CN110092416A - 一种管壁厚度可控TiO2纳米管的制备方法 - Google Patents
一种管壁厚度可控TiO2纳米管的制备方法 Download PDFInfo
- Publication number
- CN110092416A CN110092416A CN201910378492.0A CN201910378492A CN110092416A CN 110092416 A CN110092416 A CN 110092416A CN 201910378492 A CN201910378492 A CN 201910378492A CN 110092416 A CN110092416 A CN 110092416A
- Authority
- CN
- China
- Prior art keywords
- solution
- nanotube
- tio
- preparation
- pipe thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002071 nanotube Substances 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims abstract description 48
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 19
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 19
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 19
- 238000010041 electrostatic spinning Methods 0.000 claims abstract description 17
- 238000009987 spinning Methods 0.000 claims abstract description 16
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 15
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims abstract description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229960000935 dehydrated alcohol Drugs 0.000 claims abstract description 12
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 10
- 239000010935 stainless steel Substances 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims abstract description 10
- 238000001354 calcination Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 239000010842 industrial wastewater Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011953 bioanalysis Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/08—Drying; Calcining ; After treatment of titanium oxide
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/84—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/13—Nanotubes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Hydrology & Water Resources (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Geology (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Artificial Filaments (AREA)
Abstract
本发明公开了一种管壁厚度可控TiO2纳米管的制备方法,其特征在于,包括如下步骤:(1)向无水乙醇中依次加入乙酰丙酮和钛酸四丁酯,得溶液A;(2)向溶液A中加入聚乙烯吡咯烷酮,完全溶解后得溶液B;(3)向溶液B中滴加液体石蜡,搅拌48h后得溶液C;(4)将溶液C装入注射器中,在一定条件下进行静电纺丝,纺丝产物用不锈钢盘收集;(5)纺丝产物干燥后,在空气气氛下于500℃焙烧,得TiO2纳米管。本发明通过改变钛酸四丁酯、聚乙烯吡咯烷酮和液体石蜡的配比,制备不同管壁厚度TiO2纳米管,进而调控TiO2纳米管对光的吸收能力。
Description
技术领域
本发明涉及材料成型技术领域,特别涉及一种管壁厚度可控TiO2纳米管的制备方法。
背景技术
工业生产过程产生大量的工业废水,这些废水不但污染环境,而且对人类健康有较大危害,必须经过处理后才可以排放。传统的工业废水处理方法主要包括物理法、化学法和生物法,存在处理能力有限和处理成本较高等缺点。
近年来,光催化氧化技术广泛应用于工业废水的处理。TiO2光催化氧化技术具有氧化降解能力强、性能稳定、处理成本低和无二次污染等优势,但其带隙较宽(3.2eV),对太阳能的利用率较低。
发明内容
为了克服上述现有技术的不足,本发明的目的在于提供一种管壁厚度可控TiO2纳米管的制备方法,本发明通过改变钛酸四丁酯、聚乙烯吡咯烷酮和液体石蜡的配比,制备不同管壁厚度TiO2纳米管,进而调控TiO2纳米管对光的吸收能力。
为了实现上述目的,本发明采用的技术方案是:
一种管壁厚度可控TiO2纳米管的制备方法,包括以下步骤;
步骤1:向无水乙醇中依次加入乙酰丙酮和钛酸四丁酯,得溶液A;
步骤2:向溶液A中加入聚乙烯吡咯烷酮,完全溶解后得溶液B;
步骤3:向溶液B中滴加液体石蜡,搅拌48h后得溶液C;
步骤4:将溶液C装入注射器中,在一定条件下进行静电纺丝,纺丝产物用不锈钢盘收集;
步骤5:纺丝产物干燥后,在空气气氛下于500℃焙烧,得TiO2纳米管;
所述的步骤1中无水乙醇与乙酰丙酮和钛酸四丁酯的体积比介于1:1:1~1:1:3。
所述的步骤2中聚乙烯吡咯烷酮与溶液A的质量比介于8%~12%。
所述的步骤3中液体石蜡与溶液B的体积比介于2.7%~30.6%。
所述的步骤4中纺丝条件为电压18KV,溶液供给速度为5mL/h,接收距离为20cm。
所述的步骤5中升温速度为5℃/min,焙烧时间4h。
本发明的有益效果:
本发明以液体石蜡和聚乙烯吡咯烷酮为软模板,方法简单,成本低廉,通过改变钛酸四丁酯、聚乙烯吡咯烷酮和液体石蜡的配比,制备不同管壁厚度TiO2纳米管,进而调控TiO2纳米管对光的吸收能力。
本发明中选择液体石蜡和聚乙烯吡咯烷酮为软模板,是因为:1)聚乙烯吡咯烷酮对二氧化钛纺丝过程有利;2)液体石蜡当作造孔剂;3)液体石蜡和聚乙烯吡咯烷酮在焙烧过程中易除去。纳米管的中空结构可以产生多次光散射效应,实现光的二次吸收,提高光催化剂的光吸收能力。薄的壁厚可以减少电荷载流子的传输路径,从而减少光生电子-空穴的复合。同时,纳米管的中空结构具有较高的比表面积,有利于氧化还原反应的进行。此外,纳米管的中空结构将内外部空间分开,实现不同反应的空间分离。
附图说明
图1为18KV,5mL/h,20cm条件下,产物焙烧后,得TiO2纳米管SEM照片。图a,b,c,d中液体石蜡掺量分别为2.7%,7.3%,12%,16.7%。
图2为18KV,5mL/h,20cm条件下,产物焙烧后,得TiO2纳米管TEM照片。图a,b,c,d中液体石蜡掺量分别为2.7%,7.3%,12%,16.7%,图c,d的TiO2纳米管壁厚分别为141nm,91nm。
图3为TiO2纳米管UV-vis漫反射光谱。
具体实施方式
下面结合附图对本发明作进一步详细说明。
实施例1
1)向无水乙醇中依次加入乙酰丙酮和钛酸四丁酯其体积比为1:1:3,混合均匀后得溶液A;
2)向溶液A中加入质量比为8%的聚乙烯吡咯烷酮,完全溶解后得溶液B;
3)向溶液B中加入体积比为2.7%的液体石蜡,搅拌48h后得溶液C;
4)将溶液C装入5mL注射器中,将注射器安装在静电纺丝装置上,在电压18KV,溶液供给速度5mL/h,接收距离20cm条件下进行静电纺丝,产物用不锈钢盘收集;
5)纺丝产物干燥后,在空气气氛下于500℃焙烧,得TiO2纳米管;
实施例2
1)向无水乙醇中依次加入乙酰丙酮和钛酸四丁酯其体积比为1:1:2,混合均匀后得溶液A;
2)向溶液A中加入质量比为10%的聚乙烯吡咯烷酮,完全溶解后得溶液B;
3)向溶液B中加入体积比为7.3%的液体石蜡,搅拌48h后得溶液C;
4)将溶液C装入5mL注射器中,将注射器安装在静电纺丝装置上,在电压18KV,溶液供给速度5mL/h,接收距离20cm条件下进行静电纺丝,产物用不锈钢盘收集;
5)纺丝产物干燥后,在空气气氛下于500℃焙烧,得TiO2纳米管;
实施例3
1)向无水乙醇中依次加入乙酰丙酮和钛酸四丁酯其体积比为1:1:1,混合均匀后得溶液A;
2)向溶液A中加入质量比为12%的聚乙烯吡咯烷酮,完全溶解后得溶液B;
3)向溶液B中加入体积比为12%的液体石蜡,搅拌48h后得溶液C;
4)将溶液C装入5mL注射器中,将注射器安装在静电纺丝装置上,在电压18KV,溶液供给速度5mL/h,接收距离20cm条件下进行静电纺丝,产物用不锈钢盘收集;
5)纺丝产物干燥后,在空气气氛下于500℃焙烧,得TiO2纳米管;
实施例4
1)向无水乙醇中依次加入乙酰丙酮和钛酸四丁酯其体积比为1:1:1,混合均匀后得溶液A;
2)向溶液A中加入质量比为12%的聚乙烯吡咯烷酮,完全溶解后得溶液B;
3)向溶液B中加入体积比为16.7%的液体石蜡,搅拌48h后得溶液C;
4)将溶液C装入5mL注射器中,将注射器安装在静电纺丝装置上,在电压18KV,溶液供给速度5mL/h,接收距离20cm条件下进行静电纺丝,产物用不锈钢盘收集;
5)纺丝产物干燥后,在空气气氛下于500℃焙烧,得TiO2纳米管;
实施例5
1)向无水乙醇中依次加入乙酰丙酮和钛酸四丁酯其体积比为1:1:1,混合均匀后得溶液A;
2)向溶液A中加入质量比为12%的聚乙烯吡咯烷酮,完全溶解后得溶液B;
3)向溶液B中加入体积比为21.3%的液体石蜡,搅拌48h后得溶液C;
4)将溶液C装入5mL注射器中,将注射器安装在静电纺丝装置上,在电压18KV,溶液供给速度5mL/h,接收距离20cm条件下进行静电纺丝,产物用不锈钢盘收集;
5)纺丝产物干燥后,在空气气氛下于500℃焙烧,得TiO2纳米管;
实施例6
1)向无水乙醇中依次加入乙酰丙酮和钛酸四丁酯其体积比为1:1:1,混合均匀后得溶液A;
2)向溶液A中加入质量比为12%的聚乙烯吡咯烷酮,完全溶解后得溶液B;
3)向溶液B中加入体积比为26%的液体石蜡,搅拌48h后得溶液C;
4)将溶液C装入5mL注射器中,将注射器安装在静电纺丝装置上,在电压18KV,溶液供给速度5mL/h,接收距离20cm条件下进行静电纺丝,产物用不锈钢盘收集;
5)纺丝产物干燥后,在空气气氛下于500℃焙烧,得TiO2纳米管;
实施例7
1)向无水乙醇中依次加入乙酰丙酮和钛酸四丁酯其体积比为1:1:1,混合均匀后得溶液A;
2)向溶液A中加入质量比为12%的聚乙烯吡咯烷酮,完全溶解后得溶液B;
3)向溶液B中加入体积比为30.6%的液体石蜡,搅拌48h后得溶液C;
4)将溶液C装入5mL注射器中,将注射器安装在静电纺丝装置上,在电压18KV,溶液供给速度5mL/h,接收距离20cm条件下进行静电纺丝,产物用不锈钢盘收集;
5)纺丝产物干燥后,在空气气氛下于500℃焙烧,得TiO2纳米管;
如图1所示,产物焙烧后,得TiO2纳米管SEM照片。图a,b,c,d中液体石蜡掺量分别为2.7%,7.3%,12%,16.7%。
如图2所示,产物焙烧后,得TiO2纳米管TEM。图a,b,c,d中液体石蜡掺量分别为2.7%,7.3%,12%,16.7%,图c,d的纳米管壁厚分别为141nm,91nm。
如图3所示,TiO2纳米管与P25的UV-vis漫反射光谱。
Claims (6)
1.一种管壁厚度可控TiO2纳米管的制备方法,其特征在于,包括以下步骤;
步骤1:向无水乙醇中依次加入乙酰丙酮和钛酸四丁酯,得溶液A;
步骤2:向溶液A中加入聚乙烯吡咯烷酮,完全溶解后得溶液B;
步骤3:向溶液B中滴加液体石蜡,搅拌48h后得溶液C;
步骤4:将溶液C装入注射器中,在一定条件下进行静电纺丝,纺丝产物用不锈钢盘收集;
步骤5:纺丝产物干燥后,在空气气氛下于500℃焙烧,得TiO2纳米管。
2.根据权利要求1所述的一种管壁厚度可控TiO2纳米管的制备方法,其特征在于,所述的步骤1中无水乙醇与乙酰丙酮和钛酸四丁酯的体积比介于1:1:1~1:1:3。
3.根据权利要求1所述的一种管壁厚度可控TiO2纳米管的制备方法,其特征在于,所述的步骤2中聚乙烯吡咯烷酮与溶液A的质量比介于8%~12%。
4.根据权利要求1所述的一种管壁厚度可控TiO2纳米管的制备方法,其特征在于,所述的步骤3中液体石蜡与溶液B的体积比介于2.7%~30.6%。
5.根据权利要求1所述的一种管壁厚度可控TiO2纳米管的制备方法,其特征在于,所述的步骤4中纺丝条件为电压18KV,溶液供给速度为5mL/h,接收距离为20cm。
6.根据权利要求1所述的一种管壁厚度可控TiO2纳米管的制备方法,其特征在于,所述的步骤5中升温速度为5℃/min,焙烧时间4h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910378492.0A CN110092416A (zh) | 2019-05-08 | 2019-05-08 | 一种管壁厚度可控TiO2纳米管的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910378492.0A CN110092416A (zh) | 2019-05-08 | 2019-05-08 | 一种管壁厚度可控TiO2纳米管的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110092416A true CN110092416A (zh) | 2019-08-06 |
Family
ID=67447236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910378492.0A Pending CN110092416A (zh) | 2019-05-08 | 2019-05-08 | 一种管壁厚度可控TiO2纳米管的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110092416A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111330624A (zh) * | 2020-03-25 | 2020-06-26 | 陕西科技大学 | 一步法制备分级介孔-多孔TiO2/g-C3N4纳米纤维光催化材料 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101387018A (zh) * | 2008-10-17 | 2009-03-18 | 东南大学 | 电纺中空TiO2纤维的可视化制备方法 |
CN106186058A (zh) * | 2016-07-19 | 2016-12-07 | 长沙矿冶研究院有限责任公司 | 一种制备多孔中空二氧化钛纳米管的方法 |
-
2019
- 2019-05-08 CN CN201910378492.0A patent/CN110092416A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101387018A (zh) * | 2008-10-17 | 2009-03-18 | 东南大学 | 电纺中空TiO2纤维的可视化制备方法 |
CN106186058A (zh) * | 2016-07-19 | 2016-12-07 | 长沙矿冶研究院有限责任公司 | 一种制备多孔中空二氧化钛纳米管的方法 |
Non-Patent Citations (3)
Title |
---|
BITAO LIU ET AL.: "Facile formation of mixed phase porous TiO2 nanotubes and enhanced visible-light photocatalytic activity", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
JIN ZHANG ET AL.: "Micro- and nano-scale hollow TiO2 fibers by coaxial electrospinning:Preparation and gas sensing", 《JOURNAL OF SOLID STATE CHEMISTRY》 * |
NARENDRA SINGH ET AL.: "Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications", 《RSC ADV》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111330624A (zh) * | 2020-03-25 | 2020-06-26 | 陕西科技大学 | 一步法制备分级介孔-多孔TiO2/g-C3N4纳米纤维光催化材料 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110124716A (zh) | 一种一步法制备片状TiO2/g-C3N4异质结的方法 | |
CN112121800A (zh) | 一种农业秸秆生物炭负载纳米Co3O4复合催化剂及制备方法 | |
CN101773841A (zh) | 一种用于水处理的光催化剂 | |
CN108855142B (zh) | 3D菊花状Z型Bi2S3@CoO异质结复合催化剂及其制备方法和应用 | |
CN105457658A (zh) | 一种模拟光合作用降解污染物同时产氢的z型催化剂及其制备方法 | |
CN104667951A (zh) | 一种溴氧铋高光催化剂的制备及应用方法 | |
CN111686770B (zh) | 一种金属离子共掺杂BiOBr微球、制备方法及其应用 | |
CN110013841A (zh) | 一种二维二氧化钛纳米片光催化材料及其制备方法 | |
CN106512988A (zh) | 一种分子筛负载型MnO2‑ZnO臭氧催化剂及其制备方法 | |
CN110092416A (zh) | 一种管壁厚度可控TiO2纳米管的制备方法 | |
CN106693970B (zh) | 一种碳包覆四氧化三铁/铁多形貌复合材料的制备方法 | |
CN108946863A (zh) | 一种利用钨酸铜催化超声降解抗生素废水的方法 | |
CN108144599A (zh) | 一种铋基复合光催化剂降解印染废水的处理工艺 | |
CN105817244B (zh) | 一种AgI/β‑Bi2O3‑Bi2O2CO3光催化剂及其制备方法和应用 | |
CN108940348B (zh) | 铬酸银/硫掺氮化碳z型光催化剂及其制备方法 | |
CN110124648A (zh) | 一种表面氧空位TiO2/碳复合纳米管的制备方法 | |
CN110124715A (zh) | 一步法制备GQDs修饰片状TiO2/g-C3N4异质结的方法 | |
CN104056592A (zh) | 麦饭石除锰滤料的制备方法及其用于去除地下水中锰离子的应用 | |
CN108940349A (zh) | 利用铬酸银/硫掺氮化碳z型光催化剂去除染料污染物的方法 | |
CN105312072B (zh) | 生物质灰渣基N-TiO2/N-碳纳米管光触媒净水材料及其制备方法 | |
CN106395891B (zh) | 一种二氧化钛‑氧化锌纳米棒的制备方法 | |
CN108793312B (zh) | 利用氮化碳/氮掺中空介孔碳/三氧化二铋三元z型光催化剂催化去除抗生素的方法 | |
CN103752301B (zh) | 纳孔碱金属/碱土金属钛酸盐光催化剂及其制备方法 | |
CN104399502B (zh) | 含有晶格缺陷的双功能碳酸氧铋催化剂及其制备方法 | |
CN110773145A (zh) | 基于改性硅藻土的Ce掺杂TiO2漂浮型光催化复合材料的制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190806 |
|
RJ01 | Rejection of invention patent application after publication |