CN113274545A - 锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用 - Google Patents

锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用 Download PDF

Info

Publication number
CN113274545A
CN113274545A CN202110453321.7A CN202110453321A CN113274545A CN 113274545 A CN113274545 A CN 113274545A CN 202110453321 A CN202110453321 A CN 202110453321A CN 113274545 A CN113274545 A CN 113274545A
Authority
CN
China
Prior art keywords
manganese
calcium silicate
ceramic
ions
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110453321.7A
Other languages
English (en)
Inventor
吴成铁
陈蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202110453321.7A priority Critical patent/CN113274545A/zh
Publication of CN113274545A publication Critical patent/CN113274545A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0003Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof containing continuous channels, e.g. of the "dead-end" type or obtained by pushing bars in the green ceramic product
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用。所述锰掺杂硅酸钙多孔陶瓷支架是将含有锰离子的硅酸钙陶瓷粉体通过3D打印一体化成型制备的多孔结构支架;所述含有锰离子的硅酸钙陶瓷粉体中Mn占据部分Ca的位置但未改变硅酸钙的晶相,其中,Mn/(Mn+Ca)的摩尔比例为1‑10%;通过调节硅酸钙陶瓷粉体中锰离子的掺杂量调控多孔陶瓷支架的力学性能、降解性能、生物活性和光热性能。所述锰掺杂硅酸钙多孔陶瓷支架兼具高孔隙率、合适降解速度和高力学强度,尤其适合在骨缺损修复与光热治疗骨肿瘤的应用。

Description

锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用
技术领域
本发明涉及一种锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用,尤其是在骨缺损修复与光热治疗骨肿瘤中的应用,属于生物医用材料领域。
背景技术
恶性肿瘤作为人类健康的最大威胁之一,其治疗方法一直是困扰现代医学的全球性难题。骨组织特殊的微观环境极易导致癌细胞转移到骨组织,因此骨组织癌的治疗受到很大关注。传统的骨肿瘤手术一般会切除骨肿瘤,但同时也带来大尺度的骨缺损,且该手术治疗不能保证完全去除残留肿瘤细胞,这可能导致残留肿瘤复发。因此在传统骨肿瘤手术后既要治疗残留的肿瘤细胞,又要修复外科手术导致的骨缺损。鉴于此,研究兼具骨肿瘤治疗与骨缺损修复的双功能生物活性材料可能为解决临床上骨肿瘤治疗难题提供新思路,具有重要的临床意义。
前期研究中,人工合成的磷酸盐陶瓷支架和硅酸盐陶瓷支架均被用于骨组织修复,但各有优缺点。磷酸盐类陶瓷生物相容性好,但是降解慢,缺乏骨诱导性;硅酸盐陶瓷具有良好的生物活性和骨诱导性,但纯硅酸钙陶瓷降解速度太快,与骨组织生长速度不匹配,以及大孔隙率的多孔支架力学强度不理想。而且传统的磷酸盐和硅酸盐陶瓷只具有骨缺损修复的功能,不具有肿瘤治疗功效。
光热和光动力治疗是新兴的微创技术。光热技术在激光辐照下利用具有近红外吸收的光热材料实现局部高温从而有效杀死癌细胞,其优势在于无需手术来实现“只灭肿瘤不伤无辜”。有研究通过在陶瓷支架表面生长硫化物、硒化物等赋予支架优良的光热性能。但是支架表面修饰的操作工艺复杂,且支架表面的修饰物不能降解,留在人体内会对人体造成伤害。光动力技术是利用光敏剂吸收特定波长的光,然后将光子能量传递给周围环境中的O2分子。O2通过一系列光化学反应产生单线态氧、自由基和超氧阴离子自由基和超氧阴离子等ROS物质。ROS袭击生物大分子使DNA双链断裂或蛋白质变性,进而导致肿瘤细胞死亡。
发明内容
针对现有技术存在的上述问题,本发明的技术目的在于提供一种锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用,所述锰掺杂硅酸钙多孔陶瓷支架兼具高孔隙率、合适降解速度和高力学强度,尤其适合在骨缺损修复与光热治疗骨肿瘤的应用。
第一方面,本发明提供一种锰掺杂硅酸钙多孔陶瓷支架。“锰掺杂硅酸钙多孔陶瓷支架”也可以称为“锰掺杂硅酸钙多孔生物活性陶瓷支架”或者“锰掺杂硅酸钙多孔生物陶瓷支架”)。所述锰掺杂硅酸钙多孔陶瓷支架是将含有锰离子的硅酸钙陶瓷粉体通过3D打印一体化成型制备的多孔结构支架。所述含有锰离子的硅酸钙陶瓷粉体中Mn占据部分Ca的位置但未改变硅酸钙的晶相。通过调节硅酸钙陶瓷粉体中锰离子的掺杂量调控多孔陶瓷支架的力学性能、降解性能、生物活性和光热性能。作为优选,Mn/(Mn+Ca)的摩尔比例为1-10%。在此掺杂量范围内,可以避免锰掺杂量过高导致其他相的产生以及导致陶瓷降解速率过慢而不能匹配骨组织生长速率。
一些技术方案中,所述含有锰离子的硅酸钙陶瓷粉体以+2价为主要掺杂相。
本发明所述锰离子掺杂硅酸钙多孔陶瓷支架的降解速度与骨生长速度匹配。一方面,锰掺杂使相转变温度降低,相同的烧结温度下锰掺杂的多孔支架比纯硅酸钙多孔支架更加致密。另一方面,纯硅酸钙材料的主要反应位点在多面体的氧原子和多面体间隙的结构疏松处,导致材料易降解。进行Mn掺杂后,电荷密度变得局域化,间隙位置的电荷密度消失,活性位点的大幅减少导致材料的降解变慢,但Mn离子自身作为活性位点的释放随含量增高也将变大。此外,Mn掺杂后导致材料表面能增大,晶面更难解离,也会导致材料的降解变慢。以上两因素的综合作用使得本发明所述锰离子掺杂硅酸钙多孔陶瓷支架的降解速度与骨生长速度匹配。
较佳地,所述锰掺杂硅酸钙多孔陶瓷支架的孔径为250-1000μm。本发明所述多孔陶瓷支架可以在大孔径范围内可调。高孔隙率连通性可以使组织、血液、营养物质更容易进入。
较佳地,所述锰掺杂硅酸钙多孔陶瓷支架的孔隙率为50%以上,优选为55-65%。较佳地,所述锰掺杂硅酸钙多孔陶瓷支架的抗压强度为13-34MPa。所述多孔陶瓷支架在高孔隙率仍保持较高的力学强度,这是因为相同烧结温度下Mn掺杂使多孔支架更加致密。
本发明所述锰离子掺杂硅酸钙多孔陶瓷支架实现在硅酸钙陶瓷支架中掺入特定含量的锰离子,Mn在调节血糖、维持免疫功能、保证细胞能量生成及骨和软骨的生长发育中发挥重要作用,Mn2+也可催化实体瘤微环境中过量的H2O2产生O2,由此本发明所述锰掺杂硅酸钙多孔陶瓷支架兼具光热治疗肿瘤与骨缺损修复的能力。
第二方面,本发明提供上述任一项所述的锰掺杂硅酸钙多孔陶瓷支架的制备方法,包括以下步骤:
(1)通过共沉淀法合成含有锰离子的硅酸钙陶瓷粉体;
(2)以所述含有锰离子的硅酸钙陶瓷粉体为原料,通过光固化3D打印或者挤出式3D打印技术制备生物活性陶瓷支架素坯;以及
(3)将所得生物活性陶瓷支架素坯烧结,得到所述锰掺杂硅酸钙多孔陶瓷支架。
本发明采用共沉淀法合成锰掺杂硅酸钙生物活性陶瓷粉体,工艺简单,操作条件容易控制,并结合3D打印技术进一步制备了具有可控孔径、高孔隙率的锰掺杂硅酸钙多孔陶瓷支架。
较佳地,通过共沉淀法合成含有锰离子的硅酸钙陶瓷粉体包括以下步骤:将含有钙源、硅源和锰源的混合溶液充分搅拌12-24小时,然后分离固体、洗涤并干燥,得到前驱粉体;将所述前驱粉体在800-1000℃烧结2-5小时,制得含有锰离子的硅酸钙陶瓷粉体。
较佳地,所述钙源为可溶性钙盐,优选为硝酸钙;所述硅源为可溶性硅酸盐,优选为硅酸钠;所述锰源为可溶性锰盐,优选氯化锰和/或其水合物、硝酸锰和/或其水合物中的至少一种。
较佳地,所述混合溶液中,Mn离子的摩尔浓度为0.005~0.1mol/L,Ca离子的摩尔浓度为0.45~1.0mol/L。
较佳地,首先配制锰源和钙源的混合水溶液,锰离子的摩尔浓度为0.005-0.1mol/L,钙离子的摩尔浓度为0.45-1.0mol/L;然后配制硅源浓度为0.5-1.0mol/L的硅源溶液;最后将硅源溶液添加至锰源和钙源的混合溶液中,得到含有钙源、硅源和锰源的混合溶液。
较佳地,通过光固化3D打印制备生物活性陶瓷支架素坯包括:将含有锰离子的硅酸钙陶瓷粉体:光敏树脂:分散剂/稀释剂以质量比1:(0.3-1.0):(0-0.1)混合,高能球磨1-10小时,配制得到固含量为50%-75%的光固化打印浆料,将所得光固化打印浆料置入光固化3D打印机中按照设定程序进行3D打印,得到生物活性陶瓷支架素坯;优选地,所述含有锰离子的硅酸钙陶瓷粉体的粒度≤10μm。
较佳地,通过挤出式3D打印制备生物活性陶瓷支架素坯包括:将含有锰离子的硅酸钙陶瓷粉体:海藻酸钠粉体:普朗尼克F127水溶液以质量比为1:(0.05-0.10):(0.6-1.2)进行搅拌10-30min均匀混合,利用计算机辅助设计软件构造生物活性陶瓷支架陶瓷素坯的结构模型进行三维打印,得到生物活性陶瓷支架素坯;优选地,所述含有锰离子的硅酸钙陶瓷粉体的粒度≤10μm,所述海藻酸钠的粒度≤50μm,所述普朗尼克F127水溶液的质量浓度为10%-20%。
较佳地,所述生物活性陶瓷支架素坯在室温干燥24-48h后于1050-1150℃烧结2-6小时,得到所述锰掺杂硅酸钙多孔陶瓷支架。
第三方面,本发明还提供上述任一项所述的锰掺杂硅酸钙多孔陶瓷支架在骨缺损修复和光热治疗骨肿瘤中的应用。所述锰掺杂硅酸钙多孔陶瓷支架具有可控的光热性能,在0.5-1.5W/cm2的近红外光照射下可迅速升温,能有效杀死骨肿瘤细胞。此外,所述锰掺杂硅酸钙多孔陶瓷支架还能够促进骨组织再生和促进骨髓间充质干细胞增殖分化。
附图说明
图1是Mn掺杂CaSiO3粉体的XRD图谱(a)和热分析曲线(b);
图2是Mn掺杂CaSiO3的粉体精修图谱及Mn掺杂对晶胞参数的影响规律图;其中(a)、(b)、(c)、(d)、(e)分别是CaSiO3、1%Mn-CaSiO3、2.5%Mn-CaSiO3、5%Mn-CaSiO3、10%Mn-CaSiO3粉体精修图谱;(f)是Mn掺杂对晶体结构中a、c轴长度和晶胞体积的影响;可以看出随着Mn掺杂量增加,a、c轴长度和晶胞体积逐步减小;
图3是Mn掺杂CaSiO3粉体的XPS图谱;其中(a)、(b)、(c)、(d)分别是1%Mn-CaSiO3、2.5%Mn-CaSiO3、5%Mn-CaSiO3、10%Mn-CaSiO3粉体的XPS图谱;(e)、(f)分别是10%Mn-CaSiO3粉体Mn 3s和Mn2p1/2图谱;可以看出Mn2p1/2图谱中的MnO卫星特征峰以及Mn 3s中ΔE的数值可以判定Mn掺杂价态是+2价态为主;
图4是Mn掺杂CaSiO3粉体经高能球磨不同时间后的粒径分布图,高能球磨2h后粉体粒径D50从10.1μm减小到2.74μm;
图5是Mn掺杂CaSiO3粉体在功率0.6W/cm2的光热性能;其中(a)是5分钟内温度变化曲线图,(b)是不同时间点的光热图像;
图6是打印浆料固含量对流变性的影响,包括打印浆料固含量对浆料粘度的影响和打印浆料固含量对剪切应力的影响;
图7中的(a)是光固化3D打印的多孔支架的示意图,(b)、(c)、(d)、(e)、(f)分别是CaSiO3、1%Mn-CaSiO3、2.5%Mn-CaSiO3、5%Mn-CaSiO3、10%Mn-CaSiO3的数码照片;每幅图从左至右依次为小孔支架、中孔支架和大孔支架;
图8是3D打印不同锰掺杂量硅酸钙多孔支架表面扫描电镜照片,(a)、(b)、(c)是纯CaSiO3在不同标尺下的表面扫描电镜照片,(d)、(e)、(f)是1%Mn-CaSiO3在不同标尺下的表面扫描电镜照片,(g)、(h)、(i)是2.5%Mn-CaSiO3在不同标尺下的表面扫描电镜照片,(j)、(k)、(l)是5%Mn-CaSiO3在不同标尺下的表面扫描电镜照片,(m)、(n)、(o)是10%Mn-CaSiO3在不同标尺下的表面扫描电镜照片;
图9是使用1%Mn-CaSiO3粉体通过3D打印制备的不同孔径锰掺杂量硅酸钙多孔支架的表面、侧面扫描电镜图片,(a)和(b)是小孔径支架在不同标尺下的表面扫描电镜照片,(c)是小孔径支架的侧面扫描电镜照片,(d)和(e)是中孔径支架在不同标尺下的表面扫描电镜照片,(f)是中孔径支架的侧面扫描电镜照片,(g)和(h)是大孔径支架在不同标尺下的表面扫描电镜照片,(i)是大孔径支架的侧面扫描电镜照片;
图10是使用1%Mn-CaSiO3粉体通过3D打印制备的不同孔径锰掺杂量硅酸钙多孔支架的CT扫描表面、侧面及截面图片,(a)、(b)和(c)分别是小孔径支架的扫描表面图片、扫描侧面图片和扫描截面图片,(d)、(e)和(f)是中孔径支架的扫描表面图片、扫描侧面图片和扫描截面图片,(g)、(h)和(i)是大孔径支架的扫描表面图片、扫描侧面图片和扫描截面图片;
图11是不同孔径不同锰掺杂量的硅酸钙多孔支架的降解质量变化图,(a)是不同Mn掺杂量的大孔支架降解质量变化图,(b)是不同孔径的CaSiO3支架降解质量变化图,(c)是不同孔径的2.5%Mn-CaSiO3支架降解质量变化图;
图12是以大孔多孔支架为例不同锰掺杂量的硅酸钙多孔支架降解过程中离子释放图;(a)是Ca离子的释放图,(b)是Si离子的释放图,(c)是Mn离子的释放图;
图13是不同锰掺杂量硅酸钙多孔支架浸泡SBF模拟体液后XRD图谱;
图14是不同锰掺杂量硅酸钙多孔支架浸泡SBF模拟体液后扫描电镜照片,(a)和(b)是10%Mn-CaSiO3在不同标尺下的扫描电镜照片,(c)和(d)是5%Mn-CaSiO3在不同标尺下的扫描电镜照片,(e)和(f)是2.5%Mn-CaSiO3在不同标尺下的扫描电镜照片,(g)和(h)是1%Mn-CaSiO3在不同标尺下的扫描电镜照片,(i)和(j)是纯CaSiO3在不同标尺下的扫描电镜照片;
图15是3D打印不同孔径不同锰掺杂量的硅酸钙多孔支架力学强度;
图16是不同锰掺杂量的硅酸钙多孔支架培养兔骨髓间充质干细胞增殖情况;
图17是不同锰掺杂量的硅酸钙多孔支架培养兔骨髓间充质干细胞1d激光共聚焦显微镜照片;(a)是纯CaSiO3,(b)是1%Mn-CaSiO3,(c)是2.5%Mn-CaSiO3,(d)是5%Mn-CaSiO3,(e)是10%Mn-CaSiO3
图18是不同锰掺杂量的硅酸钙多孔支架培养兔骨髓间充质干细胞1d激光扫描电镜照片;(a)和(b)是纯CaSiO3在不同标尺下的激光扫描电镜照片,(c)和(d)是1%Mn-CaSiO3在不同标尺下的激光扫描电镜照片,(e)和(f)是2.5%Mn-CaSiO3在不同标尺下的激光扫描电镜照片,(g)和(h)是5%Mn-CaSiO3在不同标尺下的激光扫描电镜照片,(i)和(j)是10%Mn-CaSiO3在不同标尺下的激光扫描电镜照片;
图19是锰掺杂硅酸钙多孔支架光热性能图;(a)是不同锰掺杂量硅酸钙多孔支架在1.50W/cm2功率激光下干状态光热性能,(b)是不同锰掺杂量硅酸钙多孔支架在1.50W/cm2功率激光下400μl水溶液中光热性能,(c)是10%Mn-CaSiO3多孔支架在不同功率下干状态光热性能,(d)是10%Mn-CaSiO3多孔支架在不同功率下400μl水溶液中光热性能;
图20是在1.50W/cm2的功率激光下近红外光照射前后支架上肿瘤细胞存活率;
图21是多孔支架近红外光照射前后支架上肿瘤细胞扫描电镜照片;(a)是硅酸钙多孔支架不光照组,(b)是硅酸钙多孔支架光照组,(c)是10%Mn-CaSiO3多孔支架不光照组,(d)是10%Mn-CaSiO3多孔支架光照组。
具体实施方式
通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。在没有特殊说明的情况下,各百分含量指质量百分含量。
本发明提供了一种锰掺杂硅酸钙多孔陶瓷支架(简称Mn-CS陶瓷多孔支架)。所述锰掺杂硅酸钙多孔陶瓷支架由含有锰离子的硅酸钙陶瓷粉体通过3D打印制备而成。在该锰掺杂硅酸钙多孔陶瓷支架中锰离子均匀分布。通过调节锰离子的掺杂量,可以调节含有锰离子的硅酸钙陶瓷粉体(Mn-CS陶瓷粉体)的颜色、晶胞参数、晶相转变温度和光热性能。
硅酸钙的化学组成为CaSiO3。本发明掺杂锰离子并未改变硅酸钙的晶相。所述含有锰离子的硅酸钙陶瓷粉体以+2价为主要Mn掺杂相。Mn占据硅酸钙中Ca的晶格位置却不改变晶相。Mn/(Mn+Ca)的摩尔百分含量为1~10%。(Mn+Ca):Si的摩尔比例优选为1:1。
作为优选,掺锰离子的Mn-CS陶瓷粉体D50可控制在2-10μm。该粉体粒径影响打印浆料的配置粘度,利于后续支架打印过程参数调节。
本发明所述Mn-CS陶瓷多孔支架具有高连通性,其孔径范围为250-1000μm。Mn-CS陶瓷多孔支架的孔隙率可达到50%以上,支架仍具有良好的力学性能,例如抗压强度可为12-26MPa。而且本发明所述锰离子掺杂的多孔硅酸钙生物活性陶瓷支架还具有良好的生物相容性、成骨活性和抗肿瘤性。
区别于常规采用前驱体溶液与高分子溶液混合纺丝、冷冻干燥、烧结制备的多孔支架,本发明以含有特定含量锰离子的硅酸钙陶瓷粉体为原料通过3D打印制备的锰掺杂硅酸钙多孔陶瓷支架,不仅孔径在宽范围内可调,而且在高孔隙率情况下也可以获得高力学强度。
以下示例性说明本发明所述含有锰离子的多孔硅酸钙生物活性陶瓷支架的制备方法。
通过共沉淀法与3D打印技术相结合制备Mn-CS陶瓷多孔支架。具体而言,共沉淀法合成含锰离子的硅酸钙生物陶瓷粉体,利用3D打印技术(光固化/挤出式)制备了含锰离子的硅酸钙陶瓷多孔支架。制备出的Mn-CS陶瓷多孔支架具有良好的降解性、力学性能、生物活性、光热抗肿瘤性能及生物相容性。
首先合成含有锰离子的硅酸钙生物活性陶瓷粉体。
合成原料包括钙源、锰源和硅源。钙源可为钙盐和/或其水合物,优选为水溶性钙盐,例如四水合硝酸钙。硅源可为水溶性硅酸盐,例如九水硅酸钠。锰源为为可溶性锰盐,优选氯化锰和/或其水合物、硝酸锰和/或其水合物中的至少一种,例如四水氯化锰。
先配制锰源和钙源的混合水溶液,其中,锰源和钙源的摩尔比为(1~10):100。通过调节两者比例,可以调节掺锰硅酸钙生物活性陶瓷粉体中锰离子含量。溶液中Mn离子浓度为0.005-0.1mol/L,Ca离子浓度为0.45-1.0mol/L。再配制硅源水溶液,硅源水溶液浓度为0.5-1.0mol/L。将硅源水溶液滴加至锰源和钙源的混合水溶液中,在室温下不断搅拌12-24小时。然后抽滤分离出固体,经过2-3次纯水洗涤、抽滤,在经过1次乙醇洗涤、抽滤,最后在烘箱中60-120℃干燥12-48小时,得到前驱体粉体。
将所得前驱粉体进行煅烧处理,得到掺锰离子的Mn-CS陶瓷粉体。煅烧温度可为800-1000℃(优选850-900℃)。煅烧时间可为2-5小时。煅烧后自然冷却。
其次,将得到的锰掺杂的硅酸钙陶瓷粉体进行3D打印,以得到生物活性陶瓷支架陶瓷素坯。3D打印可以选择光固化3D打印技术,也可以选择挤出式3D打印技术。
光固化3D打印制备方法可以包括:将含有锰离子的硅酸钙陶瓷粉体与光敏树脂、分散剂/稀释剂按照质量比1:(0.3-1.0):(0-0.1)混合,高能球磨1-10小时,配制得到固含量为50%-75%的光固化打印浆料(图6)。混合的顺序没有特别限定。光敏树脂可以采用本领域公知的光敏树脂,例如聚氨酯丙烯酸酯、环氧丙烯酸酯或环氧树脂等。分散剂/稀释剂可以采用本领域公知的分散剂/稀释剂,例如聚丙烯酸安、二丙烯酸1,6-乙二醇酯等。可使用三维制图软件进行模型设计,例如3D Max(Autodex)设计支架的3D结构(图7),以获得STL格式文件。将STL文件导入光固化打印机中的软件进行切片处理,生成TDP格式文件并导入打印机用于打印。将所得光固化打印浆料置入光固化3D打印机中按照设定的程序进行3D打印,3D打印机以每片50-150μm厚、曝光时间为3-20s、光源波长405nm的设置将浆料聚合并交联,打印完成后用无水乙醇进行洗涤,干燥24-48小时后得到支架素坯体;
挤出式3D打印制备方法可以包括:将含有锰离子的硅酸钙陶瓷粉体与粘结剂均匀混合,并利用软件设计打印程序,进行三维打印。粘结剂可为海藻酸钠和普朗尼克F127水溶液。含有锰离子的硅酸钙陶瓷粉体、海藻酸钠、普朗尼克F127水溶液的质量比可为1:(0.05-0.10):(0.4-1.2)。海藻酸钠的粒度小于或等于50μm,该粒度范围的海藻酸钠易与陶瓷粉混合均匀使浆料均匀性更佳。F127水溶液的浓度范围可为10-30wt%。打印完成后干燥24-48小时后得到支架素坯体;
将所得生物活性陶瓷支架陶瓷素坯烧结,得到含锰离子的硅酸钙陶瓷多孔支架。烧结温度可为1050-1150℃。烧结时间可为2-6小时。
含锰离子的硅酸钙陶瓷多孔支架在干状态与湿状态下均具有良好的光热性能。在近红外光的照射下,含锰离子的硅酸钙陶瓷多孔支架能有效杀死肿瘤细胞。因此,本发明的含锰离子的硅酸钙陶瓷多孔支架具有良好的光热抗肿瘤效果和骨缺损修复能力,是一种兼具肿瘤治疗与骨缺损修复的双功能材料,可用于骨肿瘤手术后骨缺损的修复,同时可利用其光热性能杀死剩余癌细胞,防止肿瘤复发。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
(1)将0.01mol四水氯化锰和0.99mol四水硝酸钙混合、溶解于2L去离子水中,Mn离子浓度为0.005mol/L,Ca离子浓度为0.495mol/L。将1mol九水硅酸钠溶解于2L去离子水中,Si离子浓度为0.5mol/L。
(2)将0.025mol四水氯化锰和0.975mol四水硝酸钙混合、溶解于2L去离子水中,Mn离子浓度为0.0125mol/L,Ca离子浓度为0.4875mol/L。将1mol九水硅酸钠溶解于2L去离子水中,Si离子浓度为0.5mol/L。
(3)将0.05mol四水氯化锰和0.95mol四水硝酸钙混合、溶解于2L去离子水中,Mn离子浓度为0.025mol/L,Ca离子浓度为0.475mol/L。将1mol九水硅酸钠溶解于2L去离子水中,Si离子浓度为0.5mol/L。
(4)将0.1mol四水氯化锰和0.9mol四水硝酸钙混合、溶解于2L去离子水中,Mn离子浓度为0.05mol/L,Ca离子浓度为0.45mol/L。将1mol九水硅酸钠溶解于2L去离子水中,Si离子浓度为0.5mol/L。
将硅酸钠水溶液滴加至氯化锰和硝酸钙的混合水溶液中,在室温下不断搅拌16小时,抽滤,并用去离子水洗涤三遍,无水乙醇洗涤一遍,60℃干燥48小时,并在850℃烧结3小时,分别制得1%Mn-CS、2.5%Mn-CS、5%Mn-CS和10%Mn-CS生物陶瓷粉体。
通过X射线衍射(XRD)可知所得到的掺锰离子的Mn-CS陶瓷粉体仍然是CaSiO3相,掺杂Mn并没有改变粉体的晶相组成(图1)。相同烧结温度,掺杂使粉体结晶性提高。随着锰掺杂含量的增高,相转变温度降低,晶格常数和体积逐步减少(图2)。通过X射线光电子能谱(XPS)可知所得到的掺锰离子的Mn-CS陶瓷粉体中,Mn掺杂价态是+2价态为主(图3)。通过激光粒度仪可知所得的掺锰离子的Mn-CS陶瓷粉体D50可控制在2-10μm(图4)。
表1晶胞参数变化表
Figure BDA0003039596910000091
Figure BDA0003039596910000101
利用808nm近红外光照射不同锰掺杂的硅酸钙陶瓷粉体,利用热成像仪实时监控温度变化。通过改变掺杂离子浓度与激光功率可对粉体的光热性能进行调控。例如激光功率为0.6W/cm2时,纯的硅酸钙陶瓷粉体(简称CS)在808nm激光照射下温度几乎不变,随着锰掺杂量增加,光热性能提高(图5)。
将得到的含有锰离子的硅酸钙陶瓷粉体与光敏树脂按照质量比1:1混合,高能球磨1小时配制得到光固化打印浆料。用3D Max(Autodex)设计三种不同孔径的支架3D结构(图7),以获得STL格式文件,将STL文件导入光固化打印机中的软件进行切片处理,生成TDP格式文件并导入打印机用于打印。将所得光固化打印浆料置入光固化3D打印机中按照设定的程序进行3D打印,3D打印机以每片50μm厚、曝光时间为3-20s、光源波长405nm的设置将浆料聚合并交联,打印完成后用无水乙醇进行洗涤,干燥48小时后得到支架素坯体;将支架素坯体在烧结炉中1100℃保温3小时进行烧结得到含锰离子的硅酸钙陶瓷多孔支架。然后将含锰离子的硅酸钙陶瓷多孔支架进行后续相关力学性能、降解性能、矿化性能、光热性能和生物相容性的性能评估。
图6是打印浆料固含量对流变性影响。可以看出配置固含量为50%-75%的打印浆料进行打印为宜。
然后将含锰离子的硅酸钙陶瓷多孔支架进行相关力学性能、降解性能、矿化性能、光热性能和生物相容性的性能评估。
通过扫描电镜(SEM)、Micro-CT等手段可知本发明的含锰离子的硅酸钙陶瓷多孔支架具有高度连通可控的孔径,具有高连通性高强度的特性(图8、图9、图10)。3D打印不同锰掺杂量硅酸钙多孔支架的数码照片看出,随着锰掺杂量的增加,支架颜色逐渐变深。以及,多孔支架的孔径范围为250-1000μm,通过CT扫描结果计算得到小孔径支架、中孔径支架、大孔径支架的孔隙率均达到60%以上。
另外,本发明的含锰离子的硅酸钙陶瓷多孔支架随着Mn掺杂量的增加支架降解趋缓,可保持持续的离子释放和质量损失,具有良好的降解性。而且,随着Mn掺杂量的增加,Ca离子释放减少,Si离子释放逐渐减少,Mn离子释放增多,但到10%Mn掺杂量时,Mn离子释放减少。故锰的掺入可以调控支架降解速率从而使其与骨组织生长速率匹配(图11、图12)。
含锰离子的硅酸钙陶瓷多孔支架具有诱导类骨羟基磷灰石矿化的能力,随着锰掺杂量的增加,多孔支架的矿化活性减弱(图13、图14)。
3D打印不同孔径不同锰掺杂量的硅酸钙多孔支架力学强度(图15)表明,小孔径支架、中孔径支架、大孔径支架的抗压强度为13-34MPa。这说明本发明通过调控含锰离子的硅酸钙陶瓷多孔支架孔径大小(250-1000μm),可有效调控含锰离子的硅酸钙陶瓷多孔支架的孔隙率均达到60%以上,并保持较高的力学强度(13-34MPa)。
对本发明的含锰离子的硅酸钙陶瓷多孔支架的体外生物相容性进行系统的研究,结果表明,本发明的含锰离子的硅酸钙陶瓷多孔支架具有良好的生物相容性,支持兔骨髓间充质干细胞在多孔支架上的黏附、铺展和增殖(图16、图17、图18)。不同锰掺杂量的硅酸钙多孔支架培养兔骨髓间充质干细胞增殖情况表明锰掺杂提高了硅酸钙多孔支架的生物相容性。不同锰掺杂量的硅酸钙多孔支架培养兔骨髓间充质干细胞1d激光共聚焦显微镜和扫描电镜照片表明兔骨髓间充质干细胞在多孔支架表面均能很好的铺展、黏附。
对本发明的含锰离子的硅酸钙陶瓷多孔支架的光热性能和抗肿瘤效果进行系统的研究,结果表明,本发明的含锰离子的硅酸钙陶瓷多孔支架具有良好的光热性能,锰的掺杂量以及激光功率均对支架光热效果有影响(图19)。纯硅酸钙和10%Mn掺杂硅酸钙多孔支架培养MG63骨肉瘤细胞1d后,采用808激光1.50W/cm2照射15min后孵化12h后测试,CCK8结果显示:纯硅酸钙组,光照对细胞无作用;10%Mn掺杂硅酸钙多孔支架组,光热可以杀死骨肉瘤细胞(图20、图21)。
实施例2
(1)将0.01mol四水氯化锰和0.99mol四水硝酸钙混合、溶解于1L去离子水中,Mn离子浓度为0.01mol/L,Ca离子浓度为0.99mol/L。将1mol九水硅酸钠溶解于1L去离子水中,Si离子浓度为1.0mol/L。
(2)将0.025mol四水氯化锰和0.975mol四水硝酸钙混合、溶解于1L去离子水中,Mn离子浓度为0.025mol/L,Ca离子浓度为0.975mol/L。将1mol九水硅酸钠溶解于1L去离子水中,Si离子浓度为1.0mol/L。
(3)将0.05mol四水氯化锰和0.95mol四水硝酸钙混合、溶解于1L去离子水中,Mn离子浓度为0.05mol/L,Ca离子浓度为0.95mol/L。将1mol九水硅酸钠溶解于1L去离子水中,Si离子浓度为1.0mol/L。
(4)将0.1mol四水氯化锰和0.90mol四水硝酸钙混合、溶解于1L去离子水中,Mn离子浓度为0.1mol/L,Ca离子浓度为0.90mol/L。将1mol九水硅酸钠溶解于1L去离子水中,Si离子浓度为1.0mol/L。
将硅酸钠水溶液滴加至氯化锰和硝酸钙的混合水溶液中,在室温下不断搅拌24小时,抽滤,并用去离子水洗涤三遍,无水乙醇洗涤一遍,120℃干燥24小时,并在900℃烧结2小时,分别制得1%Mn-CS、2.5%Mn-CS、5%Mn-CS和10%Mn-CS生物陶瓷粉体。
将得到的含有锰离子的硅酸钙陶瓷粉体、光敏树脂、二丙烯酸1,6-乙二醇酯按照质量比1:0.4:0.1混合,高能球磨5小时配制得到光固化打印浆料。用3D Max(Autodex)设计三种不同孔径的支架3D结构(图7),以获得STL格式文件。将STL文件导入光固化打印机中的软件进行切片处理,生成TDP格式文件并导入打印机用于打印。将所得光固化打印浆料置入光固化3D打印机中按照设定的程序进行3D打印,3D打印机以每片50μm厚、曝光时间为3-20s、光源波长405nm的设置将浆料聚合并交联。打印完成后用无水乙醇进行洗涤,干燥48小时后得到支架素坯体。将支架素坯体在烧结炉中1100℃保温3小时进行烧结得到含锰离子的硅酸钙陶瓷多孔支架。
实施例3
(1)将0.01mol四水氯化锰和0.99mol四水硝酸钙混合、溶解于1L去离子水中,Mn离子浓度为0.01mol/L,Ca离子浓度为0.99mol/L。将1mol九水硅酸钠溶解于1L去离子水中,Si离子浓度为1.0mol/L。
(2)将0.025mol四水氯化锰和0.975mol四水硝酸钙混合、溶解于1L去离子水中,Mn离子浓度为0.025mol/L,Ca离子浓度为0.975mol/L。将1mol九水硅酸钠溶解于1L去离子水中,Si离子浓度为1.0mol/L。
(3)将0.05mol四水氯化锰和0.95mol四水硝酸钙混合、溶解于1L去离子水中,Mn离子浓度为0.05mol/L,Ca离子浓度为0.95mol/L。将1mol九水硅酸钠溶解于1L去离子水中,Si离子浓度为1.0mol/L。
(4)将0.1mol四水氯化锰和0.90mol四水硝酸钙混合、溶解于1L去离子水中,Mn离子浓度为0.1mol/L,Ca离子浓度为0.90mol/L。将1mol九水硅酸钠溶解于1L去离子水中,Si离子浓度为1.0mol/L。
将硅酸钠水溶液滴加至氯化锰和硝酸钙的混合水溶液中,在室温下不断搅拌24小时,抽滤,并用去离子水洗涤三遍,无水乙醇洗涤一遍,120℃干燥24小时,并在900℃烧结3小时,分别制得1%Mn-CS、2.5%Mn-CS、5%Mn-CS和10%Mn-CS生物陶瓷粉体。
将得到的含有锰离子的硅酸钙陶瓷粉体、海藻酸钠、普朗尼克F127水溶液按照质量比1.0:0.05:0.8混合搅拌均匀进行挤出式3D打印。F127水溶液的浓度为20wt%。打印完成后干燥24小时后得到支架素坯体。将支架素坯体在烧结炉中1150℃保温2小时进行烧结得到含锰离子的硅酸钙陶瓷多孔支架。

Claims (10)

1.一种锰掺杂硅酸钙多孔陶瓷支架,其特征在于,所述锰掺杂硅酸钙多孔陶瓷支架是将含有锰离子的硅酸钙陶瓷粉体通过3D打印一体化成型制备的多孔结构支架;所述含有锰离子的硅酸钙陶瓷粉体中Mn占据部分Ca的位置但未改变硅酸钙的晶相,其中,Mn/(Mn+Ca)的摩尔比例为1-10%;通过调节硅酸钙陶瓷粉体中锰离子的掺杂量调控多孔陶瓷支架的力学性能、降解性能、生物活性和光热性能。
2.根据权利要求1所述的锰掺杂硅酸钙多孔陶瓷支架,其特征在于,所述锰掺杂硅酸钙多孔陶瓷支架的孔径为250-1000μm,孔隙率为50%以上,抗压强度为13-34 MPa。
3.根据权利要求1或2所述的锰掺杂硅酸钙多孔陶瓷支架,其特征在于,所述锰离子掺杂硅酸钙多孔陶瓷支架的降解速度与骨生长速度匹配。
4.根据权利要求1至3中任一项所述的锰掺杂硅酸钙多孔陶瓷支架的制备方法,其特征在于,包括以下步骤:
(1)通过共沉淀法合成含有锰离子的硅酸钙陶瓷粉体;
(2)以所述含有锰离子的硅酸钙陶瓷粉体为原料,通过光固化3D打印或者挤出式3D打印技术制备生物活性陶瓷支架素坯;以及
(3)将所得生物活性陶瓷支架素坯烧结,得到所述锰掺杂硅酸钙多孔陶瓷支架。
5.根据权利要求4所述的制备方法,其特征在于,通过共沉淀法合成含有锰离子的硅酸钙陶瓷粉体包括:将含有钙源、硅源和锰源的混合溶液充分搅拌12-24小时,然后分离固体、洗涤并干燥,得到前驱粉体;将所述前驱粉体在800-1000℃烧结2-5小时,制得含有锰离子的硅酸钙陶瓷粉体。
6.根据权利要求5所述的制备方法,其特征在于,所述钙源为可溶性钙盐,优选为硝酸钙;所述硅源为可溶性硅酸盐,优选为硅酸钠;所述锰源为可溶性锰盐,优选为氯化锰和/或其水合物、硝酸锰和/或其水合物中的至少一种。
7.根据权利要求5或6所述的制备方法,其特征在于,首先配制锰源和钙源的混合水溶液,锰离子的摩尔浓度为0.005-0.1 mol/L,钙离子的摩尔浓度为0.45-1.0 mol/L;然后配制硅源浓度为0.5-1.0 mol/L的硅源溶液;最后将硅源溶液添加至锰源和钙源的混合溶液中,得到含有钙源、硅源和锰源的混合溶液。
8.根据权利要求4至7中任一项所述的制备方法,其特征在于,通过光固化3D打印制备生物活性陶瓷支架素坯包括:将含有锰离子的硅酸钙陶瓷粉体:光敏树脂:分散剂/稀释剂以质量比1:(0.3-1.0):(0-0.1)混合,高能球磨1-10小时,配制得到固含量为50-75%的光固化打印浆料,将所得光固化打印浆料置入光固化3D打印机中按照设定程序进行3D打印,得到生物活性陶瓷支架素坯;优选地,所述含有锰离子的硅酸钙陶瓷粉体的粒度≤10 μm。
9.根据权利要求4至7中任一项所述的制备方法,其特征在于,通过挤出式3D打印制备生物活性陶瓷支架素坯包括:将含有锰离子的硅酸钙陶瓷粉体:海藻酸钠粉体:普朗尼克F127水溶液以质量比为1:(0.05-0.10):(0.6-1.2)进行搅拌10-30min均匀混合,利用计算机辅助设计软件构造生物活性陶瓷支架陶瓷素坯的结构模型进行三维打印,得到生物活性陶瓷支架素坯;优选地,所述含有锰离子的硅酸钙陶瓷粉体的粒度≤10 μm,所述海藻酸钠的粒度≤50μm,所述普朗尼克F127水溶液的质量浓度为10-20%。
10.权利要求1至3中任一项所述的锰掺杂硅酸钙多孔陶瓷支架在骨缺损修复和光热治疗骨肿瘤中的应用。
CN202110453321.7A 2021-04-26 2021-04-26 锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用 Pending CN113274545A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110453321.7A CN113274545A (zh) 2021-04-26 2021-04-26 锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110453321.7A CN113274545A (zh) 2021-04-26 2021-04-26 锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113274545A true CN113274545A (zh) 2021-08-20

Family

ID=77275851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110453321.7A Pending CN113274545A (zh) 2021-04-26 2021-04-26 锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113274545A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117986008A (zh) * 2024-04-03 2024-05-07 上海南极星高科技股份有限公司 一种多孔硅酸钙陶瓷粉体的制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596574A (en) * 1984-05-14 1986-06-24 The Regents Of The University Of California Biodegradable porous ceramic delivery system for bone morphogenetic protein
CN104436295A (zh) * 2013-09-25 2015-03-25 中国科学院上海硅酸盐研究所 含锶硅酸钙生物陶瓷及其制备方法和应用
CN104710188A (zh) * 2015-03-02 2015-06-17 浙江大学 一种钙硅酸盐生物陶瓷多孔材料、制备方法及应用
CN107185034A (zh) * 2017-05-04 2017-09-22 中国科学院上海硅酸盐研究所 骨‑软骨缺损一体化修复生物陶瓷支架及其制备方法和用途
CN107875441A (zh) * 2017-11-06 2018-04-06 中国科学院上海硅酸盐研究所 硅酸钙锂体系新型生物活性陶瓷支架及其制备方法和用途
CN108030956A (zh) * 2017-12-14 2018-05-15 中国科学院上海硅酸盐研究所 治疗肿瘤性骨缺损的生物活性玻璃陶瓷支架及其制备方法和应用
KR20180085239A (ko) * 2017-01-18 2018-07-26 가천대학교 산학협력단 진세노사이드 및 인지질 기반 지질나노입자 및 이의 제조방법
CN110092653A (zh) * 2019-05-08 2019-08-06 武汉理工大学 一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及其制备方法和用途
CN110272271A (zh) * 2018-03-13 2019-09-24 中国科学院上海硅酸盐研究所 一种微量锰掺杂羟基磷灰石生物陶瓷粉体材料及其制备方法和应用
CN111467566A (zh) * 2020-06-24 2020-07-31 苏州鼎安科技有限公司 一种离子共掺杂羟基磷灰石透明陶瓷的制备方法及其应用
CN111635224A (zh) * 2020-06-11 2020-09-08 中国科学院金属研究所 掺Mg和Zn的磷酸三钙材料、3D打印陶瓷浆料及其制备方法
CN111994914A (zh) * 2020-08-10 2020-11-27 苏州鼎安科技有限公司 一种离子共掺杂β-硅酸二钙粉体、制备方法及应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596574A (en) * 1984-05-14 1986-06-24 The Regents Of The University Of California Biodegradable porous ceramic delivery system for bone morphogenetic protein
CN104436295A (zh) * 2013-09-25 2015-03-25 中国科学院上海硅酸盐研究所 含锶硅酸钙生物陶瓷及其制备方法和应用
CN104710188A (zh) * 2015-03-02 2015-06-17 浙江大学 一种钙硅酸盐生物陶瓷多孔材料、制备方法及应用
KR20180085239A (ko) * 2017-01-18 2018-07-26 가천대학교 산학협력단 진세노사이드 및 인지질 기반 지질나노입자 및 이의 제조방법
CN107185034A (zh) * 2017-05-04 2017-09-22 中国科学院上海硅酸盐研究所 骨‑软骨缺损一体化修复生物陶瓷支架及其制备方法和用途
CN107875441A (zh) * 2017-11-06 2018-04-06 中国科学院上海硅酸盐研究所 硅酸钙锂体系新型生物活性陶瓷支架及其制备方法和用途
CN108030956A (zh) * 2017-12-14 2018-05-15 中国科学院上海硅酸盐研究所 治疗肿瘤性骨缺损的生物活性玻璃陶瓷支架及其制备方法和应用
CN110272271A (zh) * 2018-03-13 2019-09-24 中国科学院上海硅酸盐研究所 一种微量锰掺杂羟基磷灰石生物陶瓷粉体材料及其制备方法和应用
CN110092653A (zh) * 2019-05-08 2019-08-06 武汉理工大学 一种3D打印可降解β-磷酸三钙多孔生物陶瓷支架及其制备方法和用途
CN111635224A (zh) * 2020-06-11 2020-09-08 中国科学院金属研究所 掺Mg和Zn的磷酸三钙材料、3D打印陶瓷浆料及其制备方法
CN111467566A (zh) * 2020-06-24 2020-07-31 苏州鼎安科技有限公司 一种离子共掺杂羟基磷灰石透明陶瓷的制备方法及其应用
CN111994914A (zh) * 2020-08-10 2020-11-27 苏州鼎安科技有限公司 一种离子共掺杂β-硅酸二钙粉体、制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANMEI LI ET AL: "Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS", 《BIOACTIVE MATERIALS》 *
YAQIN LIU ET AL: "3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy", 《ACTA BIOMATERIALIA》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117986008A (zh) * 2024-04-03 2024-05-07 上海南极星高科技股份有限公司 一种多孔硅酸钙陶瓷粉体的制备方法
CN117986008B (zh) * 2024-04-03 2024-06-04 上海南极星高科技股份有限公司 一种多孔硅酸钙陶瓷粉体的制备方法

Similar Documents

Publication Publication Date Title
Abdulrahman et al. From garbage to biomaterials: an overview on egg shell based hydroxyapatite
US20080103227A1 (en) Porous material having hierarchical pore structure and preparation method thereof
CN108030956B (zh) 治疗肿瘤性骨缺损的生物活性玻璃陶瓷支架及其制备方法和应用
Ghomi et al. Preparation of nanostructure hydroxyapatite scaffold for tissue engineering applications
CN114956803B (zh) 一种基于3d打印的骨诱导磷酸钙陶瓷及制备方法和应用
CN101596330B (zh) α-半水硫酸钙/β-磷酸三钙多孔颗粒型复合人工骨及其制备方法
CN114452439B (zh) 一种仿生天然骨矿组成的羟基磷灰石/白磷钙石生物活性陶瓷支架及其制备方法
CN109876190A (zh) 三维生物打印墨水的制备方法及其应用
CN113274545A (zh) 锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用
Du et al. Bismuth-coated 80S15C bioactive glass scaffolds for photothermal antitumor therapy and bone regeneration
CN108379665A (zh) 一种双梯度的人工椎板及其制备方法
CN115227870A (zh) 一种负载二硫化钼的人工骨材料及应用
Mao et al. Preparation and properties of α-calcium sulphate hemihydrate and β-tricalcium phosphate bone substitute
CN107050513A (zh) 一种梯度浸涂HA制备ZrO2骨修复生物陶瓷支架材料的方法
Dou et al. Preparation of mesoporous hydroxyapatite films used as biomaterials via sol–gel technology
CN113582680A (zh) 一种羟基磷灰石陶瓷及其制备方法和应用
CN111704451B (zh) Bcn二维纳米片增强的生物陶瓷支架及其制备方法和应用
CN108653805B (zh) 一种具有光热效应的钙硅基复合骨水泥及其制备方法和应用
CN110420356B (zh) 一种用于骨肉瘤临床治疗的双功能一体化骨-软骨复合组织工程支架
CN111635224B (zh) 掺Mg和Zn的磷酸三钙材料、3D打印陶瓷浆料及其制备方法
CN107353016B (zh) 羟基磷灰石的制备方法及其在3d打印成型中的应用
CN106178099A (zh) 无模直写成型技术制备钛/羟基磷灰石生物支架的方法
Pan et al. Influence of dispersant and heat treatment on the morphology of nanocrystalline hydroxyapatite
Sipaut et al. Size control in porosity of hydroxyapatite using a mold of polyurethane foam
Ma et al. Preparation and characterization of 3D printed hydroxyapatite-whisker-strengthened hydroxyapatite scaffold coated with biphasic calcium phosphate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination