%的普朗尼克F-127溶液和超纯水的混合。
5.根据权利要求4所述的3D打印可降解β-磷酸三钙多孔生物陶瓷支架的制备方法,其特征在于,步骤(1)中的打印助剂还包括有起泡剂。
6.根据权利要求5所述的3D打印可降解β-磷酸三钙多孔生物陶瓷支架的制备方法,其特征在于,所述的起泡剂为十二烷基硫酸钠、碳酸铵、碳酸氢铵其中的一种或组合。
7.根据权利要求4所述的3D打印可降解β-磷酸三钙多孔生物陶瓷支架的制备方法,其特征在于,其中生物玻璃超微粉末的添加量为β-磷酸三钙粉末/生物玻璃超微粉/纳米二氧化硅总质量的1%~50%,纳米二氧化硅的添加量为β-磷酸三钙粉末、生物玻璃超微粉末和纳米二氧化硅粉末总质量的0.1%~5%,步骤(1)中的β-磷酸三钙粉末+生物玻璃超微粉末+纳米二氧化硅粉末、海藻酸钠、普朗尼克F-127、超纯水的质量比例为30~44:18~25:3~9:0~7。
8.根据权利要求1所述的3D打印可降解β-磷酸三钙多孔生物陶瓷支架的制备方法,其特征在于,步骤(3)中多孔陶瓷支架的烧结制度为:5℃/min从室温升至500℃~550℃,保温1~4小时,然后10~20℃/min升至700~900℃,保温0.5~2小时,随炉冷却。
9.权利要求1-8任意制备方法所得的3D打印可降解β-磷酸三钙多孔生物陶瓷支架,所述的多孔生物陶瓷支架宏观上有100μm~800μm相互连通的大孔,其内部存在1μm~5μm的相互连通的微孔。
10.权利要求9所述的3D打印可降解β-磷酸三钙多孔生物陶瓷支架在骨修复材料中的应用。
CN201910381175.4A 2019-05-08 2019-05-08 一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及其制备方法和用途 Pending CN110092653A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910381175.4A CN110092653A (zh) 2019-05-08 2019-05-08 一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910381175.4A CN110092653A (zh) 2019-05-08 2019-05-08 一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及其制备方法和用途

Publications (1)

Publication Number Publication Date
CN110092653A true CN110092653A (zh) 2019-08-06

Family

ID=67447441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910381175.4A Pending CN110092653A (zh) 2019-05-08 2019-05-08 一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN110092653A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110946677A (zh) * 2019-12-11 2020-04-03 南京中医药大学 一种3d打印复合磁性煅自然铜支架的制备方法及其应用
CN112274701A (zh) * 2020-10-27 2021-01-29 华南理工大学 一种可用于DLP打印的光敏树脂/β-磷酸三钙复合生物墨水及其制备方法
CN113274545A (zh) * 2021-04-26 2021-08-20 中国科学院上海硅酸盐研究所 锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用
CN115337460A (zh) * 2022-06-30 2022-11-15 山东大学 聚磷酸钙/二氧化硅复合陶瓷材料及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1891665A (zh) * 2005-07-08 2007-01-10 上海国睿生命科技有限公司 骨修复用β-磷酸三钙多孔陶瓷材料及其制备方法和应用
CN101401950A (zh) * 2008-11-17 2009-04-08 昆明理工大学 含二氧化硅的纳米磷酸钙生物活性陶瓷材料及其制备方法
CN101518659A (zh) * 2009-03-30 2009-09-02 浙江大学 一种生物活性仿生磷酸钙纳米材料及其制备方法和用途
CN101721740A (zh) * 2008-10-16 2010-06-09 上海国睿生命科技有限公司 一种骨组织工程支架材料及其制备方法和用途
EP2271376A1 (en) * 2008-04-07 2011-01-12 Medmat Innovation-Materiais Médicos, Lda. Hydroxyapatite, biocompatible glass and silicon-based bone substitute, production process and aplications of therof
CN104524638A (zh) * 2014-11-19 2015-04-22 上海纳米技术及应用国家工程研究中心有限公司 一种氧化硅-磷酸钙类复合纳米填料及其制备方法
CN106003363A (zh) * 2016-05-20 2016-10-12 西安工业大学 一种生物陶瓷坯体的3d打印方法
CN108424138A (zh) * 2018-03-28 2018-08-21 华南理工大学 含硅晶界相改性羟基磷灰石陶瓷、骨损伤修复材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1891665A (zh) * 2005-07-08 2007-01-10 上海国睿生命科技有限公司 骨修复用β-磷酸三钙多孔陶瓷材料及其制备方法和应用
EP2271376A1 (en) * 2008-04-07 2011-01-12 Medmat Innovation-Materiais Médicos, Lda. Hydroxyapatite, biocompatible glass and silicon-based bone substitute, production process and aplications of therof
CN101721740A (zh) * 2008-10-16 2010-06-09 上海国睿生命科技有限公司 一种骨组织工程支架材料及其制备方法和用途
CN101401950A (zh) * 2008-11-17 2009-04-08 昆明理工大学 含二氧化硅的纳米磷酸钙生物活性陶瓷材料及其制备方法
CN101518659A (zh) * 2009-03-30 2009-09-02 浙江大学 一种生物活性仿生磷酸钙纳米材料及其制备方法和用途
CN104524638A (zh) * 2014-11-19 2015-04-22 上海纳米技术及应用国家工程研究中心有限公司 一种氧化硅-磷酸钙类复合纳米填料及其制备方法
CN106003363A (zh) * 2016-05-20 2016-10-12 西安工业大学 一种生物陶瓷坯体的3d打印方法
CN108424138A (zh) * 2018-03-28 2018-08-21 华南理工大学 含硅晶界相改性羟基磷灰石陶瓷、骨损伤修复材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALEXIS M.PIETAK等: "Silicon substitution in the calcium phosphate bioceramics", 《BIOMATERIALS》 *
DEYU KONG等: "Influence of nano-silica agglomeration on fresh properties of cement pastes", 《CONSTRUCTION AND BUILDING MATERIALS》 *
YULE MA等: "3D printing of bioglass-reinforced β-TCP porous bioceramic scaffolds", 《JOURNAL OF MATERIALS SCIENCE》 *
徐蕾等: "《负载型多酸光催化材料及应用》", 31 March 2015, 东北师范大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110946677A (zh) * 2019-12-11 2020-04-03 南京中医药大学 一种3d打印复合磁性煅自然铜支架的制备方法及其应用
CN112274701A (zh) * 2020-10-27 2021-01-29 华南理工大学 一种可用于DLP打印的光敏树脂/β-磷酸三钙复合生物墨水及其制备方法
CN113274545A (zh) * 2021-04-26 2021-08-20 中国科学院上海硅酸盐研究所 锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用
CN115337460A (zh) * 2022-06-30 2022-11-15 山东大学 聚磷酸钙/二氧化硅复合陶瓷材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN110092653A (zh) 一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及其制备方法和用途
Lalzawmliana et al. Mesoporous bioactive glasses for bone healing and biomolecules delivery
US8613876B2 (en) Foamed ceramics
KR100805303B1 (ko) 다중적 기공구조를 가지는 다공성 세라믹 재료 및 그제조방법
CN108324987B (zh) 一种中空多孔球形颗粒人工骨及其制备方法和应用
CN105311673B (zh) 3d打印介孔生物活性玻璃改性的生物陶瓷支架及其制备方法和用途
Aguilar-Reyes et al. Processing and in vitro bioactivity of high-strength 45S5 glass-ceramic scaffolds for bone regeneration
Ben-Arfa et al. Robocasting of ceramic glass scaffolds: Sol–gel glass, new horizons
CN108187149A (zh) 一种基于3d打印的降解可控骨组织工程支架及制备方法
CN109650872A (zh) 一种基于自由挤出式3d打印技术的磷酸钙多孔生物陶瓷支架及其制备方法
US20110159057A1 (en) Hydroxyapatite and bioglass-based pellets, production process and applications of thereof
Wang et al. Macroporous calcium phosphate glass-ceramic prepared by two-step pressing technique and using sucrose as a pore former
CN114014647B (zh) 一种硅酸锌复合磷酸三钙陶瓷支架及其制备方法与应用
KR20020014034A (ko) 망상골형 골이식재 및 그 제조방법
EP2933241B1 (en) Method for producing a porous calcium polyphosphate structure
CN109133972A (zh) 一种多孔生物陶瓷支架及其制备方法
Marin et al. Competent F18 bioglass-Biosilicate® bone graft scaffold substitutes
Hesaraki Feasibility of alumina and alumina-silica nanoparticles to fabricate strengthened betatricalcium phosphate scaffold with improved biological responses
Li et al. A Review on Three-Dimensional Printed Silicate-Based Bioactive Glass/Biodegradable Medical Synthetic Polymer Composite Scaffolds
Swain Processing of porous hydroxyapatite scaffold
CN106563170A (zh) 一种可降解生物活性复合陶瓷微球支架材料及其制备方法及应用
CN103157143A (zh) 内表面具有花蕊型层叠片状微纳米拓扑形貌的骨水泥多孔支架及其制备方法
Huang et al. Evaluation of ‘surgery-friendly’bone scaffold characteristics: 3D printed ductile BG/PCL scaffold with high inorganic content to repair critical bone defects
Sa et al. Fabrication and evaluation of 3D β-TCP scaffold by novel direct-write assembly method
CN113440648B (zh) 一种bbg/pcl复合多孔骨支架及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190806

RJ01 Rejection of invention patent application after publication