CN110078105A - 一种碳-氢氧化铝纳米粒子的制备方法 - Google Patents

一种碳-氢氧化铝纳米粒子的制备方法 Download PDF

Info

Publication number
CN110078105A
CN110078105A CN201910322529.8A CN201910322529A CN110078105A CN 110078105 A CN110078105 A CN 110078105A CN 201910322529 A CN201910322529 A CN 201910322529A CN 110078105 A CN110078105 A CN 110078105A
Authority
CN
China
Prior art keywords
carbon
nano particle
aluminum hydroxyl
filter cake
hydroxyl nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910322529.8A
Other languages
English (en)
Inventor
林润雄
尹建华
闫闯
王晨
李芮地
孙东立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Zhonghai Treatment Technology Co Ltd
Qingdao University of Science and Technology
Original Assignee
Tianjin Zhonghai Treatment Technology Co Ltd
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Zhonghai Treatment Technology Co Ltd, Qingdao University of Science and Technology filed Critical Tianjin Zhonghai Treatment Technology Co Ltd
Priority to CN201910322529.8A priority Critical patent/CN110078105A/zh
Publication of CN110078105A publication Critical patent/CN110078105A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • C01F7/36Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts from organic aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种碳‑氢氧化铝纳米粒子的制备方法,包括以下步骤:取石墨放入到装有高氯酸HClO4的三口烧瓶中,沸腾状态下回流;将三口烧瓶冷却至60‑80℃,加入Al(CH3COO)3和聚乙烯醇PVA,用NaOH调节pH值,搅拌,冷却后得到黑色悬浊液;将所述悬浊液超声,抽滤,得到滤饼;将滤饼真空干燥研磨,得到产品即碳‑氢氧化铝纳米粒子。本发明成本低、简便、快速,实现了大规模的生产绿色环保稳定的碳‑氢氧化铝纳米粒子复合材料。

Description

一种碳-氢氧化铝纳米粒子的制备方法
技术领域
本发明涉及碳-氢氧化铝纳米粒子的制备方法。
背景技术
不同的碳纳米材料具有不同的功能,如石墨碳纳米颗粒具有强大的吸附能力,该类碳纳米颗粒还具有很好的相容性、增敏效应和易于表面功能化等优点。目前,碳纳米颗粒的制备方法可以分为两类:自上而下法和自下而上法。自上而下法即从较大的碳结构剥落制备碳纳米颗粒的物理方法,主要包括:电弧放电法、激光刻蚀法、电化学法、酸回煮法。自下而上法即由分子前驱体制备碳纳米颗粒的化学方法,主要包括:支持合成法、有机物碳化法。这些合成方法各自存在一定的不足,碳纳米颗粒的形貌、产量以及质量难以达到精确控制,不能达到大规模的简单合成。对于其生长机制也缺乏探讨,特别是由于合成方法的限制使其在应用方面的研究尚处于起步阶段。
氢氧化铝是一种应用前景好的高聚物基复合材料的无机阻燃填料,其市场用量十分庞大。但是氢氧化铝与高分子材料的相容性、分散性均很差,往高分子材料中添加氢氧化铝常常严重影响材料的力学性能和加工性能。因此,必须对其进行表面改性处理,以改善其与高聚物基料的相容性,使填充材料的力学性能不下降,甚至使材料的部分力学性能有所提高。
发明内容
本发明为了克服上述的不足,提供了一种碳-氢氧化铝纳米粒子的制备方法,其制备过程成本低、简便、快速。
本发明的技术方案如下:
一种碳-氢氧化铝纳米粒子的制备方法,包括以下步骤:
(1)取1-2g石墨放入到装有3-5M、150ml的高氯酸HClO4的三口烧瓶中,在室温下200rpm下搅拌24h,然后在100-120℃沸腾状态下回流24h;
(2)将三口烧瓶冷却至60-80℃,加入1-2g Al(CH3COO)3和1-5毫升聚乙烯醇PVA(5mg/ml),用NaOH(3M)调节pH至9-11,在300rpm下搅拌6h,冷却至室温,得到黑色悬浊液;
(3)将悬浊液在80-120W、30-50KHz超声3-6h,抽滤,用去离子水洗涤滤饼至质量不变;
(4)将滤饼在50-80℃下真空干燥8-10h,对干燥后的滤饼进行研磨,得到产品即碳-氢氧化铝纳米粒子。
本发明的有益效果是:
本发明具有可连续生产,环境污染少等优点,在制备碳-氢氧化铝纳米粒子时更为经济、便捷和环保。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是原料石墨和碳-氢氧化铝纳米粒子样品UV图;
图2是碳-氢氧化铝纳米粒子样品粒径测试图;
图3是原料石墨的SEM图;
图4是碳-氢氧化铝纳米粒子样品TEM图。
具体实施方式
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
一种碳-氢氧化铝纳米粒子的制备方法,包括以下步骤:
(1)取1-2g石墨放入到装有3-5M、150ml的高氯酸HClO4的三口烧瓶中,在室温下200rpm下搅拌24h,然后在100-120℃沸腾状态下回流24h;
(2)将三口烧瓶冷却至60-80℃,加入1-2g Al(CH3COO)3和1-5毫升聚乙烯醇PVA(5mg/ml),用NaOH(3M)调节pH至9-11,在300rpm下搅拌6h,冷却至室温,得到黑色悬浊液;
(3)将悬浊液在80-120W、30-50KHz超声3-6h,抽滤,用去离子水洗涤滤饼至质量不变;
(4)将滤饼在50-80℃下真空干燥8-10h,对干燥后的滤饼进行研磨,得到产品即碳-氢氧化铝纳米粒子。
将上述得到的碳-氢氧化铝纳米粒子样品通过紫外可见分光光度计(UV)(T6北京普析通用仪器有限公司)进行紫外表征的分析(见图1)。如图1所示,曲线(虚)为原料石墨的UV曲线;曲线(实)是在530-550nm处出现了明显的C/Al(OH)3的特征峰;进一步证实了产品就是碳-氢氧化铝纳米粒子。
将上述得到的碳-氢氧化铝纳米粒子样品通过纳米粒度分析仪(NANOPHOXParticle Size Analysis)进行分析(见图2),测试范围:1-10000nm,浓度范围:ppm-70vol.%,光源:氦氖激光、波长632.8nm,激光功率:10mw,温度:15-40℃,湿度20-70%无冷凝。如图2所示,碳-氢氧化铝纳米粒子粒径小于5nm,由此可得,成功制备了碳-氢氧化铝纳米粒子。
对碳-氢氧化铝纳米粒子的样品通过日本日立公司生产的S4800型扫描电镜SEM(见图3)和日立Libra 120型透射电镜TEM(见图4)进行分析。图3是原料石墨的SEM图,石墨呈片层状;图4是碳-氢氧化铝纳米粒子的TEM图,从图4可以看到图中分布颗粒状的碳包覆氢氧化铝纳米颗粒;与图3比较可以知道石墨的片层结构已经被破坏,纳米级的碳-氢氧化铝粒子已经制备成功。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (1)

1.一种碳-氢氧化铝纳米粒子的制备方法,其特征在于,包括以下步骤:
(1)取1-2g石墨放入到装有3-5M、150ml的高氯酸HClO4的三口烧瓶中,在室温下200rpm下搅拌24h,然后在100-120℃沸腾状态下回流24h;
(2)将三口烧瓶冷却至60-80℃,加入1-2g Al(CH3COO)3和1-5毫升聚乙烯醇PVA(5mg/ml),用NaOH(3M)调节pH至9-11,在300rpm下搅拌6h,冷却至室温,得到黑色悬浊液;
(3)将悬浊液在80-120W、30-50KHz超声3-6h,抽滤,用去离子水洗涤滤饼至质量不变;
(4)将滤饼在50-80℃下真空干燥8-10h,对干燥后的滤饼进行研磨,得到产品即碳-氢氧化铝纳米粒子。
CN201910322529.8A 2019-04-22 2019-04-22 一种碳-氢氧化铝纳米粒子的制备方法 Pending CN110078105A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910322529.8A CN110078105A (zh) 2019-04-22 2019-04-22 一种碳-氢氧化铝纳米粒子的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910322529.8A CN110078105A (zh) 2019-04-22 2019-04-22 一种碳-氢氧化铝纳米粒子的制备方法

Publications (1)

Publication Number Publication Date
CN110078105A true CN110078105A (zh) 2019-08-02

Family

ID=67415999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910322529.8A Pending CN110078105A (zh) 2019-04-22 2019-04-22 一种碳-氢氧化铝纳米粒子的制备方法

Country Status (1)

Country Link
CN (1) CN110078105A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105425A (ja) * 1991-10-16 1993-04-27 Matsushita Electric Works Ltd 酸化アルミニウム粉末の製造方法
KR20150006713A (ko) * 2013-07-09 2015-01-19 삼성전기주식회사 인쇄회로기판용 절연필름 및 이를 이용한 제품
CN105152164A (zh) * 2015-08-21 2015-12-16 合肥工业大学 一种石墨烯薄片的制备方法
CN108502908A (zh) * 2018-04-10 2018-09-07 宁波工程学院 一种碳包覆氢氧化铝纳米复合材料的制备方法
CN108658105A (zh) * 2018-04-10 2018-10-16 宁波工程学院 一种碳包覆氢氧化镁纳米复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105425A (ja) * 1991-10-16 1993-04-27 Matsushita Electric Works Ltd 酸化アルミニウム粉末の製造方法
KR20150006713A (ko) * 2013-07-09 2015-01-19 삼성전기주식회사 인쇄회로기판용 절연필름 및 이를 이용한 제품
CN105152164A (zh) * 2015-08-21 2015-12-16 合肥工业大学 一种石墨烯薄片的制备方法
CN108502908A (zh) * 2018-04-10 2018-09-07 宁波工程学院 一种碳包覆氢氧化铝纳米复合材料的制备方法
CN108658105A (zh) * 2018-04-10 2018-10-16 宁波工程学院 一种碳包覆氢氧化镁纳米复合材料的制备方法

Similar Documents

Publication Publication Date Title
Samaddar et al. Synthesis of nanomaterials from various wastes and their new age applications
Wang et al. Preparation of nanocellulose in high yield via chemi-mechanical synergy
Cheng et al. Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity
Kijima et al. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials
Luo et al. Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications
CN102992306B (zh) 高比表面积多级孔石墨化碳及其制备方法
Chen et al. Synthesis of mesoporous silica with different pore sizes for cellulase immobilization: Pure physical adsorption
CN105923623A (zh) 一种三维多级孔结构的石墨烯粉体的制备方法
CN108147389A (zh) 一种粉末状炭气凝胶及其制备方法和应用
CN103111292A (zh) 钯基催化剂的简易制备方法和用该方法制备的钯基催化剂
Sun et al. Nitrogen-doped carbon supported ZnO as highly stable heterogeneous catalysts for transesterification synthesis of ethyl methyl carbonate
Xin et al. Synthesis of biomass-derived mesoporous carbon with super adsorption performance by an aqueous cooperative assemble route
Kuang et al. Cellulose II nanocrystal: a promising bio-template for porous or hollow nano SiO2 fabrication
CN115193405B (zh) 负载型介孔mof@cof复合多孔粒子及其制备方法、应用
Biffis et al. The Generation of Size‐Controlled Palladium Nanoclusters Inside Gel‐Type Functional Resins: Arguments and Preliminary Results
CN108502908A (zh) 一种碳包覆氢氧化铝纳米复合材料的制备方法
Liu et al. A microwave synthesized mesoporous carbon sponge as an efficient adsorbent for Cr (VI) removal
CN108658105A (zh) 一种碳包覆氢氧化镁纳米复合材料的制备方法
CN109052371A (zh) 一种氧化石墨烯分散碳纳米管溶液及其制备方法
CN113975390B (zh) 一种改性天然黑色素核壳纳米颗粒及其制备方法和应用
CN105776180B (zh) 一种纳米级多孔碳微球的制备方法
CN104843677B (zh) 多孔石墨烯及其制备方法
CN107413314B (zh) 一种去除废水中铬的方法
CN110294469A (zh) 一种三维石墨烯复合材料及其制备方法
CN110078105A (zh) 一种碳-氢氧化铝纳米粒子的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190802