CN110075873B - 分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料及其制备方法与应用 - Google Patents

分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料及其制备方法与应用 Download PDF

Info

Publication number
CN110075873B
CN110075873B CN201910355221.3A CN201910355221A CN110075873B CN 110075873 B CN110075873 B CN 110075873B CN 201910355221 A CN201910355221 A CN 201910355221A CN 110075873 B CN110075873 B CN 110075873B
Authority
CN
China
Prior art keywords
mos
nano material
assembled
preparation
composite nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910355221.3A
Other languages
English (en)
Other versions
CN110075873A (zh
Inventor
郎建平
薛江燕
倪春燕
虞虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201910355221.3A priority Critical patent/CN110075873B/zh
Publication of CN110075873A publication Critical patent/CN110075873A/zh
Application granted granted Critical
Publication of CN110075873B publication Critical patent/CN110075873B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种分层自组装的Fe‑MoS2/Ni3S2/NF复合纳米材料的制备方法,包括以下步骤:将二价铁盐与四硫代钼酸四苯基膦溶于DMF和水的混合溶剂中,加入泡沫镍,于180~200℃下反应3~12h,即得所述的Fe‑MoS2/Ni3S2/NF复合纳米材料。本发明还公开了由上述方法制备的分层自组装的Fe‑MoS2/Ni3S2/NF复合纳米材料,以及其作为电催化剂的应用。本发明的制备方法,通过溶剂热反应一步即可得到目标产物,操作简单;在制备过程中无须引入表面活性剂进行形貌调控,产物表面洁净易清洗。

Description

分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料及其制备方法 与应用
技术领域
本发明涉及纳米材料制备技术领域,具体涉及一种分层自组装的 Fe-MoS2/Ni3S2/NF复合纳米材料及其制备方法与应用。
背景技术
近年来,氢能作为一种洁净,高效的新能源成为了化石能源的重要替代品,加速关于氢能的产生和储存的研究也具有重要的意义。目前工业上关于氢气的生产主要有三种途径:蒸汽甲烷转化、煤的气化以及水的电解,其中前两者生产了超过总量95%的氢气,而通过电解水产氢的量仅有4%左右(参见M.Y.Wang, Z.Wang,X.Z.Gong and Z.C.Guo,Renew.Sust.Energ.Rev.,2014,29,573-588.)。但是电解水产氢的方法依然具有重要的研究价值,其中主要的原因是反应的原料是储量丰富且可再生的水资源。水的电解分解涉及两个半反应:氢气析出反应(HER)和氧气析出反应(OER)。目前最常用的HER和OER电催化剂分别是贵金属衍生的Pt/C和Ir/C电极。然而,价格高昂和总含量极低限制了它们的大规模应用。因此,科学家们开始关注廉价且高效的非贵金属基电催化剂,如过渡金属硫化物,过渡金属氧化物,氢氧化物,碳化物,氮化物,磷化物等。其中,钼基材料,特别是与Pt有类似电子结构的二硫化钼(MoS2),被认为是贵金属催化剂的关键替代品。
制备电化学应用的工作电极通常有两种策略。第一种最常用的技术是将粉末形式的催化剂与粘合剂均匀混合后的浆料涂抹在玻碳电极表面。第二种是将负载了催化剂的导电基底材料直接作为工作电极。在导电基底上原位合成纳米材料可以潜在地改善电催化剂的性能,因为它们具有高比表面积,高稳定性以及催化剂和导电基底之间的协同效应。泡沫镍作为一种低成本的且具有高比表面积和优异的电子传导性的商业多孔材料,现已被广泛用作为电催化剂的基底材料。最近,Gong等人报道了在泡沫镍上生长的MoS2/NiS非均相催化剂,在 15mA cm-2的电流密度下,OER过电势的值仅为271mV,这远低于块状MoS2 (参见Z.J.Zhai,C.Li,L.Zhang,H.C.Wu,L.Zhang,N.Tang,W.Wang and J.L. Gong,J.Mater.Chem.A,2018,6,9833–9838.)。然而,这种MoS2/NiS催化剂的合成需要多步反应以及450℃下的高温硫化。Feng和他的同事虽然通过一锅法在泡沫镍上成功地制备了MoS2/Ni3S2异质结构但所得产物没有均匀的形貌 (参见J.Zhang,T.Wang,D.Pohl,B.Rellinghaus,R.H.Dong,S.H.Liu,X.D. Zhuang and X.L.Feng,Angew.Chem.Int.Ed.,2016,55,6702-6707.)。
因此,将钼基材料与导电基底材料在温和反应条件下偶联以获得高活性和高稳定性的电催化剂用于电解水仍然是一个挑战。成功地解决该问题不仅对电化学方面的基础研究有着重要的意义,还能够有效地推动纳米材料在能源领域的实际应用。
发明内容
本发明要解决的技术问题是提供一种Fe-MoS2/Ni3S2/NF复合纳米材料的制备方法,通过溶剂热反应一步即可得到目标产物,操作简单;在制备过程中无须引入表面活性剂进行形貌调控,产物表面洁净易清洗。
为了解决上述技术问题,本发明提供了一种分层自组装的 Fe-MoS2/Ni3S2/NF复合纳米材料的制备方法,包括以下步骤:
将二价铁盐与四硫代钼酸四苯基膦溶于DMF和水的混合溶剂中,加入泡沫镍,于180~200℃下反应3~12h,即得所述的Fe-MoS2/Ni3S2复合纳米材料。其中,Fe代表铁离子,MoS2代表二硫化钼,Ni3S2代表二硫化三镍,NF代表泡沫镍(nickle foam)。
进一步地,所述二价铁盐为无水醋酸亚铁。
进一步地,所述二价铁盐与四硫代钼酸四苯基膦的摩尔比为1~5:5。更进一步地,所述二价铁盐与四硫代钼酸四苯基膦的摩尔比为3:5。
进一步地,还包括对得到的产物进行洗涤和干燥的步骤。更进一步地,所述洗涤采用的溶剂为去离子水和无水乙醇。
进一步地,采用鼓风干燥箱进行干燥。
进一步地,干燥温度为40~60℃,干燥时间为2~12h。更进一步地,干燥温度为60℃,干燥时间为12h。
本发明另一方面还提供了由所述的方法制备得到的分层自组装的 Fe-MoS2/Ni3S2/NF复合纳米材料。
此外,本发明还提供了所述的分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料作为电催化剂在碱性条件下催化氢气析出反应、氧气析出反应和全水解反应的应用。
本发明的有益效果:
1.本发明通过溶剂热反应一步即可得到目标产物,操作简单。
2.本发明采用“自下而上”的湿化学合成方法,得到的产物形貌均匀。
3.本发明在制备过程中直接引入了导电基底泡沫镍,硫源先与泡沫镍快速反应生成一层二硫化三镍,随后反应生成的脊柱状的Fe-MoS2纳米棒均匀且致密的锚在二硫化三镍的表面,得到了分层自组装的Fe-MoS2/Ni3S2/NF材料。
4.本发明制备的Fe-MoS2/Ni3S2/NF纳米材料在碱性电解质(pH=14)中催化HER和OER的反应,表现出了优异的催化性能,在10mA·cm-2的电流密度下,HER过电势的值仅为130.6mV,塔菲尔斜率也低至112.7mV·dec-1。在10 mA·cm-2的电流密度下,OER过电势的值仅为252mV,塔菲尔斜率也低至59.5 mV·dec-1
6.本发明制备的Fe-MoS2/Ni3S2/NF纳米材料,在碱性电解质中全水解的表现,仅需1.61V就能实现全水解。
附图说明
图1是Fe-MoS2/Ni3S2/NF的X-射线粉末衍射(PXRD)图;
图2是Fe-MoS2/Ni3S2/NF的扫描电镜(SEM)图,标尺为(a)6μm;(b) 600nm;
图3是Fe-MoS2/Ni3S2/NF的透射电镜(TEM)图(a),高分辨透射电镜 (HRTEM)图(b),选区电子衍射(SAED)图(c),能量分布面扫描 (EDX-Mapping)图(d);
图4是Fe-MoS2/Ni3S2/NF的能量色散X射线光谱(EDX)图;
图5是Fe-MoS2/Ni3S2/NF的X射线光电子能谱(XPS)图;
图6是Fe-MoS2/Ni3S2/NF在1.0M KOH中的HER极化曲线图(a),塔菲尔斜率图(b),过电势和塔菲尔斜率数值柱状图(c),循环2000次前后的极化曲线对比图(d);
图7是Fe-MoS2/Ni3S2/NF在1.0M KOH电解质中的OER极化曲线图(a), OER相应的塔菲尔斜率图(b),循环2000次前后的极化曲线对比图(c),双层电容图(d),尼奎斯特图(e)和计时电位滴定图(f);
图8是Fe-MoS2/Ni3S2/NF在1.0M KOH中全水解的极化曲线图(a)和计时电位滴定图(b)。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1:Fe-MoS2/Ni3S2/NF的制备
分别称取45mg(0.05mmol)的四硫代钼酸四苯基膦和1.7mg(0.01mmol) 的无水醋酸亚铁固体,溶于10mL N,N-二甲基甲酰胺(DMF)和2mL去离子水中配成溶液,然后将溶液转入含有聚四氟乙烯内衬的不锈钢反应釜中,浸入一片泡沫镍(1cm*2cm),密封后置于烘箱中,在200℃下反应12h。反应结束后自然冷却至室温,经去离子水和乙醇洗涤,于鼓风干燥箱中60℃干燥后得到分层自组装的Fe-MoS2/Ni3S2/NF-1,其中,Fe代表铁离子,MoS2代表二硫化钼,Ni3S2代表二硫化三镍,NF代表泡沫镍(nickle foam)。Fe-MoS2/Ni3S2/NF-2, 3的合成方法与1类似,只是分别使用了0.03mmol和0.05mmol的无水醋酸亚铁。
如图1所示,Fe-MoS2/Ni3S2/NF的粉末衍射图谱(PXRD)和MoS2(JCPDS card no.01-77-1716)与Ni3S2(JCPDS card no.01-071-1682)的峰吻合。
如图2所示,由纳米片自组装的脊柱状Fe-MoS2纳米棒均匀且致密的锚在 Ni3S2表面。
如图3(a)所示,透射电镜图再次验证了Fe-MoS2是由纳米片自组装而成的脊柱状纳米棒。如图3(b)所示,0.27nm的晶格条纹与二硫化钼的(100) 晶面吻合,二硫化钼的层间距是0.97nm。如图3(c)所示,Fe-MoS2的结晶性较差,这也与PXRD的峰弱保持一致。如图3(d)所示,Fe-MoS2的每种元素都分布均匀。
如图4所示,S和Mo的比例大于2,这是由于多了Ni3S2相。
如图5所示,Fe-MoS2/Ni3S2/NF光电子能谱(XPS)显示Ni是+2和+3的混合价态,Mo是+4价,Fe是+3价,S是-2价,且162.22eV和164.23eV的峰归属于Mo-S键,161.23eV和163.30eV的峰归属于Ni-S键。
实施例2:碱性电解质中HER性能测试
整个电催化测试都是在标准的三电极体系下进行,其中工作电极为Fe-MoS2/Ni3S2/NF(有效面积为0.5cm2),参比电极为Ag/AgCl(饱和氯KCl 溶液)电极,辅助电极为铂丝电极。用于线性扫描伏安法(LSV)测试的电解质溶液为1M KOH溶液,电势的扫描范围为-1.6~-1V,扫描速度为2mV/s,测试的数据都经过了iR的补偿。
如图6(a),(b)和(c)所示,Fe-MoS2/Ni3S2/NF-2表现出最优异的HER 电催化性能,在10mA·cm-2的电流密度下,过电势的值仅为130.6mV,塔菲尔斜率也低至112.7mV·dec-1。在经过2000次的循环伏安扫描以后,性能仅有一点下降(图6(d))。
实施例3:碱性电解质中OER性能测试
整个电催化测试都是在标准的三电极体系下进行,其中工作电极为 Fe-MoS2/Ni3S2/NF(有效面积为0.5cm2),参比电极为Ag/AgCl(饱和氯KCl 溶液)电极,辅助电极为铂丝电极。用于线性扫描伏安法(LSV)测试的电解质溶液为1M KOH溶液,电势的扫描范围为0~0.8V,扫描速度为2mV/s,测试的数据都经过了iR的补偿。
如图7(a)和(b)所示,Fe-MoS2/Ni3S2/NF-2表现出最优异的OER电催化性能,在10mA·cm-2的电流密度下,过电势的值仅为252mV,塔菲尔斜率也低至59.5mV·dec-1。经过2000次循环伏安扫描后,OER的性能仅改变了一点(图6(c))。Fe-MoS2/Ni3S2/NF-2的优异性能可以归结于较高的电活性表面积和低电荷转移电阻(图7(d)和(e))。Fe-MoS2/Ni3S2/NF-2也表现出优异的稳定性,在恒电流计时电位测试时,经过180h后,电催化性能没有明显的下降(图7(f))。
实施例4:碱性电解质中全水解测试
整个电催化测试都是在双电极体系下进行的,其中两个电极均为 Fe-MoS2/Ni3S2/NF-2(有效面积为0.5cm2)。用于线性扫描伏安法(LSV)测试的电解质溶液为1M KOH溶液,电势的扫描范围为0.8~2V,扫描速度为5 mV/s。
如图8(a)所示,Fe-MoS2/Ni3S2/NF-2表现出优异的全水解催化性能,仅需1.61V就可达到10mA·cm-2的电流密度。同时, Fe-MoS2/Ni3S2/NF-2//Fe-MoS2/Ni3S2/NF-2也表现出优异的稳定性,在10mA· cm-2的电流密度下稳定20小时,性能仅降低了7.5%(图8(b))。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (8)

1.一种分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料的制备方法,其特征在于,包括以下步骤:
将二价铁盐与四硫代钼酸四苯基膦溶于DMF和水的混合溶剂中,加入泡沫镍,于180~200 ℃下反应3~12 h,即得所述的Fe-MoS2/Ni3S2/NF复合纳米材料。
2.如权利要求1所述的分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料的制备方法,其特征在于,所述二价铁盐为无水醋酸亚铁。
3.如权利要求1所述的分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料的制备方法,其特征在于,所述二价铁盐与四硫代钼酸四苯基膦的摩尔比为1~5 : 5。
4.如权利要求3所述的分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料的制备方法,其特征在于,所述二价铁盐与四硫代钼酸四苯基膦的摩尔比为3 : 5。
5.如权利要求1所述的分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料的制备方法,其特征在于,还包括对得到的产物进行洗涤和干燥的步骤。
6.如权利要求5所述的分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料的制备方法,其特征在于,所述洗涤采用的溶剂为去离子水和无水乙醇。
7.如权利要求5所述的分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料的制备方法,其特征在于,干燥温度为40~60 ℃,干燥时间为2~12 h。
8.如权利要求5所述的分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料的制备方法,其特征在于,干燥温度为60 ℃,干燥时间为12 h。
CN201910355221.3A 2019-04-29 2019-04-29 分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料及其制备方法与应用 Active CN110075873B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910355221.3A CN110075873B (zh) 2019-04-29 2019-04-29 分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910355221.3A CN110075873B (zh) 2019-04-29 2019-04-29 分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110075873A CN110075873A (zh) 2019-08-02
CN110075873B true CN110075873B (zh) 2021-11-23

Family

ID=67417557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910355221.3A Active CN110075873B (zh) 2019-04-29 2019-04-29 分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110075873B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592611A (zh) * 2019-09-23 2019-12-20 苏州大学 催化电极及其制备方法及应用
CN110694646B (zh) * 2019-10-22 2021-01-22 上海交通大学 一种双金属硫化物复合电催化剂及其制备方法与应用
CN111774073B (zh) * 2020-06-11 2022-05-10 安徽师范大学 一种Ag纳米粒子负载硫化镍纳米片薄膜结构材料及其制备方法和应用
CN113957474B (zh) * 2020-07-03 2023-03-28 中国科学院大连化学物理研究所 一种异质结结构的电解水材料及其制备方法与应用
CN114016050B (zh) * 2021-10-31 2024-04-05 盐城工学院 一种铁钼掺杂硫化镍/泡沫镍电极及其制备方法与应用
CN114318407B (zh) * 2021-12-03 2023-06-16 华南理工大学 一种用于电催化析氢的1T-MoS2/NiS异质界面结构催化剂及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261489A (zh) * 2015-11-04 2016-01-20 安徽师范大学 一种PPy/MoS2/Ni3S2复合材料的制备方法及应用
CN108060411A (zh) * 2017-11-17 2018-05-22 中山大学 一种一步法制备高效水分解的金属硫化物电极材料的方法
CN108714427A (zh) * 2018-04-27 2018-10-30 浙江大学 一种析氧电催化剂及其制备方法和应用
CN108816250A (zh) * 2018-06-06 2018-11-16 北京师范大学 一种纳米棒阵列复合材料及其制备方法和应用
CN109046383A (zh) * 2018-07-31 2018-12-21 山东大学 一种MoS2/Ni3S2电极材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261489A (zh) * 2015-11-04 2016-01-20 安徽师范大学 一种PPy/MoS2/Ni3S2复合材料的制备方法及应用
CN108060411A (zh) * 2017-11-17 2018-05-22 中山大学 一种一步法制备高效水分解的金属硫化物电极材料的方法
CN108714427A (zh) * 2018-04-27 2018-10-30 浙江大学 一种析氧电催化剂及其制备方法和应用
CN108816250A (zh) * 2018-06-06 2018-11-16 北京师范大学 一种纳米棒阵列复合材料及其制备方法和应用
CN109046383A (zh) * 2018-07-31 2018-12-21 山东大学 一种MoS2/Ni3S2电极材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity";Jian Zhang et al.;《Angewandte Chemie》;20160421;第128卷;第6814-6819页 *
"Synthesis of MoS2/Ni3S2 heterostructure for efficient electrocatalytic hydrogen evolution reaction through optimizing the sulfur sources selection";Xiaolei Liu et al.;《Applied Surface Science》;20180804;第459卷;第422-429页 *
"泡沫镍支撑的脊柱状Fe-MoS2/Ni3S2的电催化研究";薛江燕等;《中国化学会2019年中西部地区无机化学化工学术研讨会会议论文集》;20190419;第324页 *

Also Published As

Publication number Publication date
CN110075873A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
CN110075873B (zh) 分层自组装的Fe-MoS2/Ni3S2/NF复合纳米材料及其制备方法与应用
Li et al. Hierarchical porous Co9S8/nitrogen-doped carbon@ MoS2 polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction
Xiong et al. Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting
Liu et al. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions
Lv et al. Urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies enable efficient ammonia electrosynthesis
Du et al. Electrodeposited amorphous cobalt phosphosulfide on Ni foams for highly efficient overall water splitting
Zhou et al. In situ hydrothermal growth of metallic Co9S8-Ni3S2 nanoarrays on nickel foam as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions
Wang et al. Metal-organic-framework template-derived hierarchical porous CoP arrays for energy-saving overall water splitting
Cao et al. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays
Sarwar et al. Facile microwave approach towards high performance MoS2/graphene nanocomposite for hydrogen evolution reaction
Zhou et al. Ultrathin nanosheets-assembled CuO flowers for highly efficient electrocatalytic water oxidation
Zheng et al. Excess Se-doped MoSe2 and nitrogen-doped reduced graphene oxide composite as electrocatalyst for hydrogen evolution and oxygen reduction reaction
CN108048868B (zh) 一种氮化钼纳米棒电极材料及其制备方法和应用
CN109576730B (zh) 一种铁修饰的四氧化三钴纳米片阵列电极的制备方法及应用
Zhang et al. Bimetallic phosphoselenide nanosheets as bifunctional catalysts for 5-hydroxymethylfurfural oxidation and hydrogen evolution
CN110639566A (zh) 一种全解水催化剂及其制备方法与应用
Wang et al. Hierarchical Ni@ CNTs-bridged MoxC/Ni2P heterostructure micro-pillars for enhanced seawater splitting and Mg/seawater battery
Tong et al. Optimized hierarchical nickel sulfide as a highly active bifunctional catalyst for overall water splitting
Li et al. NiCo-BDC nanosheets coated with amorphous Ni-S thin film for high-efficiency oxygen evolution reaction and urea oxidation reaction
Yang et al. Alkali treatment of layered double hydroxide nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting
CN113457679A (zh) 一种羟基氧化钴催化剂制备方法和应用
Xiao et al. Novel peapod-like Ni2P@ N-doped carbon nanorods array on carbon fiber for efficient electrocatalytic urea oxidation and hydrogen evolution reaction
An et al. Mo, Fe-codoped metal phosphide nanosheets derived from Prussian blue analogues for efficient overall water splitting
Xu et al. Carbon-encapsulated multimetallic hybrid electrocatalyst for overall water splitting and urea oxidation
Liu et al. Valence regulation of Ru/Mo2C heterojunction for efficient acidic overall water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant