CN110077483A - 一种负压吸附机器人及变吸附力曲面运动控制方法 - Google Patents

一种负压吸附机器人及变吸附力曲面运动控制方法 Download PDF

Info

Publication number
CN110077483A
CN110077483A CN201910407641.1A CN201910407641A CN110077483A CN 110077483 A CN110077483 A CN 110077483A CN 201910407641 A CN201910407641 A CN 201910407641A CN 110077483 A CN110077483 A CN 110077483A
Authority
CN
China
Prior art keywords
robot
adsorption capacity
adsorption
pressure
sucker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910407641.1A
Other languages
English (en)
Other versions
CN110077483B (zh
Inventor
刘刚峰
莫昊
李长乐
张学贺
赵杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910407641.1A priority Critical patent/CN110077483B/zh
Publication of CN110077483A publication Critical patent/CN110077483A/zh
Application granted granted Critical
Publication of CN110077483B publication Critical patent/CN110077483B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • F16L55/32Constructional aspects of the propulsion means, e.g. towed by cables being self-contained

Abstract

一种负压吸附机器人及变吸附力曲面运动控制方法,涉及特种机器人技术领域。预先测得机器人及负载总重、机器人曲面运动的等效摩擦系数、吸附力对照表,机器人沿曲面运动过程中,位姿传感器实时检测机器人位姿,压力传感器实时检测当前吸附力,距离传感器实时检测机器人底部与曲面的间隙高度,上述信息实时传输至控制器处理。当曲面的曲率或坡度发生变化时,控制器将机器人位姿代入临界吸附力计算中,得出当前所需吸附力;参照对照表,改变吸附力调节装置的参数,并通过传感系统反馈信息进行闭环控制,则在保证机器人曲面运动可靠吸附的前提下,既不会由于吸附力过大导致运动阻力过大或过度吸合,也不会由于吸附力过小造成运动不稳定甚至滑落。

Description

一种负压吸附机器人及变吸附力曲面运动控制方法
技术领域
本发明涉及特种机器人技术领域,尤其涉及一种负压吸附机器人及利用该机器人变吸附力曲面运动控制方法。
背景技术
在工程实施或应用过程中,工程机械或作业人员的支撑面或作业面常常难以保证恒为水平面,所以实践中需解决曲面作业问题。现有技术多采用吊索、工程车辆、搭建脚手架等方式,人为制造出水平支撑面并通过作业人员手动作业来解决。这些方法存在灵活性差、成本高、作业效率低以及作业人员危险性高等问题。
通过特种机器人可以避免使用上述方法,并替代作业人员实现部分任务的机器人作业。目前多采用磁吸附、负压吸附、静电吸附等吸附式移动机器人来解决曲面作业问题。然而,常规的平面吸附机器人,如专利号为CN200610151073.6、名称为“基于负压吸附原理的小型爬壁机器人”不能满足复杂曲面运动作业任务要求。
已有的曲面吸附式运动机器人普遍存在曲率、坡度、负载变化适应性差的问题。曲率、坡度、负载等影响所需吸附力大小的因素往往不是恒定不变的:当所需吸附力变小时,机器人可能发生吸附力过大导致能耗过高、过度吸合甚至运动困难的问题;当所需吸附力变大时,机器人可能发生吸附不稳、打滑甚至翻滚脱落;当所需吸附力变化率过大时,机器人可能发生无法通过该处曲面的问题。
发明内容
本发明的目的是为解决上述曲面作业问题和已有吸附式运动机器人的不足之处,提供一种负压吸附机器人及变吸附力曲面运动控制方法。
本发明是一种负压吸附机器人及变吸附力曲面运动控制方法,它能够实现机器人曲面运动时的可靠吸附,避免机器人滑落或过度吸合,同时通过一定范围内的安全裕度实现较低能耗和较长的续航时间。
实现上述目的,本发明采取的技术方案是:
一种负压吸附机器人,包括机器人本体及控制器;所述负压吸附机器人还包括传感系统及变吸附力装置,所述传感系统包括位姿传感器、压力传感器和距离传感器,所述变吸附力装置包括吸附力调节装置、驱动板及间隙保持装置;所述吸附力调节装置包括风机、吸盘及密封裙,所述机器人本体包括四个模块化全向运动机构以及车体底盘及框架,所述四个模块化全向运动机构均包括麦克纳姆轮、驱动电机及支架;
所述吸盘为矩形框结构,吸盘的上端为封闭端,下端为敞口端,吸盘的封闭端中部设有出风口,所述风机机体安装在吸盘内的上方中部,风机的离心风扇设置在吸盘外部上方中部,吸盘的任意两个相对侧壁的下端面为向下凸出的圆弧面,吸盘四个侧壁的下端面均固定有密封裙,固定在两个所述圆弧面上的所述密封裙的型线与曲面相一致,密封裙与所述曲面之间设有间隙;所述吸附力调节装置的密封裙始终与曲面形成恒定高度的气隙,以实现稳定吸附;所述车体底盘及框架固定在吸盘内并位于风机的机体下方,每个所述麦克纳姆轮均安装在对应的驱动电机输出轴上,每个所述驱动电机均安装在对应的支架上,四个所述支架均与车体底盘及框架固定连接;所述控制器及位姿传感器均固定在车体底盘及框架上,所述压力传感器和距离传感器均固定在吸盘内壁的下端,位姿传感器、压力传感器和距离传感器的信号输出端分别与控制器各自对应的信号输入端相连接,所述驱动板固定在风机的机体上,控制器的控制信号输出端与驱动板的控制信号输入端相连接,驱动板的控制信号输出端与风机的控制信号输入端相连接,控制器还控制四个驱动电机的启停;所述间隙保持装置与车体底盘及框架下端面固定连接。
一种利用负压吸附机器人实现变吸附力曲面运动控制方法,所述方法步骤如下:
步骤一:所述机器人工作前,预先测得机器人及负载总重、机器人曲面运动等效摩擦系数,预先制作吸附力对照表并存储在控制器内;
步骤二:机器人进入预先设定的初始位置,控制器根据预知的相关参数设置吸附力调节装置的初始参数,从而使机器人稳定吸附在曲面上;
步骤三:机器人沿所述曲面运动过程中,所述位姿传感器实时检测机器人位姿,所述压力传感器实时检测当前吸附力,所述距离传感器实时检测所述吸附力调节装置与曲面的间隙高度,上述所有传感器信息实时传输至控制器内进行处理;
步骤四:当曲面的曲率或坡度发生变化时,控制器将当前时刻机器人位姿代入临界吸附力计算公式中,得出当前所需吸附力,然后参照所述对照表,改变吸附力调节装置的调节参数,并通过传感系统反馈信息实时调整,从而保证机器人沿曲面运动时可靠吸附。
本发明相对于现有技术的有益效果是:
一、本发明解决了工程实施过程中工程机械或作业人员的支撑面或作业面为非水平曲面时,机器人代替实现曲面运动的问题,尤其是高楼的竖直墙面、狭窄的管道内壁、现代建筑中的复杂曲面下的可靠吸附运动。
二、本发明不仅适用于弧形曲面下的变吸附力控制,还适用于机器人运动或工程应用中常出现的坡面、竖直壁面、一定曲率变化率下的不规则曲面运动时的变吸附力控制,具备较好的曲面类型、曲面曲率、吸附方式、曲面材质的适应性和广阔的应用前景。
三、本发明通过间隙保持装置的硬件限位及控制器中的控制程序的软件限位(双保险),使间隙高度始终在一定变化范围,有效避免间隙过高时能耗过高、间隙较低时可能存在的底盘干涉或过度吸合问题,同时保证间隙高度不会发生突变,提升了吸附的稳定性。
四、本发明有效解决了吸附式曲面运动机器人可靠性差或能耗高的问题,提供了一种基于位姿信息的负压吸附机器人及变吸附力曲面运动控制方法,使吸附力始终在临界吸附力一定安全裕度内变化,解决吸附力过低时运动不稳定,吸附力过高时能耗过高等问题,具有可靠性高、灵活性好、成本低、效率高、能耗低、工作时间长、安全性好等优势。
附图说明
图1是本发明的一种负压吸附机器人的主视结构示意图;
图2是本发明的一种负压吸附机器人的主视结构示意图,图中未表示间隙保持装置;
图3是本发明的一种负压吸附机器人吸附在曲面上的受力分析图,图中Ff表示摩擦力;FN表示支持力;FP表示当前所需吸附力;FG表示重力;θ表示机器人重力与吸附力之间的夹角;
图4是单个模块化全向运动机构的轴测图;
图5是本发明的一种负压吸附机器人的仰视结构的轴测图;
图6是本发明的一种负压吸附机器人运动控制示意图。
图中,各部件名称及标号如下:
1-机器人本体;11-模块化全向运动机构;111-麦克纳姆轮;112-驱动电机;113-支架;12-车体底盘及框架;2-传感系统;21-位姿传感器;22-压力传感器、23-距离传感器;3-变吸附力装置;31-附力调节装置;311-风机、3111-离心风扇;3112-主风机电机;312-吸盘;313-密封裙;32-驱动板;33-间隙保持装置;331-滚珠;332-支座;333-支撑弹簧;4-控制器;
具体实施方式
下面将结合本发明中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
具体实施方式一:如图1-图5所示,本实施方式记载了一种负压吸附机器人,包括机器人本体1及控制器4;所述负压吸附机器人还包括传感系统2及变吸附力装置3,所述传感系统2包括位姿传感器21、压力传感器22和距离传感器23,所述变吸附力装置3包括吸附力调节装置31(产生可变吸附力)、驱动板32及间隙保持装置33;所述吸附力调节装置31包括风机311、吸盘312及密封裙313,所述机器人本体1包括四个模块化全向运动机构11以及车体底盘及框架12,所述四个模块化全向运动机构11均包括麦克纳姆轮111、驱动电机112及支架113;
所述吸盘312为矩形框结构,吸盘312的上端为封闭端,下端为敞口端,吸盘312的封闭端中部设有出风口,所述风机311机体安装在吸盘312内的上方中部,风机311的离心风扇3111设置在吸盘312外部上方中部,吸盘312的任意两个相对侧壁的下端面为向下凸出的圆弧面,吸盘312四个侧壁的下端面均固定有密封裙313,固定在两个所述圆弧面上的所述密封裙313的型线与曲面相一致,密封裙313与所述曲面之间设有间隙;所述吸附力调节装置31的密封裙313始终与曲面形成恒定高度的气隙,以实现稳定吸附;所述车体底盘及框架12固定在吸盘312内并位于风机311的机体下方,每个所述麦克纳姆轮111均安装在对应的驱动电机112输出轴上,每个所述驱动电机112均安装在对应的支架113上,四个所述支架113均与车体底盘及框架12固定连接;所述控制器4及位姿传感器21均固定在车体底盘及框架12上,所述压力传感器22和距离传感器23均固定在吸盘312内壁的下端,位姿传感器21、压力传感器22和距离传感器23的信号输出端分别与控制器4各自对应的信号输入端相连接,所述驱动板32固定在风机311的机体上,控制器4的控制信号输出端与驱动板32的控制信号输入端相连接,驱动板32的控制信号输出端与风机311的控制信号输入端相连接(驱动板32用于接收控制器4电信号,并通过改变电流等信号调节吸附力,通过调节驱动板32输出电压,改变风机311的转速,从而改变吸附力),控制器4还控制四个驱动电机112的启停;所述间隙保持装置33与车体底盘及框架12下端面固定连接。
所述风机311包括离心风扇3111及主风机电机3112;所述主风机电机3112固定在吸盘312内的上方中部,主风机电机3112的输出轴转动穿出吸盘312所述出风口并与离心风扇3111固定连接。
所述四个驱动电机112均为减速直流伺服电机或直流无刷电机
所述吸盘312的材质是硅胶、聚氨酯或丁腈橡胶。
所述密封裙313的材质为毛毡布、纺织纤维布、橡胶或树脂。
本实施方式中,所述位姿传感器21用于实时检测机器人位姿,所述压力传感器22用于实时检测当前吸附力,所述距离传感器23用于实时检测机器人底部与管道内壁曲面的间隙高度。
具体实施方式二:如图1所示,本实施方式是对具体实施方式一作出的进一步说明,所述位姿传感器21为三轴陀螺仪(所述三轴陀螺仪可实时检测机器人位姿,如依据机器人自身所在平面与水平面及竖直面的夹角,从而计算出机器人重力与吸附力之间的夹角θ)。
具体实施方式三:如图1所示,本实施方式是对具体实施方式一作出的进一步说明,所述间隙保持装置33包括滚珠331、支座332及支撑弹簧333;所述支撑弹簧333一端与车体底盘及框架12下端面固定连接,支撑弹簧333另一端与支座332固定连接,所述滚珠331与支座332球铰接,滚珠331的1/2部分露在支座332外部,滚珠331的下表面与密封裙313的下表面位于同一水平面上。
间隙保持装置33能够通过硬件限位方式(滚珠331和支撑弹簧333)保证吸盘312上的密封裙313与曲面间隙不会过小,保证变吸附力装置3与曲面的间隙高度在2-5mm范围内变化,同时起到减小间隙高度变化率及缓冲隔振的作用。
具体实施方式四:如图1、图5所示,本实施方式是对具体实施方式一作出的进一步说明,四个所述麦克纳姆轮111均独立驱动,四个麦克纳姆轮111轴线与所在位置的曲面法线相垂直。
具体实施方式五:如图4、图5所示,本实施方式是对具体实施方式一作出的进一步说明,每个所述麦克纳姆轮111上的所有辊子与麦克纳姆轮111的轴线均成45°夹角,所述四个麦克纳姆轮111呈矩阵形式布置,位于左侧的两个麦克纳姆轮111为一组,位于右侧的两个麦克纳姆轮111为一组,每组中的两个麦克纳姆轮111的辊子轴线对称设置,位于每条对角线上的两个麦克纳姆轮111的辊子轴线方向相一致。保证与曲面可靠接触并实现全向移动。
四个麦克纳姆轮111,分别定义为轮a、轮b、轮c、轮d,四个麦克纳姆轮111以ABAB形式布局,见图6所示。
(1)当轮a、轮b、轮c、轮d以同一转速正转时,机器人沿正向运动;
(2)当轮a、轮c同一转速正转,轮b、轮d以同一转速反转时,机器人沿侧向运动;
(3)当轮a、轮c同一转速正转,轮b、轮d静止时,机器人沿正向和侧向复合运动;
(4)当轮a、轮b同一转速正转,轮c、轮d以同一转速反转时,机器人沿自身轴线逆时针转动。
具体实施方式六:如图1所示,本实施方式是对具体实施方式一作出的进一步说明,所述吸附力调节装置31与曲面的间隙高度为2-5mm(保持在移动高度范围内,保证吸附可靠的同时避免过度吸合、车体底盘干涉、壁面磨损等)。
具体实施方式七:如图1-图3所示,本实施方式记载了一种利用具体实施方式一~六任一实施方式所述的负压吸附机器人实现变吸附力曲面运动控制方法,所述方法步骤如下:
步骤一:所述机器人工作前,预先测得机器人及负载总重、机器人曲面运动等效摩擦系数,预先制作吸附力对照表(吸附力由实验测得)并存储在控制器4内;
步骤二:机器人进入预先设定的初始位置,控制器4根据预知的相关参数(具体指机器人及负载总重,等效摩擦系数、初始位置处机器人重力与吸附力之间的夹角θ)设置吸附力调节装置31的初始参数,从而使机器人稳定吸附在曲面上;
步骤三:机器人沿所述曲面运动过程中,所述位姿传感器21实时检测机器人位姿,所述压力传感器22实时检测当前吸附力,所述距离传感器23实时检测所述吸附力调节装置31与曲面的间隙高度,上述所有传感器信息实时传输至控制器4内进行处理;
步骤四:当曲面的曲率或坡度发生变化时,控制器4将当前时刻机器人位姿代入临界吸附力计算公式中,得出当前所需吸附力,然后参照所述对照表,改变吸附力调节装置31的调节参数(驱动板32输出电压),并通过传感系统2反馈信息实时调整(进行闭环控制),从而保证机器人沿曲面运动时可靠吸附。
具体实施方式八:本实施方式是对具体实施方式七作出的进一步说明,步骤四中,所述临界吸附力计算公式(1)和当前所需吸附力计算公式(2)如下:
其中:Fpmin表示临界吸附力;Fp表示当前所需吸附力;FG表示重力;μ表示摩擦系数;θ表示机器人重力与吸附力之间的夹角;θ0表示吸附力调节装置启动位置;δ1表示密封裙间隙压力损失等效系数;δ2表示吸盘气体流动压力损失等效系数;δ3表示曲面误差安全系数。
具体实施方式九:本实施方式是对具体实施方式七作出的进一步说明,步骤三中,所述机器人沿曲面运动过程中,吸附力始终保持在临界吸附力之上(即保持合理的安全裕度,且变吸附力控制具备较好的实时性,从而实现吸附可靠性与能耗的平衡)。
具体实施方式十:如图1所示,本实施方式是对具体实施方式七作出的进一步说明,步骤三中,所述吸附力调节装置31与曲面的间隙高度为2-5mm(保持在移动高度范围内,保证吸附可靠的同时避免过度吸合、车体底盘干涉、壁面磨损等)。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种负压吸附机器人,包括机器人本体(1)及控制器(4);其特征在于:所述负压吸附机器人还包括传感系统(2)及变吸附力装置(3),所述传感系统(2)包括位姿传感器(21)、压力传感器(22)和距离传感器(23),所述变吸附力装置(3)包括吸附力调节装置(31)、驱动板(32)及间隙保持装置(33);所述吸附力调节装置(31)包括风机(311)、吸盘(312)及密封裙(313),所述机器人本体(1)包括四个模块化全向运动机构(11)以及车体底盘及框架(12),所述四个模块化全向运动机构(11)均包括麦克纳姆轮(111)、驱动电机(112)及支架(113);
所述吸盘(312)为矩形框结构,吸盘(312)的上端为封闭端,下端为敞口端,吸盘(312)的封闭端中部设有出风口,所述风机(311)机体安装在吸盘(312)内的上方中部,风机(311)的离心风扇(3111)设置在吸盘(312)外部上方中部,吸盘(312)的任意两个相对侧壁的下端面为向下凸出的圆弧面,吸盘(312)四个侧壁的下端面均固定有密封裙(313),固定在两个所述圆弧面上的所述密封裙(313)的型线与曲面相一致,密封裙(313)与所述曲面之间设有间隙;所述吸附力调节装置(31)的密封裙(313)始终与曲面形成恒定高度的气隙,以实现稳定吸附;所述车体底盘及框架(12)固定在吸盘(312)内并位于风机(311)的机体下方,每个所述麦克纳姆轮(111)均安装在对应的驱动电机(112)输出轴上,每个所述驱动电机(112)均安装在对应的支架(113)上,四个所述支架(113)均与车体底盘及框架(12)固定连接;所述控制器(4)及位姿传感器(21)均固定在车体底盘及框架(12)上,所述压力传感器(22)和距离传感器(23)均固定在吸盘(312)内壁的下端,位姿传感器(21)、压力传感器(22)和距离传感器(23)的信号输出端分别与控制器(4)各自对应的信号输入端相连接,所述驱动板(32)固定在风机(311)的机体上,控制器(4)的控制信号输出端与驱动板(32)的控制信号输入端相连接,驱动板(32)的控制信号输出端与风机(311)的控制信号输入端相连接,控制器(4)还控制四个驱动电机(112)的启停;所述间隙保持装置(33)与车体底盘及框架(12)下端面固定连接。
2.根据权利要求1所述的一种负压吸附机器人,其特征在于:所述位姿传感器(21)为三轴陀螺仪。
3.根据权利要求1所述的一种负压吸附机器人,其特征在于:所述间隙保持装置(33)包括滚珠(331)、支座(332)及支撑弹簧(333);所述支撑弹簧(333)一端与车体底盘及框架(12)下端面固定连接,支撑弹簧(333)另一端与支座(332)固定连接,所述滚珠(331)与支座(332)球铰接,滚珠(331)的1/2部分露在支座(332)外部,滚珠(331)的下表面与密封裙(313)的下表面位于同一水平面上。
4.根据权利要求1所述的一种负压吸附机器人,其特征在于:四个所述麦克纳姆轮(111)均独立驱动,四个麦克纳姆轮(111)轴线与所在位置的曲面法线相垂直。
5.根据权利要求1所述的一种负压吸附机器人,其特征在于:每个所述麦克纳姆轮(111)上的所有辊子与麦克纳姆轮(111)的轴线均成45°夹角,所述四个麦克纳姆轮(111)呈矩阵形式布置,位于左侧的两个麦克纳姆轮(111)为一组,位于右侧的两个麦克纳姆轮(111)为一组,每组中的两个麦克纳姆轮(111)的辊子轴线对称设置,位于每条对角线上的两个麦克纳姆轮(111)的辊子轴线方向相一致。
6.根据权利要求1所述的一种负压吸附机器人,其特征在于:所述吸附力调节装置(31)与曲面的间隙高度为2-5mm。
7.一种利用权利要求1-6任一权利要求所述的负压吸附机器人实现变吸附力曲面运动控制方法,其特征在于:所述方法步骤如下:
步骤一:所述机器人工作前,预先测得机器人及负载总重、机器人曲面运动等效摩擦系数,预先制作吸附力对照表并存储在控制器(4)内;
步骤二:机器人进入预先设定的初始位置,控制器(4)根据预知的相关参数设置吸附力调节装置(31)的初始参数,从而使机器人稳定吸附在曲面上;
步骤三:机器人沿所述曲面运动过程中,所述位姿传感器(21)实时检测机器人位姿,所述压力传感器(22)实时检测当前吸附力,所述距离传感器(23)实时检测所述吸附力调节装置(31)与曲面的间隙高度,上述所有传感器信息实时传输至控制器(4)内进行处理;
步骤四:当曲面的曲率或坡度发生变化时,控制器(4)将当前时刻机器人位姿代入临界吸附力计算公式中,得出当前所需吸附力,然后参照所述对照表,改变吸附力调节装置(31)的调节参数,并通过传感系统(2)反馈信息实时调整,从而保证机器人沿曲面运动时可靠吸附。
8.根据权利要求7所述的一种利用负压机器人实现变吸附力曲面运动控制方法,其特征在于:步骤四中,所述临界吸附力计算公式(1)和当前所需吸附力计算公式(2)如下:
其中:Fpmin表示临界吸附力;Fp表示当前所需吸附力;FG表示重力;μ表示摩擦系数;θ表示机器人重力与吸附力之间的夹角;θ0表示吸附力调节装置启动位置;δ1表示密封裙间隙压力损失等效系数;δ2表示吸盘气体流动压力损失等效系数;δ3表示曲面误差安全系数。
9.根据权利要求7所述的一种利用负压机器人实现变吸附力曲面运动控制方法,其特征在于:步骤三中,所述机器人沿曲面运动过程中,吸附力始终保持在临界吸附力之上。
10.根据权利要求7所述的一种利用负压机器人实现变吸附力曲面运动控制方法,其特征在于:步骤三中,所述吸附力调节装置(31)与曲面的间隙高度为2-5mm。
CN201910407641.1A 2019-05-16 2019-05-16 一种负压吸附机器人及变吸附力曲面运动控制方法 Active CN110077483B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910407641.1A CN110077483B (zh) 2019-05-16 2019-05-16 一种负压吸附机器人及变吸附力曲面运动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910407641.1A CN110077483B (zh) 2019-05-16 2019-05-16 一种负压吸附机器人及变吸附力曲面运动控制方法

Publications (2)

Publication Number Publication Date
CN110077483A true CN110077483A (zh) 2019-08-02
CN110077483B CN110077483B (zh) 2021-10-19

Family

ID=67420436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910407641.1A Active CN110077483B (zh) 2019-05-16 2019-05-16 一种负压吸附机器人及变吸附力曲面运动控制方法

Country Status (1)

Country Link
CN (1) CN110077483B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466636A (zh) * 2019-08-27 2019-11-19 徐州鑫科机器人有限公司 一种智能调节吸力及支撑位置的爬壁机器人
CN110501468A (zh) * 2019-09-24 2019-11-26 上海材料研究所 一种拉线式扫查装置
CN111959631A (zh) * 2020-08-28 2020-11-20 广东省智能制造研究所 一种爬壁机器人及其控制方法
CN112285503A (zh) * 2020-10-26 2021-01-29 国网江苏省电力有限公司电力科学研究院 一种gis/gil局部放电检测装置
CN113002651A (zh) * 2019-12-18 2021-06-22 杭州萤石软件有限公司 足式爬壁机器人
CN113059561A (zh) * 2021-03-12 2021-07-02 华中科技大学 吸附机器人的控制方法
CN113220009A (zh) * 2021-07-08 2021-08-06 中国铁路设计集团有限公司 一种隧道衬砌检测用正压式爬壁机器人及其控制方法
CN114035591A (zh) * 2021-11-15 2022-02-11 哈尔滨工程大学 一种水下变曲率壁面运动机器人的运动切换控制方法
CN114308937A (zh) * 2022-01-13 2022-04-12 国网湖南省电力有限公司 一种gis内部管道检测清洁机器人
CN114326392A (zh) * 2021-12-16 2022-04-12 南京信息职业技术学院 双框架飞机蒙皮检测机器人连续切换运动的控制方法
CN114505269A (zh) * 2022-02-18 2022-05-17 国网电子商务有限公司 一种光伏组件无水清洗机器人及其控制方法
WO2022120183A1 (en) * 2020-12-03 2022-06-09 Saudi Arabian Oil Company Two-wheel compact inspection crawler with automatic probe normalization
CN114802512A (zh) * 2022-04-30 2022-07-29 中国建筑第八工程局有限公司 一种用于横断面为圆弧形构筑物质量检测的壁面爬行自适应机器人及控制方法
CN114802510A (zh) * 2022-03-30 2022-07-29 沈阳工业大学 一种风电机组外表面检测装置及其工作方法
CN115336939A (zh) * 2022-09-21 2022-11-15 北京史河科技有限公司 一种多腔负压吸附幕墙清洗机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994805A (zh) * 2006-11-27 2007-07-11 哈尔滨工业大学 基于负压吸附原理的小型爬壁机器人
CN102826138A (zh) * 2012-08-24 2012-12-19 华南理工大学 具有姿态自主检测和吸附面自适应能力的负压吸附模块
CN102897241A (zh) * 2012-11-09 2013-01-30 哈尔滨工业大学 基于磁吸附原理的小型轮式爬壁机器人平台
CN104960589A (zh) * 2014-08-22 2015-10-07 中科新松有限公司 全方位移动机器人装置
JP2016101887A (ja) * 2014-11-28 2016-06-02 シャープ株式会社 走行装置
CN206218047U (zh) * 2016-08-30 2017-06-06 湖南千智机器人科技发展有限公司 一种负压型爬壁机器人的负压自适应调节装置
CN109436119A (zh) * 2018-11-15 2019-03-08 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种非接触轮式爬壁机器人底盘装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994805A (zh) * 2006-11-27 2007-07-11 哈尔滨工业大学 基于负压吸附原理的小型爬壁机器人
CN102826138A (zh) * 2012-08-24 2012-12-19 华南理工大学 具有姿态自主检测和吸附面自适应能力的负压吸附模块
CN102897241A (zh) * 2012-11-09 2013-01-30 哈尔滨工业大学 基于磁吸附原理的小型轮式爬壁机器人平台
CN104960589A (zh) * 2014-08-22 2015-10-07 中科新松有限公司 全方位移动机器人装置
JP2016101887A (ja) * 2014-11-28 2016-06-02 シャープ株式会社 走行装置
CN206218047U (zh) * 2016-08-30 2017-06-06 湖南千智机器人科技发展有限公司 一种负压型爬壁机器人的负压自适应调节装置
CN109436119A (zh) * 2018-11-15 2019-03-08 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种非接触轮式爬壁机器人底盘装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张小松: "轮式悬磁吸附爬壁机器人研究", 《中国优秀硕士学术论文全文数据库(电子期刊)》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466636A (zh) * 2019-08-27 2019-11-19 徐州鑫科机器人有限公司 一种智能调节吸力及支撑位置的爬壁机器人
CN110501468A (zh) * 2019-09-24 2019-11-26 上海材料研究所 一种拉线式扫查装置
CN113002651A (zh) * 2019-12-18 2021-06-22 杭州萤石软件有限公司 足式爬壁机器人
CN111959631A (zh) * 2020-08-28 2020-11-20 广东省智能制造研究所 一种爬壁机器人及其控制方法
CN112285503A (zh) * 2020-10-26 2021-01-29 国网江苏省电力有限公司电力科学研究院 一种gis/gil局部放电检测装置
WO2022120183A1 (en) * 2020-12-03 2022-06-09 Saudi Arabian Oil Company Two-wheel compact inspection crawler with automatic probe normalization
US11760127B2 (en) 2020-12-03 2023-09-19 Saudi Arabian Oil Company Two-wheel compact inspection crawler with automatic probe normalization
CN113059561A (zh) * 2021-03-12 2021-07-02 华中科技大学 吸附机器人的控制方法
CN113220009A (zh) * 2021-07-08 2021-08-06 中国铁路设计集团有限公司 一种隧道衬砌检测用正压式爬壁机器人及其控制方法
CN113220009B (zh) * 2021-07-08 2021-09-21 中国铁路设计集团有限公司 一种隧道衬砌检测用正压式爬壁机器人及其控制方法
CN114035591A (zh) * 2021-11-15 2022-02-11 哈尔滨工程大学 一种水下变曲率壁面运动机器人的运动切换控制方法
CN114326392A (zh) * 2021-12-16 2022-04-12 南京信息职业技术学院 双框架飞机蒙皮检测机器人连续切换运动的控制方法
CN114326392B (zh) * 2021-12-16 2023-07-25 南京信息职业技术学院 双框架飞机蒙皮检测机器人连续切换运动的控制方法
CN114308937A (zh) * 2022-01-13 2022-04-12 国网湖南省电力有限公司 一种gis内部管道检测清洁机器人
CN114505269A (zh) * 2022-02-18 2022-05-17 国网电子商务有限公司 一种光伏组件无水清洗机器人及其控制方法
CN114802510A (zh) * 2022-03-30 2022-07-29 沈阳工业大学 一种风电机组外表面检测装置及其工作方法
CN114802512A (zh) * 2022-04-30 2022-07-29 中国建筑第八工程局有限公司 一种用于横断面为圆弧形构筑物质量检测的壁面爬行自适应机器人及控制方法
CN115336939A (zh) * 2022-09-21 2022-11-15 北京史河科技有限公司 一种多腔负压吸附幕墙清洗机器人

Also Published As

Publication number Publication date
CN110077483B (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
CN110077483A (zh) 一种负压吸附机器人及变吸附力曲面运动控制方法
CA2331100C (en) Omnidirectional vehicle and method of controlling the same
CN202392374U (zh) 陀螺式动态自平衡云台
CN107124899A (zh) 可移动装置、移动拍摄设备、可移动装置控制系统及方法
CN103939718A (zh) 增稳云台及其控制方法和携带所述增稳云台的无人飞行器
CN204623835U (zh) 多轴飞行器
CN106828724A (zh) 轮式自平衡装置
CN116062488A (zh) 一种移动式码垛机器人及使用方法
CN106428283B (zh) 一种内墙角攀爬机器人
CN111376976A (zh) 一种可适用于不平整地面的移动机器人底盘及其控制方法
CN207190706U (zh) 移动式机器人高度自适应底盘
CN111055285B (zh) 一种仿人柔性关节手臂变负载工况下的振动抑制方法
CN107028547B (zh) 一种行走稳定的幕墙机器人及控制方法
CN111546374B (zh) 一种应用于足式机器人行走测试的主动牵引保护系统
JPH03294189A (ja) 壁面走行ロボット
CN110900018B (zh) 一种悬臂机械手
CN114013230B (zh) 一种具备墙面栖停与爬行能力的四旋翼机器人
JP2000069781A (ja) 直線方向駆動機構の制御装置
JP2572484Y2 (ja) 壁面移動装置
CN208181253U (zh) 一种全方位双差速视觉导航智能agv车体结构
CN114633827A (zh) 一种多维空间作业的新型机器人及其控制方法
CN206187154U (zh) 一种内墙角攀爬机器人
CN111605639A (zh) 一种具备墙边检测与转向功能的新型爬壁车
JP2016222217A (ja) 車台走行装置
KR100476287B1 (ko) 페이스트 도포기

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant