CN110089018A - 转换器装置、马达驱动装置、冰箱、空调装置及热泵热水供给装置 - Google Patents
转换器装置、马达驱动装置、冰箱、空调装置及热泵热水供给装置 Download PDFInfo
- Publication number
- CN110089018A CN110089018A CN201680091691.8A CN201680091691A CN110089018A CN 110089018 A CN110089018 A CN 110089018A CN 201680091691 A CN201680091691 A CN 201680091691A CN 110089018 A CN110089018 A CN 110089018A
- Authority
- CN
- China
- Prior art keywords
- circuit
- filter
- current
- converter apparatus
- time constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004378 air conditioning Methods 0.000 title claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 7
- 238000001514 detection method Methods 0.000 claims abstract description 26
- 230000002411 adverse Effects 0.000 claims abstract description 22
- 238000009499 grossing Methods 0.000 claims abstract description 10
- 230000005611 electricity Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005669 field effect Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/18—Hot-water central heating systems using heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/00073—Indoor units, e.g. fan coil units comprising a compressor in the indoor unit housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/02—Compressor arrangements of motor-compressor units
- F25B31/026—Compressor arrangements of motor-compressor units with compressor of rotary type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4225—Arrangements for improving power factor of AC input using a non-isolated boost converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0092—Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
- H02M3/1586—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2201/00—Indexing scheme relating to controlling arrangements characterised by the converter used
- H02P2201/09—Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2201/00—Indexing scheme relating to controlling arrangements characterised by the converter used
- H02P2201/15—Power factor correction [PFC] circuit generating the DC link voltage for motor driving inverter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
本发明的转换器装置(100)具备:整流电路(4),其对从交流电源(1)输出的交流电压进行整流;升压电路(20),其包含多个电抗器(5a、5b、5c)、多个开关元件以及多个逆流防止元件,并对整流电路(4)的输出电压进行升压;平滑电容器(8),其使升压电路(20)的输出电压平滑;母线电流检测电路(10),其检测在整流电路(4)与升压电路(20)之间流动的电流值;第1滤波电路(12),其具有第1滤波时间常数;第2滤波电路(13),其具有比第1滤波时间常数短的第2滤波时间常数;以及控制部(11),其经由第1滤波电路(12)和第2滤波电路(13)输入在母线电流检测电路(10)中检测到的电流值,并控制多个开关元件的动作。
Description
技术领域
本发明涉及具备多个电抗器的转换器装置、马达驱动装置、冰箱、空调装置以及热泵热水供给装置。
背景技术
在专利文献1中公开的电源装置中,整流电路的输出分支为多个电流路径,并且并联设置有由电抗器和开关元件构成的多个串联电路。在开关元件断开时,设置于多个串联电路中的每一个的电抗器的电流经由逆流防止二极管向平滑电容器供给。另外设置于多个串联电路中的每一个的开关元件分别以不同的相位驱动。由此抑制分别在多个开关元件中流动的电流,并且抑制从电抗器输出的电流的脉动成分。
专利文献:日本特开2007-195282号公报
在专利文献1所代表的以往的电源装置中,在检测从整流电路输出的电流的值的母线电流检测电路中检测到的电流值的输出目的地是RC滤波器,RC滤波器的时间常数是如从数十[μs]到数百[μs]这样长的值。因此难以基于在母线电流检测电路中检测到的电流值对用于多级升压电路的电感值小的电抗器的缺相进行检测。
发明内容
本发明是鉴于上述内容而完成的,其目的在于获得一种能够与构成升压电路的电抗器的值无关地检测升压电路的缺相的转换器装置。
为了解决上述课题并达成目的,本发明所涉及的转换器装置的特征在于其具备:整流电路,其对从交流电源输出的交流电压进行整流;升压电路,其包含多个电抗器、多个开关元件以及多个逆流防止元件,并对整流电路的输出电压进行升压;平滑电容器,其使升压电路的输出电压平滑;电流检测电路,其检测在整流电路与升压电路之间流动的电流值;第1滤波电路,其具有第1滤波时间常数;第2滤波电路,其具有比第1滤波时间常数短的第2滤波时间常数;以及控制部,其经由第1滤波电路和第2滤波电路输入在电流检测电路中检测到的电流值,并控制多个开关元件的动作。
本发明所涉及的转换器装置能够起到与构成升压电路的电抗器的值无关地检测升压电路的缺相的效果。
附图说明
图1是本发明的实施方式所涉及的转换器装置和马达驱动装置的结构图。
图2是用于说明在图1所示的控制部检测电抗器的缺相的动作的流程图。
图3是用于说明图1所示的控制部的控制内容的详细情况的图。
具体实施方式
以下,基于附图对本发明的实施方式所涉及的转换器装置、马达驱动装置、冰箱、空调装置以及热泵热水供给装置详细地进行说明。此外,本发明不限定于该实施方式。
实施方式
图1是本发明的实施方式所涉及的转换器装置和马达驱动装置的结构图。本实施方式所涉及的马达驱动装置300是在将从作为单相交流电源的交流电源1供给的交流电转换为直流电后,将该直流电转换为交流电,并向作为负载的马达400供给的装置。作为马达400能够例示有内置于冰箱、空调装置或热泵热水供给装置的三相同步马达或三相感应马达。
马达驱动装置300具备:转换器装置100,其将交流电转换为直流电并进行输出;以及逆变装置200,其将从转换器装置100输出的直流电转换为交流电并向马达400供给。
转换器装置100具备:冲击电流防止电路3,其用于防止冲击电流;静噪滤波器2,其设置于交流电源1与冲击电流防止电路3之间,降低与从交流电源1输出的电流叠加的高频噪音;整流电路4,其经由静噪滤波器2和冲击电流防止电路3对从交流电源1输出的交流电压进行整流;升压电路20,其将在整流电路4中整流后的电压升压;平滑电容器8,其使在升压电路20中升压后的电压平滑;母线电流检测用的分流电阻9;母线电流检测电路10,其为与整流电路4的负极输出端子4b连接的电流检测电路;第1滤波电路12,其具有第1滤波时间常数;第2滤波电路13,其具有比第1滤波器的时间常数短的第2滤波时间常数;以及控制部11。
母线电流检测电路10检测作为从整流电路4向逆变装置200流动的母线电流的值、或从逆变装置200向整流电路4流动的母线电流的值的母线电流Idc,并将检测到的母线电流Idc向第1滤波电路12和第2滤波电路13输出。母线电流Idc表示与母线电流的值对应的电压。
作为整流电路4,能够例示有组合四个二极管而构成的全波整流电路。整流电路4除了二极管以外,也可以组合MOSFET(Metal Oxide Semiconductor-Field EffectTransistor-金属氧化物半导体场效应晶体管)而构成。
升压电路20具备一端与整流电路4的正极输出端子4a连接的电抗器组5和模块21。
电抗器组5由并联连接的三个电抗器5a、5b、5c构成。三个电抗器5a、5b、5c的各自的一端与整流电路4的正极输出端子4a连接。电抗器5a的另一端与模块21的第1输入端子21a3连接,电抗器5b的另一端与模块21的第2输入端子21a2连接,电抗器5c的另一端与模块21的第3输入端子21a1连接。在三个电抗器5a、5b、5c分别使用高次谐波铁损较小的铁心,但该铁心只要考虑基于控制部11的升压电路20的控制方法、转换器装置100的电力转换效率、在升压电路20产生的热量、转换器装置100的重量以及转换器装置100的体积之类的因素来选择即可。
模块21是具备作为开关元件组的MOSFET组6和二极管组7,并将三个串联电路23a、23b、23b并联连接的桥接电路。MOSFET组6由作为三个开关元件的MOSFET6a、6b、6c构成,二极管组7由三个逆流防止二极管7a、7b、7c构成。
串联电路23a是串联连接MOSFET6a和逆流防止二极管7a的电路,串联电路23b是串联连接MOSFET6b和逆流防止二极管7b的电路,串联电路23c是串联连接MOSFET6c和逆流防止二极管7c的电路。
MOSFET6a的漏极与逆流防止二极管7a的阳极连接,MOSFET6a的源极与负极输出端子21b连接。负极输出端子21b与分流电阻9的一端连接,分流电阻9的另一端与负极直流母线N连接。在MOSFET6a的栅极输入有在控制部11生成的PWM(Pulse Width Modulation-脉冲宽度调制)驱动信号X。PWM驱动信号X是使MOSFET6a进行开闭动作的信号。逆流防止二极管7a的阴极与正极输出端子21c连接。正极输出端子21c与正极直流母线P连接。
MOSFET6b的漏极与逆流防止二极管7b的阳极连接,MOSFET6b的源极与负极输出端子21b连接。在MOSFET6b的栅极输入有在控制部11生成的PWM驱动信号Y。PWM驱动信号Y是使MOSFET6b进行开闭动作的信号。逆流防止二极管7b的阴极与正极输出端子21c连接。
MOSFET6c的漏极与逆流防止二极管7c的阳极连接,MOSFET6c的源极与负极输出端子21b连接。在MOSFET6c的栅极输入有在控制部11生成的PWM驱动信号Z。PWM驱动信号Z是使MOSFET6c进行开闭动作的信号。逆流防止二极管7c的阴极与正极输出端子21c连接。
正极输出端子21c与平滑电容器8的正极端子以及逆变装置200连接。平滑电容器8的负极端子与母线电流检测电路10、分流电阻9的另一端以及逆变装置200连接。
电抗器5a、MOSFET6a以及逆流防止二极管7a构成第1斩波电路22a。电抗器5b、MOSFET6b以及逆流防止二极管7b构成第2斩波电路22b。电抗器5c、MOSFET6c以及逆流防止二极管7c构成第3斩波电路22c。
电抗器5a经由第1输入端子21a3与MOSFET6a以及逆流防止二极管7a连接。电抗器5b经由第2输入端子21a2与MOSFET6b以及逆流防止二极管7b连接。电抗器5c经由第3输入端子21a1与MOSFET6c以及逆流防止二极管7c连接。
在这样构成的转换器装置100中,经由静噪滤波器2和冲击电流防止电路3,将从交流电源1供给的交流电向整流电路4输入,并对输入至整流电路4中的交流电进行全波整流。在整流电路4中全波整流后的电力在升压电路20中升压,在升压电路20中升压后的电力在平滑电容器8中进行平滑并向逆变装置200供给。逆变装置200将在平滑电容器8中平滑后的直流电压转换为交流电压,从而驱动马达400。
将在母线电流检测电路10中检测到的母线电流Idc输入至第1滤波电路12和第2滤波电路13。
设置在母线电流检测电路10与控制部11之间的第1滤波电路12是正常动作时的母线电流检测用的RC滤波器,该RC滤波器具有第1滤波时间常数。第1滤波时间常数为从数十[μs]到数百[μs]。第1滤波电路12将在母线电流检测电路10中检测到的母线电流Idc的值作为反馈控制用的信号而输入至控制部11。
设置在母线电流检测电路10与控制部11之间的第2滤波电路13是电抗器缺相检测用的RC滤波器。该RC滤波器具有第2滤波时间常数。第2滤波时间常数为数[μs]。第2滤波电路13将在母线电流检测电路10中检测到的母线电流Idc的值输入至控制部11。
接下来对控制部11的动作进行说明。
在初始状态下控制部11使MOSFET组6停止。并且,控制部11在进入正常的控制序列之前,将构成MOSFET组6的三个MOSFET6a、6b、6c按照MOSFET6a、MOSFET6b、MOSFET6c的顺序,在规定的电源相位时仅接通规定的秒数。由此,电流在各相流动。即,电流分别在第1斩波电路22a、第2斩波电路22b以及第3斩波电路22c流动。
流动在各斩波电路的电流通过母线电流检测电路10来检测,检测到的母线电流Idc经由第1滤波电路12和第2滤波电路13被向控制部11输入。
如上述这样,第1滤波电路12的RC滤波器的时间常数比第2滤波电路13的RC滤波器的时间常数长。因此控制部11无法将经由第1滤波电路12输入至控制部11的母线电流Idc作为电抗器缺相检测用的电流来正确地检测。然而第2滤波电路13的RC滤波器的时间常数比第1滤波电路12的RC滤波器的时间常数短,因此控制部11能够将经由第2滤波电路13输入的母线电流Idc作为电抗器缺相检测用的电流来检测。
这样,控制部11在电抗器缺相检测时,读取经由第2滤波电路13输入的母线电流Idc,由此能够判断是否在第1斩波电路22a、第2斩波电路22b以及第3斩波电路22分别流动着规定的电流,并判定有无缺相。
但不言而喻,在执行正常的控制序列时,在RC滤波器的时间常数较短的第2滤波电路13中,不能完全去除在开关元件的开闭动作时产生的噪音。因此,在使用经由第2滤波电路13输入的母线电流Idc的情况下,控制部11难以检测正确的母线电流。因此控制部11在执行正常的控制序列时,使用经由第1滤波电路12输入的母线电流Idc进行反馈控制。
图2是用于说明在图1所示的控制部检测电抗器的缺相的动作的流程图。控制部11在执行正常的控制序列之前,将三个MOSFET6a、6b、6c按照MOSFET6a、MOSFET6b、MOSFET6c的顺序,在规定的电源相位时仅接通规定的秒数,由此使电流在各相流动。此时控制部11检测经由第2滤波电路13输入的母线电流Idc,通过判定检测到的母线电流Idc的值是否在规定以内,由此来判定有无缺相。
图3是用于说明图1所示的控制部的控制内容的详细情况的图。在图3从上方开始按顺序表示交流电源1的电压波形Vin、MOSFET6a、MOSFET6b以及MOSFET6c各自的PWM驱动信号X、Y、Z以及经由第2滤波电路13输入至控制部11的母线电流检测电路10的母线电流Idc。
在图2中,若控制部11接收运转开始信号(S1),则在开始运转前开始缺相检测动作(S2)。
控制部11将三个MOSFET6a、6b、6c按照MOSFET6a、MOSFET6b、MOSFET6c的顺序,在规定的电源相位时仅接通规定的秒数。此时,经由第2滤波电路13在母线电流检测电路10中检测通过接通3个MOSFET6a、6b、6c而流动的电流。如图3所示,控制部11判定由母线电流检测电路10检测到的电流值即母线电流Idc是否在规定电流范围R内(S3)。
在电流值处于规定电流范围R内的情况下(S3,是),控制部11移至运转开始的序列(S4)。
在电流值不处于规定电流范围R内的情况下(S3,否),控制部11判定为发生电抗器缺相异常,不移至运转开始的序列(S5)。
在S4移至运转开始序列后的控制部11使用经由第1滤波电路12检测到的母线电流Idc来进行反馈控制。
在多级并联地连接电抗器与开关元件的串联电路的专利文献1所代表的以往的升压电路中,由于电抗器的错误布线、电抗器断线或者开关元件的故障,有可能成为缺相。若在形成了缺相的状态下持续升压动作,则负荷集中在一部分的电抗器和开关元件,从而导致发热量增加,因此有可能会缩短部件的寿命。本实施方式所涉及的转换器装置100能够与构成升压电路的电抗器的值无关地检测升压电路的缺相,从而防止在缺相状态下执行运转。因此根据转换器装置100,即使在检测到缺相的情况下,也能够抑制部件的破损,另外能够抑制部件寿命的降低。
另外在专利文献1所代表的在以往的升压电路中发生了缺相的情况下,会妨碍空调装置的连续运转并损害用户的舒适性,另外会损害节能性。相对于此,通过将本实施方式所涉及马达驱动装置300用于空调装置,,能够起到以下效果,即:不会妨碍空调装置的连续运转,用户的舒适性会提高,并且节能性会提高。同样地通过将本实施方式所涉及的马达驱动装置300用于冰箱和热泵热水供给装置,能够起到节能性提高的效果。
此外,在本实施方式所涉及的升压电路20使用由三个斩波电路构成的斩波电路组22,但斩波电路组22只要构成为能够升压整流电路4的输出电压即可,可以由两个斩波电路构成,也可以由四个以上的斩波电路构成。
此外本实施方式所涉及的升压电路20作为开关元件的一个例子使用MOSFET,但构成升压电路20的开关元件只要能够进行开关动作,则不限定于MOSFET,也可以是IGBT(Insulated Gate Bipolar Transistor-绝缘栅双极型晶体管)、IGCT(Insulated GateControlled Thyristor-绝缘闸流控制晶闸管)或FET(Field Effect Transistor-场效应晶体管)。
另外在本实施方式中,使用作为单相交流电源的交流电源1,并使用作为单相整流电路的整流电路4,但交流电源1也可以是三相交流电源,在交流电源1使用三相交流电源的情况下,整流电路4也可以是三相整流电路。
另外,在本实施方式的升压电路20作为逆流防止元件使用二极管组7,但只要是作为逆流防止用的元件而发挥功能的元件,则不限定于二极管组7,也可以在升压电路20使用IGBT、IGCT或FET之类的开关元件作为逆流防止元件来代替二极管组7。
以上的实施方式所示的结构表示本发明内容的一个例子,也能够与其他公知的技术进行组合,在不脱离本发明的主旨的范围内,也能够省略、变更结构的一部分。
附图标记说明
1...交流电源;2...静噪滤波器;3...冲击电流防止电路;4...整流电路;4a...正极输出端子;4b...负极输出端子;5...电抗器组;5a、5b、5c...电抗器;6...MOSFET组;6a、6b、6c...MOSFET;7...二极管组;7a、7b、7c...逆流防止二极管;8...平滑电容器;9...分流电阻;10...母线电流检测电路;11...控制部;12...第1滤波电路;13...第2滤波电路;20...升压电路;21...模块;21a1...第3输入端子;21a2...第2输入端子;21a3...第1输入端子;21b...负极输出端子;21c...正极输出端子;22...斩波电路组;22a...第1斩波电路;22b...第2斩波电路;22c...第3斩波电路;23a、23b、23c...串联电路;100...转换器装置;200...逆变装置;300...马达驱动装置;400...马达。
Claims (6)
1.一种转换器装置,其特征在于,具备:
整流电路,其对从交流电源输出的交流电压进行整流;
升压电路,其包含多个电抗器、多个开关元件以及多个逆流防止元件,并对所述整流电路的输出电压进行升压;
平滑电容器,其使所述升压电路的输出电压平滑;
电流检测电路,其检测在所述整流电路与所述升压电路之间流动的电流值;
第1滤波电路,其具有第1滤波时间常数;
第2滤波电路,其具有比所述第1滤波时间常数短的第2滤波时间常数;以及
控制部,其经由所述第1滤波电路和所述第2滤波电路输入在所述电流检测电路中检测到的电流值,并控制所述多个开关元件的动作。
2.根据权利要求1所述的转换器装置,其特征在于,
所述控制部通过判定在按顺序使所述多个开关元件接通后经由所述第2滤波电路输入的所述电流值是否在规定电流范围内来判定有无缺相。
3.一种马达驱动装置,其特征在于,
具备权利要求1或2所述的转换器装置、以及将从所述转换器装置输出的直流电转换为交流电并向马达供给的逆变装置。
4.一种冰箱,其特征在于,
具备权利要求3所述的马达驱动装置。
5.一种空调装置,其特征在于,
具备权利要求3所述的马达驱动装置。
6.一种热泵热水供给装置,其特征在于,
具备权利要求3所述的马达驱动装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/089073 WO2018123008A1 (ja) | 2016-12-28 | 2016-12-28 | コンバータ装置、モータ駆動装置、冷蔵庫、空気調和装置及びヒートポンプ給湯装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110089018A true CN110089018A (zh) | 2019-08-02 |
CN110089018B CN110089018B (zh) | 2020-08-18 |
Family
ID=62708099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680091691.8A Active CN110089018B (zh) | 2016-12-28 | 2016-12-28 | 转换器装置、马达驱动装置、冰箱、空调装置及热泵热水供给装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10734900B2 (zh) |
EP (1) | EP3396836B1 (zh) |
JP (1) | JP6591092B2 (zh) |
CN (1) | CN110089018B (zh) |
AU (1) | AU2016434774B2 (zh) |
WO (1) | WO2018123008A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6927947B2 (ja) * | 2018-11-14 | 2021-09-01 | ファナック株式会社 | 昇圧部を有するモータ制御装置 |
CN109687710A (zh) * | 2018-12-29 | 2019-04-26 | 航天柏克(广东)科技有限公司 | 一种非隔离boost电路 |
JP7226120B2 (ja) * | 2019-06-14 | 2023-02-21 | 富士通株式会社 | 電源回路及び電子装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007195282A (ja) * | 2006-01-17 | 2007-08-02 | Renesas Technology Corp | 電源装置 |
CN101040428A (zh) * | 2004-10-04 | 2007-09-19 | 大金工业株式会社 | 电源电路保护方法及其装置 |
CN101971473A (zh) * | 2008-03-14 | 2011-02-09 | 大金工业株式会社 | 整流电路 |
CN105594110A (zh) * | 2013-10-16 | 2016-05-18 | 大金工业株式会社 | 功率转换装置 |
CN105929257A (zh) * | 2016-05-30 | 2016-09-07 | 重庆大学 | 一种快速三相整流缺相检测及正常相位跟踪方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200405646A (en) * | 2002-05-24 | 2004-04-01 | Virginia Tech Intell Prop | Method, apparatus, and system for drive control, power conversion, and start-up control in an SRM or PMBDCM drive system |
JP4056852B2 (ja) * | 2002-10-31 | 2008-03-05 | 株式会社日立製作所 | 電力変換装置 |
JP2007259529A (ja) * | 2006-03-20 | 2007-10-04 | Toyota Industries Corp | 過電圧保護機能を備えたインバータ |
JP2009159745A (ja) * | 2007-12-27 | 2009-07-16 | Toyo Electric Mfg Co Ltd | 電流検出回路 |
JP2011155782A (ja) * | 2010-01-28 | 2011-08-11 | Daihen Corp | 溶接電源装置 |
JP5814065B2 (ja) * | 2011-10-03 | 2015-11-17 | 株式会社マキタ | モータ電流検出装置、モータ制御装置、及び電動工具 |
JP2013081307A (ja) * | 2011-10-04 | 2013-05-02 | Integuran Kk | 広域入力型スイッチング電源および風力発電装置 |
JP6175933B2 (ja) * | 2013-06-25 | 2017-08-09 | 富士電機株式会社 | オフセット補償装置 |
JP6433656B2 (ja) * | 2013-12-18 | 2018-12-05 | 三菱重工サーマルシステムズ株式会社 | 電流値検出装置及び電流値検出方法 |
JP6050841B2 (ja) * | 2015-01-29 | 2016-12-21 | ファナック株式会社 | 電流検出モードの変更機能を備えたモータ駆動装置 |
JP6544674B2 (ja) | 2015-03-02 | 2019-07-17 | パナソニックIpマネジメント株式会社 | 点灯装置、前照灯装置及び車両 |
-
2016
- 2016-12-28 US US16/339,049 patent/US10734900B2/en active Active
- 2016-12-28 CN CN201680091691.8A patent/CN110089018B/zh active Active
- 2016-12-28 JP JP2018558601A patent/JP6591092B2/ja active Active
- 2016-12-28 EP EP16904245.4A patent/EP3396836B1/en active Active
- 2016-12-28 WO PCT/JP2016/089073 patent/WO2018123008A1/ja unknown
- 2016-12-28 AU AU2016434774A patent/AU2016434774B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101040428A (zh) * | 2004-10-04 | 2007-09-19 | 大金工业株式会社 | 电源电路保护方法及其装置 |
JP2007195282A (ja) * | 2006-01-17 | 2007-08-02 | Renesas Technology Corp | 電源装置 |
CN101971473A (zh) * | 2008-03-14 | 2011-02-09 | 大金工业株式会社 | 整流电路 |
CN105594110A (zh) * | 2013-10-16 | 2016-05-18 | 大金工业株式会社 | 功率转换装置 |
CN105929257A (zh) * | 2016-05-30 | 2016-09-07 | 重庆大学 | 一种快速三相整流缺相检测及正常相位跟踪方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018123008A1 (ja) | 2019-04-04 |
EP3396836A1 (en) | 2018-10-31 |
EP3396836B1 (en) | 2020-03-11 |
WO2018123008A1 (ja) | 2018-07-05 |
AU2016434774B2 (en) | 2020-06-25 |
CN110089018B (zh) | 2020-08-18 |
US10734900B2 (en) | 2020-08-04 |
JP6591092B2 (ja) | 2019-10-16 |
US20190312510A1 (en) | 2019-10-10 |
EP3396836A4 (en) | 2018-12-05 |
AU2016434774A1 (en) | 2019-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2980980B1 (en) | Inverter device | |
JP5687498B2 (ja) | 電力変換システム | |
CN106464150B (zh) | 电力转换装置 | |
WO2015096613A1 (zh) | 在线互动式不间断电源及其控制方法 | |
KR20150060722A (ko) | 차량 배터리를 충전하기 위한 시스템 | |
CN105027415A (zh) | 电力变换装置 | |
US9859808B2 (en) | Power converter topology for use in an energy storage system | |
CN1753294A (zh) | 直流电源装置、控制方法以及压缩机驱动装置 | |
CN110089018A (zh) | 转换器装置、马达驱动装置、冰箱、空调装置及热泵热水供给装置 | |
JP2008271696A (ja) | 電力変換装置 | |
CN107210703B (zh) | 驱动装置、矩阵变换器和电梯系统 | |
CN106537750B (zh) | 电力转换装置 | |
US10067175B2 (en) | Determining bond wire failures | |
CN102474178B (zh) | 电功率控制装置和电功率控制装置中的电功率计算方法 | |
EP2120320B1 (en) | Dc power supply device | |
US12040618B2 (en) | Power conversion system including a second circuit being configured to control a current or power such that the current or the power is synchronized with power ripples caused by the AC power supply or the AC load | |
JP2012135173A (ja) | バッテリの充電装置 | |
Wang et al. | A generic topology derivation method for single-phase converters with active capacitive dc-links | |
CN204168555U (zh) | 电源电路以及照明装置 | |
CN106100406A (zh) | 获取指示逆变器交流电流的值的方法、相关电路和逆变器 | |
CN109756136A (zh) | 开关电源 | |
CN115224916A (zh) | 一种交直流供电电路和油烟机 | |
CN109449992A (zh) | 变流器机侧共模电压抑制装置及方法、变流器与风机 | |
JP6378549B2 (ja) | 充放電装置 | |
JP2017063569A (ja) | 双方向電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |