CN110072449B - 通过电标测进行的食道位置检测 - Google Patents

通过电标测进行的食道位置检测 Download PDF

Info

Publication number
CN110072449B
CN110072449B CN201780077003.7A CN201780077003A CN110072449B CN 110072449 B CN110072449 B CN 110072449B CN 201780077003 A CN201780077003 A CN 201780077003A CN 110072449 B CN110072449 B CN 110072449B
Authority
CN
China
Prior art keywords
esophagus
map
heart chamber
storage medium
readable storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780077003.7A
Other languages
English (en)
Other versions
CN110072449A (zh
Inventor
Y·施瓦茨
扎尔曼·伊布拉吉莫夫
叶恩纳坦·本大卫
以撒·施马亚胡
埃里·迪克特尔曼
S·本-海姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Navix International Ltd
Original Assignee
Navix International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Navix International Ltd filed Critical Navix International Ltd
Publication of CN110072449A publication Critical patent/CN110072449A/zh
Application granted granted Critical
Publication of CN110072449B publication Critical patent/CN110072449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/285Endotracheal, oesophageal or gastric probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0538Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4233Evaluating particular parts, e.g. particular organs oesophagus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters

Abstract

一种估计患者食道的至少一部分与心脏腔室之间的空间关系的方法,该方法包括:在该心脏腔室内的一个或多个位置处测量至少一个电参数以获得测量值;以及基于这些测量值估计该空间关系。

Description

通过电标测进行的食道位置检测
相关申请
本申请根据35USC§119(e)要求于2016年11月16日提交的美国临时专利申请号62/422,767、2017年8月17日提交的美国临时专利申请号62/546,775、以及2017年1月12日提交的美国临时专利申请号62/445,433的优先权权益;这些美国临时专利申请的内容通过引用以其全部内容并入本文。
技术领域和背景技术
在本发明的一些实施例中,本发明涉及一种用于测量电参数的方法,并且更具体地但非排他地,涉及一种用于测量用于估计食道位置的电参数的方法。
美国专利申请公开号2008/0177175A1描述了一种食道标测导管,该食道标测导管被引入到食道中并使医师能够绘制食道的位置,以避免在射频(RF)消融程序期间损坏食道。
发明内容
根据本披露内容的一些实施例,提供了一种估计患者食道的至少一部分与心脏腔室之间的空间关系的方法,该方法包括:在该心脏腔室内的一个或多个位置处测量至少一个电参数以获得测量值;以及基于这些测量值估计该空间关系。
在一些实施例中,该估计包括估计该心脏腔室中的治疗靶位点与该食道之间的该空间关系。
在一些实施例中,该方法进一步包括:基于这些测量值生成电性质图谱。
在一些实施例中,该方法进一步包括:基于这些测量值生成该心脏腔室或其一部分的解剖图谱。
在一些实施例中,该估计进一步包括标识该电性质图谱内的至少一个区域,该至少一个区域具有由于该食道接近该心脏腔室而产生的这些测量值的偏差。
在一些实施例中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近不存在食道。
在一些实施例中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近存在食道。
在一些实施例中,该电性质图谱包括电势图谱。
在一些实施例中,该电性质图谱包括电阻抗图谱。
在一些实施例中,该方法进一步包括:基于这些测量值生成测得的电性质图谱;将该电性质图谱与至少一个模拟电势图谱进行比较;标识基于这些测量值生成的该电势图谱内的至少一个区域,该至少一个区域具有由该食道接近该心脏腔室而产生的偏差;其中,该估计基于这些偏差。
在一些实施例中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近不存在食道。
在一些实施例中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近存在食道。
在一些实施例中,该方法进一步包括:基于这些测量值生成电性质图谱;将该电性质图谱与该电性质的一个或多个模拟图谱进行比较;以及标识与该测得的电性质图谱类似的一个或多个模拟电性质图谱;其中,该估计基于所标识的一个或多个模拟电性质图谱。
在一些实施例中,该标识一个或多个类似的图谱包括标识具有低于阈值的值差聚合的一个或多个类似图谱。
在一些实施例中,该估计基于至少两个类似图谱的标识。
在一些实施例中,该方法进一步包括:判定该空间关系是否是靶向空间关系。
在一些实施例中,该方法进一步包括:如果该空间关系不是靶向空间关系,则进行指示。
在一些实施例中,该方法进一步包括:如果该空间关系不是靶向关系,则自动地建议替代靶位点。
在一些实施例中,该方法进一步包括:如果该空间关系不是靶向空间关系,则自动地建议消融方案参数的至少一个修改。
在一些实施例中,该方法进一步包括:如果该空间关系不是靶向空间关系,则除非人类超控,否则停止消融程序。
在一些实施例中,该方法进一步包括:如果该空间关系不是靶向空间关系,则自动地建议将该食道移动到替代位置。
在一些实施例中,该方法进一步包括:通过置于该患者皮肤上的至少3对电极将至少3个电场施加到该患者的身体,以确定电极在该心脏腔室内的位置;其中,该测量至少一个电参数包括通过定位于该心脏腔室内的电极测量这些场的电参数。
在一些实施例中,定位于该心脏腔室内的该电极既用于估计该食道的位置又用于消融。
在一些实施例中,该测量至少一个电参数包括测量电势。
在一些实施例中,该估计包括估计该食道不在某个范围内。
在一些实施例中,该治疗靶位点包括消融靶位点。
在一些实施例中,该心脏腔室包括左心房。
在一些实施例中,该空间关系包括距离。
在一些实施例中,该方法包括基于该空间关系估计该心脏腔室中的治疗对该食道的影响。
根据本披露内容的一些实施例,提供了一种提供对患者食道的至少一部分与心脏腔室之间的空间关系的指示的方法,该方法包括:接收该心脏腔室内的一个或多个位置处的至少一个电参数的测量结果以获得测量值;基于这些测量值生成该心脏腔室的图谱;基于该图谱估计该空间关系;以及提供对所估计的空间关系的指示。
在一些实施例中,该图谱是电参数图谱。
在一些实施例中,该图谱是解剖图谱。
在一些实施例中,提供指示包括提供承载对所估计的空间关系的指示的图谱。
在一些实施例中,估计该空间关系包括在该心脏腔室的壁处标识指示该心脏腔室的壁后面的空气场管的电场弯曲。
在一些实施例中,估计该空间关系包括在该图谱中标识指示该心脏腔室的壁后面的空气场管的变形。
根据本披露内容的一些实施例,提供了一种用于从心脏腔室内估计该食道的至少一部分的位置的方法,该方法包括:从该心脏腔室内测量至少一个电参数以获得测量值;以及基于这些测量值估计该食道的至少一部分的位置。
在一些实施例中,该方法进一步包括:在该测量之后,基于该电参数的测量值生成电势图谱;将该电势图谱与至少一个模拟电势图谱进行比较;基于该比较,标识基于这些测量值生成的该电势图谱内的至少一个区域,该至少一个区域具有由于该食道接近该心脏腔室而产生的变化;其中,该估计基于这些变化。
在一些实施例中,该方法进一步包括:在该测量之后,基于该电参数的测量值生成电势图谱;将该电势图谱与一个或多个模拟电势图谱进行比较;标识该模拟电势图谱的与基于测量值生成的该电势图谱类似的一个或多个类似图谱;其中,该估计基于所标识的至少一个模拟电势图谱。
在一些实施例中,该方法进一步包括:判定该食道的该估计位置是否是靶向位置。
在一些实施例中,该方法进一步包括:如果该估计位置不是靶向位置,则进行指示。
根据本披露内容的一些实施例,提供了一种用于通过治疗心脏腔室来从该心脏腔室内估计影响该食道的至少一部分的概率的方法,该方法包括:从该心脏腔室内测量至少一个电参数;以及基于该电参数的测量值估计影响该食道的至少一部分的概率。
在一些实施例中,该估计包括:估计损伤该食道的概率。
在一些实施例中,该方法进一步包括:在该测量之后,基于该电参数的测量值生成电性质图谱;其中,该估计进一步包括标识该图谱内的至少一个区域,该至少一个区域具有由于该食道接近该心脏腔室而产生的这些测量值的变化。
在一些实施例中,该电性质图谱包括电势图谱。
在一些实施例中,该电性质图谱包括根据该电势图谱或根据该电参数的这些测量值计算的阻抗图谱。
在一些实施例中,该方法进一步包括:在该测量之后,基于该电参数的测量值生成电势图谱;将该电势图谱与至少一个模拟电势图谱进行比较;基于该比较,标识基于这些测量值生成的该电势图谱内的至少一个区域,该至少一个区域具有由于该食道接近该心脏腔室而产生的变化;其中,该估计基于这些变化。
在一些实施例中,该方法进一步包括:在该测量之后,基于该电参数的测量值生成电势图谱;将该电势图谱与一个或多个模拟电势图谱进行比较;标识该模拟电势图谱的与基于测量值生成的该电势图谱类似的一个或多个类似图谱;其中,该估计基于所标识的至少一个模拟电势图谱。
在一些实施例中,该方法进一步包括:判定该概率是否大于靶向概率。
在一些实施例中,该方法进一步包括:如果该概率大于靶向概率,则进行指示。
在一些实施例中,该方法进一步包括:如果该概率大于靶向概率,则停止治疗的程序。
在一些实施例中,该电参数包括电势。
在一些实施例中,该心脏腔室包括左心房。
在一些实施例中,该空间关系位于该食道的至少一部分与用于消融的靶位点之间。
根据本披露内容的一些实施例,提供了一种用于估计食道位置的装置,该装置包括:测量电路系统,被配置成从在心脏腔室内导航的电极探针接收电参数的信号测量结果;以及控制电路系统,被配置成基于这些信号测量结果对该心脏腔室进行建模,并且基于这些信号测量结果来估计食道的与该心脏腔室相邻的至少一部分的位置。
在一些实施例中,该装置进一步包括:接口电路系统,其中,该接口电路系统基于该食道位置的该估计生成对食道位置的指示。
在一些实施例中,该装置进一步包括:数字计算机存储器;其中,该控制电路系统通过将被构造成将这些信号测量结果与该心脏腔室中的位置相关联的测量图谱与存储在所述数字计算机存储器中的一个或多个参考图谱进行比较来估计该食道位置,其中,这些参考图谱将该电参数的预测值与该心脏腔室中的这些位置相关联。
在一些实施例中,这些参考图谱中的至少一个参考图谱是模拟图谱。
在一些实施例中,该模拟图谱还模拟食道在模拟位置处对该参考图谱的测量结果的影响。
在一些实施例中,该模拟图谱省略了任何食道对该参考图谱的测量结果的影响。
在一些实施例中,这些参考图谱中的至少一个参考图谱是使用测量图谱构造的图谱,该测量图谱具有该食道的与该心脏腔室相邻的至少一部分的已知位置。
在一些实施例中,该控制电路系统通过将该心脏腔室的形状的使用这些信号测量结果构造的测量图谱与该心脏腔室的形状的一个或多个参考图谱进行比较来估计该食道位置;其中,使用允许由于食道的存在而导致的电场畸变使该测量图谱的形状变形的方法来构造该测量图谱。
在一些实施例中,这些参考图谱中的至少一个参考图谱是模拟图谱。
在一些实施例中,该模拟图谱还模拟食道在模拟位置处对该参考图谱的心脏腔室形状的影响。
在一些实施例中,该模拟图谱省略了任何食道对该参考图谱的心脏腔室形状的影响。
在一些实施例中,这些参考图谱中的至少一个参考图谱是使用测量图谱构造的图谱,该测量图谱具有该食道的与该心脏腔室相邻的至少一部分的已知位置。
在一些实施例中,该控制电路系统使用用于匹配该心脏腔室的测量图谱的形状的模板形状来估计该食道位置。
在一些实施例中,该测量电路系统连接至导管系统,该导管系统被配置成至少部分地置于心脏腔室内以测量该电参数。
在一些实施例中,该装置进一步包括:至少一个电极,能够连接至该测量电路系统;其中,该电极的形状和大小被设置成置于心脏腔室内以测量该电参数。
在一些实施例中,该装置进一步包括场发生器,该场发生器被配置成基于该食道的该至少一部分的该食道位置通过置于心脏腔室中的电极将能量场递送至该心脏腔室。
除非另有限定,否则本文中所使用的所有技术和/或科学术语具有如本发明所属技术领域的普通技术人员所通常理解的相同含义。虽然类似或等同于本文中所描述的那些的方法和材料可以用于本发明的实施例的实践或测试中,但以下描述了示例性方法和/或材料。在冲突的情况下,本发明说明书,包括定义,将占据主导。此外,这些材料、方法和示例仅是说明性的,并且不意在是必然限制性的。
如本领域技术人员将理解的,本发明的一些实施例可以具体化为系统、方法和/或计算机程序产品。因此,本发明的一些实施例可以采取完全硬件实施例、完全软件实施例(包括固件、常驻软件、微代码等)或将软件和硬件方面组合的实施例,这些实施例总体上都可以在本文称为“电路”、“模块”或“系统”。此外,本发明的一些实施例可以采取在一个或多个计算机可读介质中具体化的计算机程序产品的形式,这些计算机可读介质具有在其上具体化的计算机可读程序代码。本发明的一些实施例的方法和/或系统的实施方式可以涉及手动地、自动地或以其组合执行和/或完成所选任务。此外,根据本发明的方法和/或系统的一些实施例的实际仪器和设备,若干所选任务可以通过硬件、通过软件或通过固件和/或通过其组合例如使用操作系统来实施。
例如,用于执行根据本发明的一些实施例的所选任务的硬件可以被实施为芯片或电路。作为软件,根据本发明的一些实施例的所选任务可以被实施为通过计算机使用任何合适的操作系统来执行的多个软件指令。在本发明的示例性实施例中,根据如本文所述的方法和/或系统的一些示例性实施例的一个或多个任务通过数据处理器来进行,如用于执行多个指令的计算机平台。任选地,该数据处理器包括用于存储指令和/或数据的易失性存储器和/或非易失性存储器,例如用于存储指令和/数据的磁性硬盘和/或可移动介质。任选地,还提供网络连接。任选地,还提供显示器和/或如键盘或鼠标等用户输入装置。
一个或多个计算机可读介质的任何组合可用于本发明的一些实施例。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质可以是例如但不限于电子的、磁性的、光学的、电磁的、红外线的、或半导体系统、设备、或装置,或前述各项的任何合适的组合。计算机可读存储介质的更具体的示例(非详尽列表)将包括以下各项:具有一条或多条导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光纤、便携式致密盘只读存储器(CD-ROM)、光存储装置、磁存储装置、或者前述各项的任何合适的组合。在本文献的上下文中,计算机可读存储介质可以是可包含或存储用于由指令执行系统、设备或装置使用或与指令执行系统、设备或装置结合使用的程序的任何有形介质。
计算机可读信号介质可以包括具有在其中(例如,在基带中或作为载波的一部分)具体化的计算机可读程序代码的传播数据信号。这种传播信号可以采取多种形式中的任何一种,包括但不限于,电磁的、光的或其任何合适的组合。计算机可读信号介质可以是不是计算机可读存储介质并且可以通信、传播、或输送程序(以用于由指令执行系统、设备或装置使用或与指令执行系统、设备或装置连接)的任何计算机可读介质。
在计算机可读介质上具体化的程序代码和/或由其使用的数据可以使用任何适当的介质来传输,包括但不限于无线、有线、光纤电缆、RF等或前述各项的任何合适的组合。
用于执行针对本发明的一些实施例的操作的计算机程序代码可以按一种或多种编程语言的任何组合来编写,这些编程语言包括面向对象编程语言(比如,Java、Smalltalk、C++等)以及常规程序编程语言(比如,“C”编程语言或类似的编程语言)。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为独立软件包执行、部分地在用户计算机上执行并部分地在远程计算机上执行、或完全地在远程计算机或服务器上执行。在后一种情况下,远程计算机可以通过包括局域网(LAN)或广域网(WAN)的任何类型网络连接到用户计算机,或可以进行与外部计算机的连接(例如,使用互联网服务提供商通过互联网)。
本发明的一些实施例可以如下参考根据本发明的实施例的方法、设备(系统)和计算机程序产品的流程图和/或框图来描述。应当理解的是,流程图和/或框图的每个框以及流程图和/或框图中的框的组合可以通过计算机程序指令来实施。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器,或其他可编程数据处理设备以产生机器,从而使得经由计算机的处理器或其他可编程数据处理设备来执行的指令创建用于实施流程图和/或框图的一个或多个框中指定的功能的手段。
这些计算机程序指令还可以存储在计算机可读介质中,该计算机可读介质可以指导计算机、其他可编程数据处理设备、或其他装置以用特殊的方式发挥功能,从而使得存储在该计算机可读介质中的指令产生制造的包括指令的物品,这些指令实施流程图和/或框图的一个或多个框中指定的功能/动作。
计算机程序指令还可以被加载到计算机、其他可编程数据处理设备或其他装置上,以引起在计算机、其他可编程数据处理设备或其他装置上执行一系列操作步骤以产生计算机实现的过程,从而使得在计算机或其他可编程设备上执行的指令提供用于实施在流程图和/或框图框中指定的功能/动作的过程。
本文描述的方法的一些总体上被设计为仅用于由计算机使用,并且针对由人类专家纯手动进行不是可行的或实用的。想要手动执行如测量组织的介电性质等类似任务的人类专家,可能被期望使用完全不同的方法,例如,利用专家知识和/或人脑的模式识别能力,这将比手动完成本文所描述的方法的步骤更有效。
附图说明
仅通过示例的方式,本文中参考附图描述了本发明的一些实施例。现在具体详细参照附图,应当强调的是,所示出的细节是通过示例的方式并且是出于对本发明的实施例的说明性论述的目的。在这方面,利用附图所做的描述使可以如何实践本披露内容的实施例对本领域的技术人员显而易见。
在附图中:
图1A是描述心脏与食道之间的典型空间关系的图像;
图1B描述了根据本发明的一些实施例的用于施加电场的电极的安排;
图2是一般流程图,描述了根据本发明的一些实施例的用于基于对食道位置的估计来治疗心脏的方法;
图3A和图3B是示意图,描述了根据本发明的一些实施例的在左心房处定位电生理导管探针以测量电性质和/或治疗组织;
图4A是根据本发明的一些实施例的用于从心脏内测量电性质并用于治疗组织的装置的框图;
图4B是根据本发明的一些实施例的用于结合治疗估计食道与心脏之间的空间关系的过程的流程图;
图5是流程图,描述了根据本发明的一些实施例的用于结合RF消融程序估计食道与心脏之间的空间关系的过程;
图6A是流程图,描述了根据本发明的一些实施例的用于生成和更新电参数图谱的过程;
图6B是流程图,描述了根据本发明的一些实施例的用于估计食道的至少一部分的位置的方法;
图6C是流程图,描述了根据本发明的一些实施例的通过将已测量电参数值与模拟图谱进行比较来估计食道的至少一部分;
图7A至图7I是图像,描述了根据本发明的一些实施例的心脏和LA的模拟电参数图谱;并且
图8A至图8E示意性表示根据本披露内容的一些实施例的幻影左心房的视图,在该幻影左心房中,已经在具有和不具有模拟食道的相邻充气管的情况下执行了电极探针电压标测测量。
具体实施方式
在本发明的一些实施例中,本发明涉及一种用于测量电参数的方法,并且更具体地但非排他地,涉及一种用于测量用于估计食道位置的电参数的方法。
本发明的一些实施例的一方面涉及从心脏腔室内估计食道的至少一部分的位置。在一些实施例中,当以可能影响食道的方式(例如,通过使用消融探针进行的心脏组织消融)治疗心脏腔室时,如果食道与所治疗位点之间的距离过短,则要在治疗之前估计食道的至少一部分的位置。估计食道的位置或者食道与待治疗位点之间的距离可以允许计划使治疗不伤害食道和/或在治疗期间一旦估计待治疗位点与食道之间的距离不安全则调整治疗。例如,治疗可以是使用消融探针的消融治疗,并且如果食道离消融位点过近则消融热可能导致食道内烧伤。
在本发明的一些示例性实施例中,对食道位置的估计用于指导心内治疗探针的布置,例如以避免在如使用探针的组织消融等治疗期间对食道的损伤。
一些实施例的方面包括当治疗心脏腔室内的所选靶位点时从心脏腔室内估计影响食道的概率。在一些实施例中,估计例如食道组织与治疗靶位点之间的距离和/或角度的空间关系(或者存在或不存在于此范围内)。在一些实施例中,估计食道位置和/或食道组织与治疗靶位点(例如被标记为用于消融的靶标的位点)的接近度允许避免或最小化治疗对食道组织的不良影响。可以在治疗之前和/或治疗期间估计食道位置,
在一些实施例中,通过从心脏腔室内的至少一个位置以及优选地从多个位置测量至少一个电参数,例如电势和/或阻抗来估计食道的至少一部分的位置。在一些实施例中,基于例如与期望值的经检测局部值偏差来估计食道的位置,并且计算食道的可以产生这些偏差的可能位置。在一些实施例中,期望值基于在多个受试者体内进行的多个测量。可替代地,通过将基于测得的电参数值生成的图谱与期望已经生成的图谱进行比较来确定食道的位置。在本文中,在获得测量值的区域附近不存在食道的情况下,使用术语“偏差”连同通过测量值对食道位置的指示应被理解为相对于所期望的“期望值”和/或“期望图案”的偏差。例如,“期望图案”是在假设附近没有食道的情况下所期望的图案。例如,可以将偏差理解为与期望图案的差异。更具体地,可以将偏差检测为由用于绘制心腔的测量值所指示的形状与心腔的期望形状之间的差异。
另外地或可替代地,通过与确实指示食道的接近度和/或限定特征形状的测量值的一个或多个图案的相似性来识别偏差。特征形状可以是例如基本上呈圆柱形状的一部分。在附近不存在食道的情况下,当这种圆柱形状(或其他特征形状)出现在不期望这种圆柱形状的区域中时可以识别偏差。
在一些实施例中,在附近没有食道的区域中,从在多个受试者体内进行的多个测量中得出期望值,相对于这些期望值评估偏差(单独使用值和/或值的图案)。任选地相对于期望值的统计总结(例如,平均值和标准偏差)、相对于所收集的一大群期望值(例如,根据在该大群的单独成员中获得的值与值的平均距离来表达)和/或使用另一种方法(如使用期望值作为输入的监督机器学习方法)来评估偏差。在一些实施例中,还可以模拟期望值。在一些实施例中,相对于其中食道接近测量位置的位置处的一大群测量结果来另外评估偏差。例如,将这种测量结果(和/或其模拟)用作对监督机器学习算法的输入。因此,另外地或可替代地,偏离期望值或值的图案的偏差是偏向期望接近食道的值或值的图案的偏差。在此背景下,偏离期望值意味着按照合适的度量似乎不太接近并且偏向期望值意味着按照合适的度量似乎较接近。在一些实施例中,差异的幅度可以是合适的度量。
在一些实施例中,对值的图案的偏差的评估基于使用由测得的电参数值生成的图谱。例如,在附近不存在食道的情况下,通过比较基于测得的电参数值生成的图谱与具有期望已经生成的图案的图谱的相似性来估计食道的位置。在一些实施例中,可以通过配准(registration)后的距离幅度的平均值或其他合适的度量来比较相似性。该比较允许标识在两个图谱之间偏离并且可以由食道的接近度产生的至少一个图案。在一些实施例中,例如图案偏差包括由圆柱形状的食道的接近度产生的圆柱形状的偏差。术语“圆柱形状的”应当被理解成指基本上是圆柱形状或者是这种形状的一部分。
在一些实施例中,期望的图案基于使用在多个受试者体内进行的多个电参数测量而确定的图案。例如,在一些实施例中,如关于图1B所描述的,对多个受试者进行电标测,从而产生心脏腔室壁的形状。用于得到一个或多个图案作为用于评估偏差(偏离和/或偏向特定图案)的参考的心脏壁形状基于例如在被心脏腔室壁阻止之前电极导管能够访问哪些位置、哪些位置产生指示壁接触的测量结果(例如,局部介电性质的变化)和/或电测量的另一特征。例如2017年8月17日提交的美国临时专利号62/546,775(其内容通过引用以其全文并入本文)涉及一种在局部电场梯度中使用的可以指示更远腔室表面的形状以及潜在地布局在如食道之外的特征的存在的图案进行电标测的方法。
任选地,至少部分模拟用于在特定情况下提供图案以供评估偏差的图谱。在一些实施例中,通过发现基于不同食道位置而生成的一个或多个模拟图谱与基于测得的电参数值而生成的图谱之间的相似性来估计特定情况下的食道位置。在一些实施例中,使用算法检测相似性,例如基于值差聚合与阈值之间的差异总结测量值并且确定相似性的值差聚合算法。另外,任选地对测得的电参数值进行统计计算和修改例如以允许其与模拟图谱或模拟值进行比较。任选地,通过将局部测得的介电值与基于测量区域的结构图谱(即,描述表面的形状的图谱)和/或解剖图谱(即,另外包括组织体积的表示的结构图谱,任选地包括组织类型和/或性质的表示)计算的预测介电值进行比较来估计食道位置。
例如如图1A中示出的,食道10是通常部分充满空气的肌肉管,该肌肉管通过上纵隔和后纵隔向前下降到脊柱、向后到心脏20。当食道10通过心脏20附近时,食道的至少一部分紧密接触或紧邻左心房(LA)的后壁30。另外,食道10横向移动(如箭头所示)并且可以瞬时移动到矩形40内的各个位置。紧邻心脏20是在LA后部的术中或经皮经导管消融后食道损伤为潜在并发症的原因之一。为了防止或最小化这种并发症,相对于左心房后壁,并且更具体地相对于待消融的位点估计食道的至少一部分的位置可能是有益的。为了估计心房-食道距离(A-E距离),在一些实施例中,将电极探针(例如电生理(EP)导管探针)插入LA中用于测量电参数。本文中“A-E距离”是指心脏腔室壁(例如,左心房壁)上的特定位置与食道之间的距离的任何估计。在一些实施例中,估计是定性的,例如“位于后面”或“不位于后面”(“后面”意味着“与心脏腔室外部位置处的特定位置相邻”)。在一些实施例中,估计是对功能和/或安全问题而言的,例如“被定位的太靠近而不能安全地消融”或不是。在一些实施例中,将距离估计为从特定位置到心房壁的食道被估计位于其后的位置,例如食道以其为中心的位置或者食道的最近侧定位在其后的位置的距离。任选地,通常还针对心脏壁的食道位于其后的位置估计食道与心脏壁和/或心脏壁的内表面之间的距离(即间隙)。例如,当将食道与心脏壁隔开时偏差可能较小。然而,估计位于心脏壁(或非心脏壁)的特定区域后面的食道通常提供A-E距离分辨率,其足以用于如避免可能使食道处于损伤风险的消融或者限制消融能量(即功率和/或消融时间)以避免使食道处于危险之中。
可替代地,将电极探针插入其他心腔中,例如右心房(RA)、左心室(LV)或右心室(RV)。任选地,将导管探针插入血管,例如冠状窦中。
在本发明的一些特定实施例中,在向身体施加电场期间测量用于估计A-E距离的电参数、测量结果。电极任选地响应于所施加的电场而测量心脏腔室内不同位置处的电势和/或另一电参数。在一些实施例中,测得的电势值反映测量位点周围的组织和器官的介电性质,例如心脏组织、肌肉组织和食道组织。食道组织尤其可以在局部介电性质方面创造相对较大的偏差(与在其不存在的情况下的正常条件相比),因为食道通常含有一个或多个空气袋,其具有比组织大得多的电阻抗。食道自身的肌肉组织(围绕空气)具有可与可以发现邻近心脏尤其是肺的其他组织类型区分的介电性质。肺也充满空气,但是空气袋的结构被具有较低阻抗的非肌肉肺组织更精细地划分,这使得它在介电上与食道不同。在一些实施例中,响应于所施加的电场而产生的电势的测量结果允许对A-E距离的估计。
在一些实施例中,电场由至少一个电极或置于皮肤的外表面上的至少一对电极施加,例如1对、2对、3对、4对电极。可替代地或另外地,电场由置于身体内的至少一个电极施加。任选地,电场由置于心脏腔室内的至少一个电极施加,例如由位于EP探针上的至少一个电极施加。
在本发明的一些特定实施例中,测得的电参数值用于生成图谱,例如电性质图谱。在一些实施例中,电性质图谱包括电势图谱、阻抗图谱和/或电流图谱。在一些实施例中,生成的图谱用于估计食道的至少一部分的位置,例如通过标识与食道组织同心脏的接近度相关联的图案。在一些实施例中,所标识的图案包括大小、形状或电参数值的偏差。可替代地,将生成的图谱与基于食道的估计位置通过模拟电参数值而准备的一个或多个模拟电参数图谱进行比较。在一些实施例中,比较结果用于估计食道的一部分的位置和/或食道组织与至少一个测量位点之间或者食道组织与LA之间的空间关系。
在本发明的一些特定实施例中,使用电测量来确定用于测量电参数值的电极在心脏腔室内的位置。另外地或可替代地,使用另一方法来确定电极的位置,例如使用磁性方法(例如,来自位于交叉磁场内的磁性线圈的感测)。
在一些实施例中,不是或除了电场,也可将磁场施加到身体以例如通过至少一个磁性线圈测量所述距离。
在一些实施例中,当确定了电极位置时,测量电参数例如以检测电参数值例如相比于期望值的偏差。
在本发明的一些特定实施例中,通过模拟预测的电势值来准备模拟图谱,如同它们是在心脏腔室内的不同位置处测量的。在一些实施例中,基于描述食道的位置以及食道与心脏之间的空间关系的成像分析结果来准备至少一个模拟图谱。成像可以是例如通过投影X射线、CT、MRI、超声的成像,基于远程电场的成像或另一成像方法)。从成像分析推断出的位置和空间关系是在拍摄图像时的位置和空间关系。另外地,模拟图谱基于心脏腔室内预测的测量位点周围的组织的所估计的介电性质。在一些实施例中,准备若干个基于食道的当前位置和食道的至少一个附加的预测定位的模拟图谱。在一些实施例中,在将电极插入心脏腔室中之前准备该至少一个模拟图谱。在一些实施例中,通过将基于这些测量结果的测得的电参数值或电势图谱或阻抗图谱与至少一个模拟图谱进行比较,可以估计食道的至少一部分的位置。
在本发明的一些特定实施例中,基于食道的估计位置或基于可选的消融靶位点与食道组织之间的所估计的空间关系来选择消融靶位点。在一些实施例中,如果可选的靶位点与食道组织之间的所估计的空间关系并不是处于期望的空间关系(例如,A-E距离过短),则将指示递送至用户,例如递送至导航EP探针或消融探针的专家。任选地,替代靶位点由系统响应于接收到的指示自动建议。
在一些实施例中,如果所估计的空间关系不是期望的空间关系,则停止治疗程序,例如消融程序。可替代地,如果空间关系不是期望的空间关系或者如果存在食道将移动得太靠近心脏腔室的风险,则可以例如通过将物体插入食道并且操纵或固定食道位置来将食道移动到期望的位置或者将其固定。在一些实施例中,期望的空间关系,例如期望的距离或期望的A-E距离包括消融靶位点与食道的至少一部分之间的空间关系,食道的该至少一部分允许在不影响食道的情况下在靶位点处安全消融,或者对食道的影响是允许的或是安全的影响。任选地,如果在附近不存在食道的情况下电参数值与期望值没有偏差,或者如果电参数图谱类似于在心脏附近没有食道的情况下运行的模拟,则可以确定靶向空间关系(或安全的A-E距离)的存在。
在一些特定实施例中,例如通过从心脏腔室内测量电参数来估计当治疗心脏腔室内的所选靶位点时影响食道的概率。在一些实施例中,在不存在邻近心脏腔室的食道的情况下,估计影响食道的概率基于检测测量值与期望值的偏差。可替代地,估计影响食道的概率基于找到测量值与一个或多个模拟图谱之间的相似性,例如如图6B中所描述的。在一些实施例中,如果影响食道的概率大于最大允许的概率,则将指示递送给医师或专家。任选地,如果影响食道的概率大于最大允许的概率,则停止治疗程序。可以根据安全需求设置最大允许的概率,并且在一些实施例中,该最大允许的概率可以是例如5%、1%或更低。
在详细解释本发明的至少一个实施例之前,应理解的是,本发明在其应用上并不一定局限于在以下说明中所阐述和/或在附图和/或示例中所示的组件和/或方法的构造和安排的细节。本发明能够具有其他实施例或者能够以各种方式实践或执行。
估计电极在心脏内的位置的示例性方法
现在参考图1B,其描绘了根据本发明的一些实施例用于施加电场的电极的安排。
在一些实施例中,探针102的电场指导的导航在身体的区域内执行,例如在心脏20内(图1A)。导航包括基于电场测量结果评估电极探针102在空间中的位置。作为整体,场不一定是同质的或相互正交的,但是确实包括沿正交空间轴下降的场分量。在本文中,除非另有说明,否则认为X场和Y场在身体的横向平面中交叉。任选地,Z场与这两个场交叉,其中一个分量与X场和Y场两者大致正交。任选地,如例如图1B中示出的,X场跨身体的左方向和右方向延伸,而Y场在腹侧位置与背侧位置之间延伸。任选地—并且尤其用于在胸腔和腹腔中进行感测—选择身体表面电极位置,从而使得场在约主要方向(在尽可能紧密地包围感兴趣的区域的电极位置之间)上穿过身体。
在一些实施例中,电极对104、106和108例如通过将电极附接到皮肤的外表面上的所选位置来向身体递送电场110。在一些实施例中,每个电极对以不同频率递送电场。非配对电极之间也可能存在场交叉;例如,在一些实施例中,电极探针102的至少一个电极通过电极对104的一个或两个电极测量施加的电场110的电势。在一些实施例中,测得的电参数是施加的电场的参数。在一些实施例中,可以基于以不同频率生成的电场的变化和测得的电势值来确定电极探针在心脏内的位置。
在“理想的”身体中,其具有全身和在无限分离的电极之间相同的介电常数,在其间生成时变电场的每两个电极之间,电场以直线传播,并且该电场在这些电极之间以恒定速率衰减。因此,在理想的身体中,通过电极测量的电参数与电极在理想的身体内的位置之间可能存在线性关系,并且可以使用电读数与位置之间的线性变换从电读数中生成高保真度图谱。然而,在具有有限电极分离的真实的身体中,场是弯曲的,并且此外介电常数在空间中变化(至少因为不同组织具有不同介电性质)。在这种情况下,电读数与电极位置之间的线性映射导致低保真度图谱。然而,非线性变换(例如,如在2017年1月12日提交的美国临时专利号62/445,433中所描述的)可以提供对被绘制的实际空间安排具有更高保真度的图谱。
在一些实施例中,所使用的电场频率处于40kHz到2MHz的范围内。任选地,所使用的频率数量为10个或更少的频率。任选地,频率分布(例如,均匀分布)于所选频率的整个范围内。任选地,所选频率集中于某个特定频率范围内。优选地,所施加的电压处于人类使用的安全范围内(例如,100至500毫伏)和/或电流为1毫安或更小(典型的体电阻为约100Ω)。所产生的场强处于例如每厘米几毫伏的范围内;例如5mV/cm、10mV/cm、20mV/cm或者另一个更大、更小或中间值。基于对数据采集的要求,对于包括频率和/或电极对的快速自动切换的实施例,每次测量的感测时间任选地为约10毫秒(或者更长或更短的周期,例如,约100毫秒或1秒)。
用于估计食道位置的示例性方法
现在参考图6B,其描绘了根据本发明的一些实施例的用于估计食道的至少一部分的位置的方法。
根据一些示例性实施例,将电极探针插入心脏腔室中,例如插入LA中,并且在614处,探针的至少一个电极从心脏腔室内的至少一个位置以及优选地多个位置测量至少一个电参数,同时该至少一个电极移动以绘制心脏腔室。任选地,当接触心脏腔室壁时,电极测量电参数,例如电势。
根据一些示例性实施例,在618处,通过分析616处的电参数的测量值并且检测在附近不存在食道的情况下与期望的测量值的偏差来估计食道的至少一部分的位置。这些偏差是由食道的至少一部分与测量位置中的一个或多个的实际接近度引起的。可替代地,将测得的电参数值与电势值或阻抗值的模拟图谱进行比较,例如以检测相较于模拟图谱的已改变的测得的电参数值。在一些实施例中,例如通过计算食道的不同位置将如何产生相较于模拟图谱的已改变的电参数值来估计食道的位置。在一些实施例中,将测得的电参数值与测量区域的结构和/或解剖图谱进行比较,例如以基于一个或多个测量位置周围的器官和组织类型来标识测量值与期望值之间的偏差。
根据一些示例性实施例,将测得的电参数值与模拟电势图谱或阻抗图谱622进行比较以找到一个或多个类似图谱。在一些实施例中,基于食道在一个或多个类似图谱中的位置,可以在618处估计测量时食道的位置。
根据一些示例性实施例,基于向身体施加电场或磁场来估计电极探针在心脏腔室内的位置,并且然后基于由电极探针的至少两个电极局部测量的组织的介电值来估计食道的位置。在一些实施例中,例如根据我们期望测量肌肉的介电值的电极位置而不是不同组织的电极测量的介电性质来分析测得的介电值以标识由靠近测量位置的食道组织引起的变化。任选地,基于电极的位置,测得的介电值产生与期望形状不同的形状。
用于估计食道位置的示例性方法
在一些实施例中,在消融治疗之前估计食道的位置以确定食道与靶向治疗位置的接近度。这种接近度可能与由治疗引起的食道损伤的可能性有关,并且提前估计接近度可以允许医师例如通过改变消融计划或者使食道移动(例如,通过要求病人吞咽若干次)来防止这种食道损伤。因此,根据一些示例性实施例,在消融治疗之前估计食道的位置,以便在食道离消融视线过近时防止通常由用于消融的能量引起的食道损伤。现在参考图6C,其描绘了根据本发明的一些实施例的用于通过将测得的电势值与模拟图谱进行比较来估计食道位置的方法。
根据一些示例性实施例,在624处,患者经历成像程序,例如全身或所选身体区域的CT、MRI或超声。在一些实施例中,成像分析用于估计组织和/或器官的位置,例如食道的位置和/或心脏的位置。
根据一些示例性实施例,基于成像程序的结果,在626处执行建模程序。在一些实施例中,建模程序包括例如通过基于成像程序的结果向组织和/或器官分配组织特异性电性质来对身体或所选身体区域的电性质进行建模。建模任选地还包括对电极放置(例如,体表电极放置)和使用的特定条件进行建模;例如,电极位置、电极大小、电场频率和/或电场电压。
根据一些示例性实施例,在628处生成若干个模拟图谱。在一些实施例中,每个图谱描述将在心脏腔室的至少一部分,例如当将食道定位在不同位置处时LA的至少一部分内测量的模拟电势。在一些实施例中,在每个模拟图谱中,将食道置于不同的空间关系中,例如在距LA的不同距离处。任选地,当没有食道时通过模拟LA的电势值生成至少一个模拟图谱,例如以在食道对电势值没有影响时模拟LA的电势值。
根据一些示例性实施例,在消融程序期间,在630处将电极探针插入心脏腔室中,例如插入LA中。在一些实施例中,电极探针包括至少一个电极,例如用于施加消融能量和/或用于测量至少一个电参数,例如电势和/或阻抗。
根据一些示例性实施例,一旦将电极探针定位在心脏腔室内,就在632处向身体施加电场。在一些实施例中,通过附接至皮肤外表面的至少3个电极对来施加电场。在一些实施例中,将电极对定位在皮肤上的所选位置处。任选地,在628处生成模拟电势图谱期间使用所选位置。在一些实施例中,在628处生成模拟电势图谱期间使用所施加的电场的强度和/或持续时间和/或频率。
根据一些示例性实施例,在634处,在施加电场期间,置于心脏腔室内的该至少一个电极测量电势,例如以绘制心脏腔室的至少一部分的电势。在一些实施例中,电极在心脏腔室内的一个或多个位置处测量电势。任选地,电极在一个或多个位置处通过接触心脏腔室壁来测量电势。在一些实施例中,将测得的电参数值转换为阻抗值。
根据一些示例性实施例,在636处,将测得的电势值与模拟图谱进行比较。在一些实施例中,将测得的电势值与模拟图谱进行比较,例如以标识与测得的电势值相似的一个或多个模拟图谱。在一些实施例中,对测得的电势值进行分析以生成心脏腔室的至少一部分的图谱并且然后将该图谱与模拟图谱进行比较,例如以标识一个或多个相似区域。
根据一些示例性实施例,在638处估计食道的位置。在一些实施例中,如在636处所讨论的,基于测得的电势值与模拟图谱中的一个或多个之间的所标识的相似性来确定食道的相对位置。在一些实施例中,由于模拟图谱中的每一个是基于食道的估计位置并且基于估计位置对模拟电势值的影响而生成的,因此找到测量值与一个或多个模拟图谱之间的相似性允许例如估计食道的位置。在一些实施例中,使用用于生成类似的一个或多个模拟图谱的食道的估计位置来估计食道的相对位置。
根据一些示例性实施例,一旦确定了食道的位置,电极探针的至少一个电极就递送治疗能量,例如RF能量以在640处消融心脏组织。在一些实施例中,在消融组织之前,将用于消融的该至少一个电极定位在也被验证为与食道的估计位置呈空间关系的消融靶位点处,例如大于最小允许距离(例如,避免损伤的最小安全距离)。任选地,在启动消融程序之前,基于食道的估计位置选择包括至少两个消融靶位点的消融路径。
用于估计食道位置的示例性方法
现在参考图2,其描绘了根据本发明的一些实施例用于基于对食道位置的估计来治疗心脏的方法。在一些实施例中,在消融治疗之前估计食道的位置,例如以最小化或消除治疗对食道组织的不利影响。
根据一些示例性实施例,在206处,基于对心脏和邻近器官的至少一部分的图像的分析来首先粗略估计食道的位置。该图像可以包括心脏或其一部分和心脏附近的食道的一部分两者。在该方法的后期阶段中改进了此粗略估计。成像可以是例如磁共振成像(MRI)、计算机断层扫描(CT)和/或超声。
根据一些示例性实施例,在208处,成像结果然后用于通过向在成像结果中表明的不同组织和/或器官分配电性质来对身体的成像区域进行建模。另外地,成像包括对将导管探针插入心脏进行成像,并且将用于电场施加的至少一个电极对置于皮肤上的所选位置处。
根据一些示例性实施例,在209处生成至少一个模拟电势图谱或阻抗图谱。此模拟图谱将与测量图谱进行比较以改进214处对食道位置的估计。在一些实施例中,模拟图谱基于在208处进行的建模。在一些实施例中,通过预测期望由心脏腔室内(例如在心脏的LA内)不同位置处的电极测量的电势值或阻抗值来生成模拟图谱。在一些实施例中,基于如在206处估计的食道的估计位置来生成至少一个模拟图谱。在一些实施例中,生成至少一个附加模拟图谱,每个附加模拟图谱基于食道的相应位置。在一些实施例中,模拟图谱基于成像分析结果并且基于对心脏周围的组织和/或器官的介电性质的估计,例如在208处分配的介电性质。
根据一些示例性实施例,将至少一个测量电极(例如EP导管探针的电极)插入心脏的腔中,例如在210处插入LA中,以便从腔内的至少一个位置以及优选地多个位置处测量至少一个电参数。在一些实施例中,将电极置于与心脏组织接触,或者发现其紧邻组织。在一些实施例中,基于用于在208处的位置估计的成像分析,将电极探针导航到心脏腔室中或血管中。在一些实施例中,电极在施加电场时测量电势。任选地,根据测得的电势值计算阻抗值。在一些实施例中,由于食道对在LA内部产生的电场的影响,在LA内部的不同位置处测量的电势或阻抗允许估计LA外部的食道的位置。
根据一些示例性实施例,在211处通过至少一个电极来施加电场。可替代地或另外地,施加磁场。可替代地或另外地,电极与心脏腔室外部的组织接触,例如与皮肤的外表面接触。在一些实施例中,基于包括例如电场频率和/或电场强度的电场施加协议的参数来施加电场。
根据一些示例性实施例,当在211处施加电场时,在212处至少一个测量电极测量电参数,例如从心脏腔室或血管内测量电势。任选地,根据测得的电势值计算阻抗值。在一些实施例中,电极在心脏腔室或血管内移动时测量电参数。在一些实施例中,电极在腔室的整个容积中测量电参数,例如LA。任选地,电极在接触心脏腔室壁或血管壁时测量电参数。在一些实施例中,电极在接近期望的消融靶位点的区域处和/或接近食道的至少一部分的区域处测量电参数。在一些实施例中,如果患者是清醒的且合作的,则吞咽操作可以允许执行该程序的专家检测食道并且帮助验证电标测诊断。
根据一些示例性实施例,测得的电参数值用于在214处估计食道的至少一部分的位置,例如通过标识测量值相比于估计值的偏差,该估计值反映了食道的估计位置。在一些实施例中,测得的电参数值被分析并且任选地用于生成电势图谱或阻抗图谱。在一些实施例中,生成的图谱用于通过标识图谱中展示邻近食道组织的影响的区域来估计食道的至少一部分的位置。
在一些实施例中,将生成的图谱与至少一个模拟图谱,例如在209处生成的模拟图谱进行比较,以标识一个或多个相似的模拟图谱。在一些实施例中,由于至少一个模拟图谱基于食道的预测位置,因此在基于测量值的图谱与模拟图谱之间找到相似性提供了关于在测量时食道的至少一部分的位置的指示。
在一些实施例中,基于所估计的食道位置,由系统或执行该程序的专家选择至少一个治疗靶位点或治疗靶路径。在一些实施例中,引导对治疗靶位点或治疗靶路径的选择以避免在心脏腔室内在足够接近食道以增加食道损伤风险的位置处递送能量。
根据一些示例性实施例,基于如在214处描述的所估计的食道位置,在216处将用于治疗的能量(例如用于消融的RF能量)施加到心脏组织的至少一个所选靶位点。在一些实施例中,考虑靶位点与食道的空间关系而选择该靶位点。任选地,基于治疗能量影响食道的至少一部分的概率来选择靶位点。在一些实施例中,通过EP导管探针的至少一个电极来施加治疗能量。
根据一些实施例,在每次施加治疗能量之前,测量电参数并且估计食道的位置,例如如212至214处所描述的,以验证食道位置在216处的治疗期间没有改变。
从左心房内发现相对探针和食道位置的示例
现在参考图3A和图3B,其描绘了根据本发明的一些实施例的在LA中的不同位置处定位电极,例如用于测量电势。
根据一些示例性实施例,将电极探针(例如电极探针302)插入心脏腔室(例如LA30)中。在一些示例性实施例中,电极探针302在LA内移动和/或与LA 30壁接触,例如在靶位点306处。任选地,靶位点306是用于施加治疗(例如RF消融治疗)的所选靶位点。在一些实施例中,靶位点306紧邻肺静脉308。在一些实施例中,基于成像分析的结果和/或基于该区域的电势图谱或阻抗图谱来选择靶位点306。任选地,基于食道的至少一部分的估计位置来选择靶位点306。
根据一些示例性实施例,电极探针302的至少一个电极测量LA 30内的至少一个电参数,例如在邻近靶位点306的多个位置处,以及任选地食道可以在其附近定位的其他位置。任选地,在启动治疗之前和/或治疗期间和/或治疗之后(例如在靶位点306处施加治疗能量)测量电参数。
根据一些示例性实施例,在治疗靶位点接近食道组织的情况下,将治疗能量(例如RF能量)施加到心脏组织可能会导致食道损伤。根据一些示例性实施例,组织的测得的电参数允许例如估计食道10的至少一部分与靶位点306的接近度。可替代地或另外地,测得的电参数允许例如判定在靶位点306处施加治疗能量是否会损伤食道10,或者这种损伤的概率;或者此概率是否足够小,例如参考安全阈值。在一些实施例中,如果靶位点接近食道10的至少一部分,和/或如果预测到在靶位点306处施加电场会影响食道10,则任选地,尝试例如通过鼓励吞咽或手动操作来移动食道。另外地或可替代地,选择用于治疗的替代靶位点(例如,靶位点307),例如自动建议的。任选地,通过修改计划的消融线来修改靶位点;例如,移位计划的消融线以避开其会以其他方式过于靠近食道的估计位置通过的区域。然后可以根据新的消融线调整沿该线消融的单独位点,例如,这样计划使得这些位点创造完整的透壁消融线。可以将消融线例如朝向通过消融而被电隔离的肺静脉移位。在一些实施例中,修改治疗能量施加的至少一个方案参数,作为修改消融位点和/或消融线的一部分;例如,任选地修改治疗能量的强度(例如,功率和/或持续时间)或治疗的持续时间。
在一些实施例中,LA内的电极探针测量电势或阻抗例如以基于测得的电势值和/或阻抗值来确定电极探针在LA内的位置,并且产生相应电极位置与测量值的图谱。任选地,电极位置与测量值的确定的对应关系用于确定测量用于估计如本文所描述的食道位置的电势的相同或不同电极探针的位置。在一些实施例中,消融探针也是使用电极位置与测量值的确定的对应关系来定位例如消融位点的电极探针。相同的电极探针可以用于所有三个功能(图谱产生、食道位置估计和消融),可以通过单独的探针来执行所有三个功能或者可以通过另外多个探针以任何合适的组合执行这些功能。
用于估计食道的存在的示例性系统
现在参考图4A,其描绘了根据本发明的一些实施例的用于估计食道的至少一部分的存在的系统的框图。
根据一些示例性实施例,将电极探针(例如,导管探针402)插入心脏腔室404中(如心脏腔室404和食道10等所描绘的身体部位不是系统自身的一部分,而是展示以帮助理解系统部件如何相互关联以及如何与系统的运行关联)。在一些实施例中,导管探针402包括在导管探针402的外表面上具有电极接触的电极406。在一些实施例中,导管探针电极406测量在心脏腔室404内生成的一个或多个电场的电参数,例如一个或多个频率处的电势和/或阻抗的参数。
根据一些示例性实施例,电极406的至少一个电极被配置成例如向靶位点405施加治疗能量。在一些实施例中,使用电场、热装置和/或射频传输来递送治疗能量。任选地,电极被配置成消融组织,例如通过RF消融。
根据一些示例性实施例,导管探针402和/或电极406通过接线408连接至装置400的电参数测量器410部件。任选地,电参数测量器被配置成测量电势。在一些实施例中,电参数测量器410从电极406中的至少一个电极接收测得的电信号,并且任选地例如通过对接收到的信号进行放大和/或滤波来修改接收到的信号。
根据一些示例性实施例,电参数测量器410连接至至少一个附加电极,例如皮肤电极413。在一些实施例中,至少一个皮肤电极413包括1个、2个、3个、4个、5个、6个或8个电极。任选地,皮肤电极413包括至少一对电极,例如2对、3对或4对。
根据一些示例性实施例,电参数测量器410连接至控制电路系统414。在一些实施例中,控制电路系统414连接至治疗能量发生器412,该治疗能量发生器被配置成生成治疗能量,例如电场、热场或声场。在一些实施例中,场发生器连接至电极406和/或皮肤电极413,例如以将生成的治疗能量递送至组织。
根据一些示例性实施例,电极406中的至少一个电极被定位成紧密接触或邻近心脏组织,并且测量组织和/或周围组织的至少一个电参数。优选地移动探针以在多个位置处测量,从而任选地当以例如约100Hz的速率测量时建立区域图谱。在一些实施例中,场发生器412生成电场并且通过至少一个皮肤电极413将电场传递至皮肤。在一些实施例中,电极406中的至少一个电极在皮肤电极413递送电场之后测量电参数。
根据一些实施例,控制电路系统414基于电参数值,例如由电极406和/或皮肤电极413测量的电势值估计食道的至少一部分的位置。任选地,基于对MRI、CT或超声成像分析程序的测得的电参数结果的分析来估计食道的存在。
根据一些示例性实施例,控制电路系统414通过基于电参数的测量值生成测量图谱来估计食道的至少一部分的位置,并且将此测量图谱与在不同的地方(包括任选地在其不影响测量结果的地方)绘制与食道相关的期望结果的一个或多个参考图谱进行比较。现在将依次讨论这两种类型的图谱的两组主要实施例。
第一组的实施例依赖于以下假设:所有图谱(测量图谱和参考图谱)将电参数的值(例如,电压和/或阻抗)分配给共同的基础解剖结构,并且如果电参数的不同值在不同图谱中与相同的解剖位置相关联,则此差异可以指示食道的位置的差异。因此,标识食道使用关于在心脏腔室404内的不同位置处测量哪些值的知识。
第二组的实施例依赖于以下假设:所有图谱(测量图谱和参考图谱)由将电值变换成解剖结构的给定的标测变换产生;并且由图谱表示的解剖结构之间的差异指示食道所在的位置。因此,标识食道需要比较心脏腔室404的解剖图谱的形状。
在第一组实施例中,测量图谱包括一个或多个电场性质的测量值(例如,通过组织的绘制区域诱导的一个或多个电场的一个或多个频率下的电势和/或阻抗),这些测量值与各个位置相对应地存储在组织的绘制区域内。例如,如关于下文描述的第二组实施例或者通过另一方法所描述的,可以确定这些位置;例如,磁感测;或使用超声和/或X射线的医学成像。在一个这种实施例中,可以通过将电参数的测量值配准到心脏腔室的预先获取的图像来生成测量图谱。例如,可以将测得的电压值配准到预先获取的图像,并且可以基于电压与位置之间的配准将与电压值相关联的阻抗值分配给预先获取的图像中的位置。
在第一组实施例中,参考图谱包括与数值出现的对应位置相关联的存储在数字计算机存储器418中的模拟和/或先前记录的电场性质的值(例如,通过组织的绘制区域诱导的一个或多个电场的一个或多个频率下的电势和/或阻抗)。任选地,通过基于用于确定参考图谱的位置的预先获取的图像以及不存在食道或食道定位在相对于预先获取的图像的某个位置的假设来模拟期望用于电参数(例如,用于阻抗)的值生成参考图谱中的每一个。
存储在存储器418中的参考图谱任选地包括心脏腔室404的一些部分与食道在不同图谱中的不同位置之间的关联(任选地根本没有食道,这将在下文进一步单独解释)。例如,如本文中关于框209所描述的,生成模拟图谱。另外地或可替代地,参考图谱是从先前记录的数据中生成的(例如,在其他受试者中,其中食道的位置是已知的)。
在第一组实施例中,测量图谱与参考图谱的比较任选地包括标识哪个参考图谱与模拟图谱最相似。例如,逐位置地(并且任选地在整个绘制体积中,不一定仅在腔室壁附近)比较图谱值,并且导致图谱的相关部分中的最小累积差异(或其他类似度量)的比较指示最相似的参考图谱。然后将最相似的参考图谱中的食道位置用作食道的估计位置。在这种情况下由食道引起的“偏差”可以理解为最相似的参考图谱的部分,在不存在食道或食道被定位成足够远而不影响测量结果的情况下,其不同于在参考图谱中示出的方式。
另外地或可替代地,在比较中使用的参考图谱是在完全没有任何食道的情况下例如通过模拟、通过从先前记录的数据(例如,在其他受试者中)中获得的图谱池的合适的非食道部分的组合、通过在食道处于食道“平均”的不同位置的情况下足够的图谱的组合,或其他合适的方法生成的图谱。参考图谱应该被良好配准到测量图谱,例如通过适当的变形来对齐如大孔(血管)等标志性特征。基于患者自身解剖结构的模拟(例如,如使用MRI图像确定的)是优选的;然而,任选地,通过将参考图谱数据的合适部分配准到通过患者自身解剖结构的成像提供的支架而使用来自其他患者的参考图谱数据。由于食道的位置通常受限于例如心脏腔室的特定侧,因此配准可能在某种程度上简化为仅配准那一侧的壁。然后,例如通过减去相应的值来确定参考图谱与测量图谱之间的差异。然后,示出与相似性的巨大差异的图谱区域是食道的估计位置的候选。
在第二组实施例中,以限定心脏腔室404的内表面和/或受内表面约束的测量位置簇的边界使得它们划定心脏腔室404的内部体积的形式使用测量图谱。例如,可以通过使用给定的标测变换将测量结果变换为解剖结构来生成测量图谱。可以通过相同的给定标测变换对参考数据进行变换而生成参考图谱。更一般地,采用表面形状形式的测量图谱可以通过若干不同方法生成。
一种方法使用具有不同频率的三个交叉电场的阻抗测量,其中,每个电场有效地建立空间轴。然后,对特定组的三个电压值的测量与3-D空间中的特定位置相对应。然后心脏腔室404的表面形状可以根据可以在良好探索的心脏腔室404内访问的位置的极限来确定。表面形状可以另外地或可替代地通过指示与心脏腔室壁接触的测量结果来确定,例如在接触和/或接近接触时测量的阻抗和/或力的变化。任选地,非正交和/或非线性的校正有助于改善实际心脏腔室404形状与根据三场标测值确定的形状之间的对应关系。然而,如果没有明确地提供对食道位置的影响的校正,则此标测方法可能由于食道附近的电场的畸变(特别是在食道充满气体时)而导致形状确定的误差。所述误差可以用作用于食道位置估计的基础的一个来源。
确定表面形状的另一方法使用电极探针,该电极探针承载多个感测电极,每个感测电极与其他感测电极具有已知的相对距离。然后,已知的距离充当一种标尺,允许电测量受限于其相对空间位置以在与彼此的特定距离处发生,这与感测电极之间的距离一致。任选地,也可以使用其他约束;例如,心脏腔室中的附近点就其对应电场性质而言也应相应地处于附近的约束(例如,但不仅仅是缺少尖锐的不连续性)。此方法的潜在优点在于,被测量的电参数不一定被组织成近似线性交叉轴的特殊安排。这允许使用更宽范围的电场配置,例如,使用位于身体空间内的传输电极的配置(任选地,标测探针本身的电极可以用作传输电极,尽管在实用中具有一些潜在的权衡,因为生成的场将不再是固定的)。体内传输电极进而具有移除如体外组织的性质和电极与皮肤的电接触等测量结果可变性来源;以及允许增加的电压梯度连同潜在增大的信噪比的潜在优点。
自标尺测量方法有助于将表面位置的测量图谱限制为类似于其实际3-D形状。从位置数据还可以明显看出,一些区域具有与其他区域不同的电压梯度。所述梯度差异可能受到食道接近度的影响。如果依赖于绘制的梯度分布,则该图谱可以用于比较,如针对第一组实施例所描述的。可替代地,可以调整电压梯度,使得其与区域中的某个参考梯度相匹配——但是为了适应这种情况,必须相应地调整标尺长度。标尺的变形扭曲了腔室的绘制的形状。另外地或可替代地,标尺约束任选地在重建期间并非绝对地施加,而是提供允许虚拟标尺稍微收缩或扩展以便提高例如局部电场自相关水平的加权。在任何一种情况下,扭曲的形状的误差可以用于估计食道的位置。
确定表面形状的另一种方法是测量若干不同位置的电场梯度的幅度和方向,并且据此重建对心脏腔室404的整体形状的估计。例如,可以作出简化的假设:作为立体角的函数的小梯度差是由于如心脏壁等基本上电均匀的周围介质在所述方向上的距离的差异所致。例如,充满相对低阻抗血液的血管可以被建模为“远离”(即,定位在开孔之外),而具有较高阻抗的心脏腔室壁的扩展被建模为更接近。然而,食道的存在扰乱了简化假设。食道中的高阻抗空气袋可以使心脏腔室壁仍看起来更接近,从而导致可以沿着食道范围近似圆柱体的一部分的凸起。同样,这种类型的误差可能有利于估计食道的位置。
对于产生表面形状的测量图谱的上述方法中的任何方法,可获得与参考图谱相比较的类似方法,如针对第一组实施例所描述的;但是在第二组实施例中,使用空间中的表面形状作为比较的基础。例如,参考图谱可以是心脏腔室404的“真实”形状的图谱(类似于“非食道”类型参考图谱),或者其可以是给出通过模拟和/或先前测得的食道扭曲的形状的图谱。还应注意的是,部分圆柱形状还提供了一种发现和/或验证所估计的食道位置的方法;例如,通过将部分圆柱体(或其他合适的模板形状,例如椭球体、椭圆体、3-D网格或其他3-D结构的表面)匹配到包括与心脏腔室壁404的实际形状的偏差的凸起或凹陷。
应注意的是,表面形状的参考图谱任选地用作医师的训练工具,例如以训练医师在测得的表面形状的图谱上识别食道形状。
根据一些示例性实施例,解剖成像部件416包括计算机电路系统,该计算机电路系统被配置成例如通过将接收到的信号与附加信息,例如存储在存储器418中的解剖图谱和/或成像分析结果组合来分析接收到的电信号。在一些实施例中,分析的结果是测量图谱,该测量图谱可以具有将电场性质分配给位置的类型,和/或基于测得的电场性质明确确定如心脏腔室的内腔形状等解剖形状的类型。在一些实施例中,存储器418存储程序和/或算法,这些程序和/或算法可以由控制电路系统414用于使用测量图谱和(多个)参考图谱来估计食道的位置。在一些实施例中,存储器418存储先前在心脏腔室内的不同位点处测量的测得的电参数值(例如,可供解剖成像部件416使用)。在一些实施例中,存储器418包括身体组织(例如心脏组织和/或食道组织)的解剖学和/或电学信息。
根据一些实施例,控制电路系统414估计食道10的至少一部分是否存在于不利位置和/或食道的存在是否会影响治疗的至少一种结果。可替代地或任选地,控制电路系统414判定将至少一个电极定位在具体的靶位点处以例如通过RF消融治疗心脏组织将对食道组织产生不利影响。在一些实施例中,如果在靶位点处施加治疗能量对食道没有影响或者对食道的影响是允许的影响,则控制电路系统414向场发生器412发送信号以生成治疗能量。可替代地,如果预期在靶位点处施加治疗能量对食道产生不利影响,则控制电路系统414选择用于治疗的替代靶位点,和/或修改治疗路径和/或修改治疗方案的至少一个参数。在一些实施例中,治疗方案参数包括治疗能量的强度和/或治疗期的持续时间和/或两个连续治疗期之间的间隔。在一些实施例中,经修改的治疗方案参数允许例如避免或最小化治疗对食道10的不利影响。在一些实施例中,治疗能量通过电极406中的至少一个电极递送至组织。
根据一些示例性实施例,如果估计食道10的至少一部分存在于与所选治疗靶位点相关的不利位置,则控制电路系统向接口420发送信号以生成人类可检测的指示,例如警报信号、光和/或声音信号。可替代地或另外地,控制电路系统414防止在测量位点处施加治疗。任选地,控制电路系统414选择用于施加治疗的替代靶位点。
根据一些示例性实施例,控制电路系统414基于所估计的食道位置例如通过使用治疗参数和组织的测得的电参数模拟治疗来估计施加治疗能量(例如,在所选治疗靶位点处的RF能量)将导致食道损伤的概率。在一些实施例中,模拟结果存储在存储器418中。在一些实施例中,装置400包括壳体422。
用于估计与治疗相结合的食道位置的示例性过程
现在参考图4B,其描绘了根据本发明的一些实施例的用于在治疗程序之前估计食道的至少一部分的位置例如以便避免或最小化治疗对食道的影响的流程图。
根据一些示例性实施例,诊断患者,例如患有心房颤动的患者,并选择治疗程序。在一些实施例中,治疗程序包括消融心脏组织的所选区域。任选地,基于至少一个临床参数和/或基于成像程序,例如MRI、CT或超声程序的结果,在430处选择治疗位点。在一些实施例中,所选治疗程序包括RF消融。
根据一些示例性实施例,如先前在208处所描述的,估计食道的位置。在一些实施例中,估计食道的位置允许例如选择至少一个靶位点或靶区域或用于治疗的路径和/或允许确定在治疗期间要避免心脏组织的哪些区域以最小化组织的不利影响,例如食道损伤。
根据一些示例性实施例,将包括至少一个电极的电极探针插入心脏腔室中,例如432处的LA。在一些实施例中,插入电极探针例如以测量至少一个电参数,例如电势和/或阻抗;和/或将例如RF能量的治疗能量施加到心脏组织。任选地,将电极置于治疗靶位点处或先前在430处选择的治疗路径处。
根据至少一些示例性实施例,在434处,电极测量组织的至少一个电参数。在一些实施例中,在LA内的不同位置处和/或所选治疗靶位点或与所选治疗靶位点相邻处测量电参数(例如,同时移动电极并且例如每秒记录约100个测量记录)。在一些实施例中,该至少一个电参数包括电势和/或阻抗。
在一些实施例中,电极在向组织施加电场期间在434处测量电参数,例如通过至少一个附加电极或至少一个附加的电极对,例如2对、3对或4对。在一些实施例中,附加电极或电极对定位在插入心脏腔室中的电极探针上。可替代地,附加电极或电极对附接至身体的外表面,例如附接至患者的皮肤,任选地在皮肤上的已所选位置处。
根据一些示例性实施例,在436处分析电参数,例如电势的测量值。在一些实施例中,该分析包括基于电参数的测量值生成电势图谱或阻抗图谱。在一些实施例中,附加参数用于帮助确定从电参数导出的测量图谱:其可以是临床参数,例如电生理学参数。可替代地或另外地,附加参数包括组织的解剖学参数。任选地,附加参数包括成像分析程序的结果,例如MRI、CT或超声成像分析。
根据一些示例性实施例,436处的分析包括将测得的电势值与模拟值进行比较。该比较可以揭示由于附近食道的存在而引起的电场干扰所引起的差异。
在一些实施例中,比较是基于测量值构造的电势图谱与组织的模拟电势图谱的比较。模拟图谱可以被理解为将模拟中的位置转换成期望的电势或其他电场参数值(没有食道的情况下),并且偏差是与此的偏差。可替代地或另外地,包括食道的模拟的模拟被认为已经包括与非食道状态的偏差,并且在测量值与所述模拟匹配的程度上,测得的电势图谱共享同一偏差。电势图谱的偏差可以被理解为具有“形状”,例如,在电势幅度根据沿心脏腔室壁后的范围的位置变化到不同值(“高度”或“距离”,如果被绘制的话)的情况下。
可替代地或另外地,在一些实施例中,测量图谱是组织位置的图谱(在本文中也被称为表面形状的测量图谱),其中,测得的电势用于确定包括图谱(“壁形状”)的组织壁的位置,由于食道的存在,没有预先假设所指示的组织壁位置与实际壁位置存在偏差。然后,与之比较的图谱是实际心脏腔室壁位置的图谱,并且偏差是根据物理形状的偏差来描述的。
在一些实施例中,(没有事先假设食道影响,使得真正的壁位置测量结果是“期望的”),电势图谱可能导致指示与其实际位置有一定的缩进的心房壁的测量结果。这可能由于区域内对局部阻抗测量结果的影响,这些影响是由食道组织和/或食道内空气引入该区域的介电性质不均匀引起的。
在一些实施例中,模拟电势图谱是如先前所描述的在209处生成的。可替代地,分析测得的电势图谱以标识可以指示接近LA的食道组织的存在的特定区域,例如通过标识基本上与圆柱体(例如,椭圆形直圆柱体)的一部分相对应的形状(例如,根据沿壁表面的位置绘制幅度),其中,圆柱体高度通常沿着头-尾解剖轴线延伸。在一些实施例中,圆柱形横截面的轴线基本上平行于LA壁而延伸,该LA壁的长度为约5mm到15mm、10mm到20mm或另一长度。在一些实施例中,测得的“壁形状”与实际壁形状的偏差由叠加在LA壁的位置图谱上的另一个图案来区分。
在一些实施例中,将测得的电势图谱与基于食道的估计位置生成的模拟电势图谱进行比较。在一些实施例中,标识与测量图谱类似的模拟图谱允许例如估计食道的位置。
根据一些示例性实施例,在438处,任选地基于如在436处描述的对测得的电参数值的分析来估计食道的至少一部分的位置。在一些实施例中,估计食道的至少一部分的位置包括估计食道的至少一部分与LA或LA内的治疗靶位点之间的空间关系。任选地,估计食道位置包括预测在LA内的所选靶位点处施加治疗能量,例如RF能量是否会对食道的至少一部分产生不利影响。
根据一些示例性实施例,如果预测到在所选治疗靶位点处施加治疗能量对食道产生不利影响,例如损伤食道组织的至少一部分,则在442处递送指示,例如人类可检测的指示。在一些实施例中,将指示递送至装置的用户,例如执行该程序的医师或技术人员。任选地,该指示包括警报信号。在一些实施例中,该指示包括关于替代治疗位点的信息,任选地基于所估计的食道位置。
根据一些示例性实施例,如果预测到在所选靶位点处施加治疗能量会对食道产生不利影响,则在444处重新定位电极探针或电极探针的至少一个电极。在一些实施例中,任选地基于所估计的食道位置,电极定位于替代治疗位点处。在一些实施例中,一旦重新定位电极,就在新治疗靶位点处测量电参数,例如如434处所描述的。
根据一些示例性实施例,如果预测到在所选靶位点处施加治疗能量会对食道产生不利影响,则任选地基于所估计的食道位置和/或基于靶位点与食道之间的空间关系,在446处修改或调整治疗的至少一个参数。在一些实施例中,该至少一个参数包括治疗的持续时间、治疗的强度和/或替代治疗路径,例如包括至少一个替代治疗靶位点的替代消融路径。任选地,该至少一个参数包括治疗期数量、每个治疗期的持续时间或连续治疗期之间的间隔。
根据一些实施例,一旦修改或调整了该至少一个治疗参数,就在448处施加治疗。在一些实施例中,通过定位于电极探针上的至少一个电极或一组电极来施加治疗。任选地,通过定位于患者身体内部或患者身体外部的至少一个电极,例如皮肤电极来施加治疗。
根据一些示例性实施例,如果没有预测到在所选靶位点处施加治疗能量会对食道产生不利影响,则指示在450处被提供给用户。在一些实施例中,将该指示递送至装置的用户,例如执行该程序的医师或技术人员。在一些实施例中,递送的指示包括人类可检测的指示,例如光或声音指示。在一些实施例中,如先前所描述的,在448处施加治疗。
结合消融过程对食道的位置的示例性估计
现在参考图5,其描绘了根据本发明的一些实施例的用于结合消融程序估计食道的至少一部分的存在和/或位置的过程。
根据一些示例性实施例,在501处估计食道的至少一部分的位置。在一些实施例中,基于成像分析,例如CT、MRI或超声成像分析来估计食道位置。应当注意,食道能够在一段时间内相对于心脏移动(例如,由于吞咽运动),因此,优选地使用与使用位置估计的治疗程序在时间上非常接近的图像进行基于成像的食道位置估计。
在一些实施例中,基于模拟电势或阻抗值并且任选地基于成像分析的结果生成例如电势图谱或阻抗图谱的图谱。在一些实施例中,模拟图谱包括预期由置于热腔,例如LA内的电极测量的电势或阻抗值。在一些实施例中,501处的食道的估计位置包括食道的可能位置,任选地由于食道的所预测移动,例如食道相对于心脏的横向移动。在一些实施例中,基于食道的任选地与心脏有关的不同估计位置生成每个模拟图谱。在一些实施例中,至少一个模拟图谱和/或关于食道的估计位置的信息例如在治疗之前或治疗期间被呈现在显示器上。
根据一些示例性实施例,在502处计划至少一个消融治疗靶位点和/或消融路径。在一些实施例中,基于至少一个临床参数,例如电生理学参数选择消融靶位点和/或消融路径。另外地或任选地,基于解剖学信息,例如解剖图谱和/或基于至少一个成像分析的结果,例如CT、MRI或超声分析来选择靶位点。在一些实施例中,基于至少一个模拟图谱,例如在501处生成的至少一个模拟图谱选择消融靶位点和/或消融路径。
根据一些示例性实施例,在504处,至少一个电极定位于心脏腔室内和/或计划的治疗靶位点或治疗路径处,例如计划的靶位点或路径。在一些实施例中,靶位点或路径定位于LA处,例如定位于LA的心脏组织处。在一些实施例中,基于模拟图谱定位电极。
根据一些示例性实施例,在506处,电极测量至少一个电参数,例如LA内的电势,任选地在靶位点处或靶位点相邻处和/或多个其他位置处。在一些实施例中,在将电场施加到身体,任选地施加到皮肤期间测量电参数。在一些实施例中,基于从LA内测量的测得的电参数值来修改模拟图谱。可替代地,将测得的电参数值与模拟值进行比较。在一些实施例中,测得的电参数值用于生成电势图谱或阻抗图谱。
根据一些示例性实施例,在508处估计食道的位置或LA与食道的至少一部分之间的空间关系。任选地,估计接近所选靶位点或接近所选治疗路径的食道组织。
根据一些示例性实施例,通过在展现测得的电参数值相比于估计值的偏差的图谱区域中标识来估计食道的位置,该估计值与近端食道组织对测量值的影响有关。在一些实施例中,估计值基于许多受试者中的多个电参数测量结果。可替代地,通过将基于测量值的图谱与模拟图谱进行比较来估计食道位置,以标识与测量值的图谱最相似的模拟图谱。在一些实施例中,通过将测量值与反映食道的不同预测位置的模拟值进行比较来估计食道位置。在一些实施例中,如果患者是清醒的且合作的,则吞咽操作可以允许执行该程序的专家检测食道并且帮助验证电标测诊断。
在一些实施例中,测得的电参数值,例如电势值用于指示空间关系,例如测量位点和/或电极探针与食道组织之间的距离。在一些实施例中,测得的电参数值用于估计空间关系,例如消融靶位点和/或用于食道组织的消融路径之间的距离,而不需要基于这些测量值生成图谱。在一些实施例中,测得的电参数值用于判定所估计的空间关系是否是消融之前的靶向空间关系或允许的空间关系。在一些实施例中,靶向空间关系或允许的空间关系包括食道的至少一部分与所选消融靶位点之间的空间关系,该消融靶位点允许例如将RF能量递送至靶位点处的组织而不影响食道的该至少一部分,或对食道的影响是允许的影响,例如不会导致食道损伤的影响。任选地,靶向空间关系包括在电参数值的测量位点处未检测到食道。
根据一些示例性实施例,如果预测到消融靶位点或沿着靶路径对食道没有不利影响或预测到对食道的影响是允许的影响,则在516处启动消融程序。任选地,在消融靶位点位于靶向空间关系或允许的空间关系中,例如距食道靶向距离或允许的距离时,基于测得的电参数值启动消融程序。在一些实施例中,如果允许在靶位点处或沿靶路径进行消融,则提供指示。
根据一些示例性实施例,如果基于测得的电参数值预测到消融靶位点或沿靶路径消融对食道产生不利影响,例如损伤食道,则提供指示。另外地,在510处选择替代消融位点和/或替代消融路径。可替代地,在512处修改消融治疗的至少一个参数例如以最小化或避免不利影响。在一些实施例中,从包括消融强度、每个消融脉冲的持续时间、消融频率、和/或至少两个连续消融期之间的时间间隔的列表中自动地选择已修改消融参数。
根据一些示例性实施例,如果预测到消融靶位点或沿着靶路径消融对食道产生不利影响,则在513处将食道移动到靶向位置。任选地,通过鼓励受试者(如果有意识)吞咽来完成食道的移动;这可能导致食道远离靶位点移动。对于食道位置的原始估计,可以监测和验证移动。在一些实施例中,例如通过将装置插入食道中来移动食道,该装置允许安全地移动食道并且任选地将食道固定在靶向位置处。
根据一些示例性实施例,如果将电极置于用于消融的替代靶位点处,则在514处执行验证。在一些实施例中,验证包括在消融之前测量替代靶位点处的至少一个电参数,以及估计替代靶位点与食道的至少一部分之间的空间关系。
根据一些示例性实施例,在516处施加消融程序。在一些实施例中,在消融程序期间,显示电势图谱或基于测得的和/或模拟的电势值的图谱。在一些实施例中,所显示的图谱用于在处于允许的空间关系中的位置(例如距食道的至少一部分的距离)处将消融探针定位在心脏腔室内。
根据一些示例性实施例,在每次消融期后,执行对电势的附加测量。在一些实施例中,附加测量结果用于更新现有电势图谱或阻抗图谱,任选地以在消融期期间或之后标识食道的移动。
用于模拟电势图谱或阻抗图谱的示例性过程
现在参考图6A,其描绘了根据本发明的一些实施例的用于生成电势图谱或阻抗图谱的过程。
根据一些示例性实施例,在602处执行成像分析,例如以估计食道、心脏和其他组织或器官的位置。在一些实施例中,成像分析包括CT、MRI或超声成像分析。
根据一些示例性实施例,在604处执行电参数值的模拟。在一些实施例中,模拟电势值和/或阻抗值,如同其将从心脏腔室,例如LA内由至少一个电极测量一样。在一些实施例中,模拟基于将用于生成电场的电极的位置和数量、将通过每个电极或电极对施加到身体的电场频率、以及LA周围的组织类型及其对应介电性质。
根据一些示例性实施例,基于模拟值,在606处生成模拟图谱,例如模拟电势图谱或阻抗图谱。任选地,通过将模拟的电参数值与解剖数据,例如,在成像分析602中获得的解剖数据组合来生成图谱。
根据一些示例性实施例,将至少一个电极插入心脏腔室中或插入血管中以便例如在610处从至少一个以及优选地从多个位置测量组织的至少一个电参数。任选地,根据测得的电势值计算阻抗值。在一些实施例中,电势值或阻抗值用于生成图谱,例如电势图谱或阻抗图谱。
在一些实施例中,在612处,测得的电势值或阻抗值用于更新模拟图谱。可替代地,生成的电势图谱或阻抗图谱用于更新模拟图谱。在一些实施例中,在治疗,例如RF消融治疗之前和/或期间和/或之后,向专家显示描述食道的更新位置和/或LA与食道组织的接近度的更新图谱。在一些实施例中,例如,更新图谱允许专家将消融电极置于某个位置处或计划在施加治疗能量时不会导致食道损伤的消融路径。
示例性模拟图谱
根据一些示例性实施例,通过在建模用于包含具有与在CT扫描中成像的组织相关联的介电性质(或其他解剖学数据)的材料的区域中对电场传播进行建模来获得模拟结果。在一些实施例中,基于CT扫描成像结果的自动分割来分配组织类型同一性。使用高分辨率扫描是潜在的优势。高分辨率扫描的示例是具有1mm与3mm之间的切片的CT扫描。如果更高的分辨率可用,则其是优选的。在一些实施例中,扫描任选地用作分割的基础,因为这将场模拟的条件设置为更接近实际情况。在一些实施例中,执行任选地手动引导的后处理以去除分割伪像。
任选地,例如用于清理分割的后处理使用如CartoTM或InsightTM系统等商业上可获得的成像系统的能力。在一些实施例中,后处理是在解剖学分割任务方面有经验的成像技术人员的指导下执行的。一般来说,电磁仿真的结果依赖于致力于获得准确的、高分辨率的解剖数据的谨慎程度。已扫描组织的较高分辨率还应保留在模拟建模本身中。
现在参考图7A至图7I,其描绘了根据本发明的一些示例性实施例的LA的模拟电势图谱。
根据一些示例性实施例,通过模拟电势值(如同其是从心脏的至少一部分内,例如LA内测量的一样)来生成模拟电势图谱。在一些实施例中,模拟基于心脏组织和LA周围的其他组织类型的介电性质。此外,LA电势值的模拟基于LA内的电极探针的模拟位置、皮肤上用于施加电场的电极的位置、以及施加的电场的其他参数,例如频率和强度。在一些实施例中,模拟图谱中的每一个基于食道的不同估计位置生成,并且表示食道在此估计位置对模拟电势值的影响。可替代地,基于模拟测量位点与食道的至少一部分之间的不同空间关系来准备模拟图谱。
根据一些示例性实施例,例如,如图7A和图7B中示出的,图7B中示出的白色电势模拟图谱是基于食道不影响心脏20内的电场的假设而生成的模拟电势图谱。在一些实施例中,例如如在图7D至图7F中示出的,基于食道10定位于与心脏20的不同空间关系,例如距心脏不同距离处的假设而生成模拟电势图谱。在一些实施例中,基于食道的不同位置,生成不同的模拟电势图谱。在一些实施例中,例如如图7G中示出的,每个有色模拟图谱反映了食道与心脏之间的不同空间关系。例如,红色模拟图谱基于食道10定位于距心脏20的距离720的假设生成。另外,绿色和黑色的有色模拟图谱基于食道10分别定位于距离722和距离724的假设生成。在一些实施例中,例如,图7G中示出的白色、红色、绿色与黑色有色电势图谱之间的最小空间差异2%允许标识食道的可能位置。
根据一些示例性实施例,如例如图7H和图7I中所示出的,LA的位置例如基于CT扫描结果来确定,并且不同的模拟电势图谱基于食道被置于距LA的不同距离的假设生成。在一些实施例中,如图7H中所示出的,图7I是基于与LA 30相关的食道的估计位置准备的模拟图谱的覆盖图。
示例性模拟图谱
现在参考图8A至图8E,其示意性表示根据本披露内容的一些实施例的幻影左心房的视图,在该幻影左心房中,已经在具有和不具有模拟食道的相邻充气管的情况下执行了电极探针电压标测测量。
图8A和图8B各自示出了电压测量结果的点云,其中,已经使用电极探针确定了测量位置,该电极探针承载多个感测电极,每个感测电极相对于彼此处于已知的相对位置(至少已知的距离)处。已知的相对位置用作寻找测量点相对于彼此的位置的约束。在一些实施例中,约束可以是柔和的,即,保持电极之间的距离等于实际距离的标测比不保持这些距离相等的标测更优选,但后者并不是绝对阻止的。在图8B而不是图8A的测量期间,在位置803处,将充满空气的管子浸没在幻影附近。图8B的803处的所产生的压痕(偏差)可以相对于图8A中的区域801的形状观察到。图8C是具有图8B的暗的点云和图8A的亮的点云的差分图像。两个点云之间的差异被视为区域801的较亮点,这些较亮点通过区域803中留下的间隙示出。
图8D和图8E分别表示基于如图8A和图8B所描述的获得的点云的滚动大理石重建810、812。滚动大理石重建将一定直径的虚拟球体滚动到具有受控入侵程度的点云的主体上,这限定了将点云的测量结果包含在其内的表面。在图8E中,由于充气管的影响,在813处出现偏差(压痕),该偏差在811处不存在。
通用
如本文参考量或值所使用的,术语“约”意指“±10%内”。
术语“包括(comprises)”、“包括(comprising)”、“包括(includes)”、“包括(including)”、“具有(has)”、“具有(having)”及其同源词意指“包括但不限于”。
术语“由……组成”意指“包括并且局限于”。
术语“主要由……组成”意指组合物、方法或结构可包括附加成分、步骤和/或部分,但条件是这些附加成分、步骤和/或部分不实质性地改变所要求保护的组合物、方法或结构的基本特征和新颖特征。
如本文所使用的,除非上下文清楚地另外指明,否则单数形式“一个”、“一种”以及“该”包括复数指示物。例如,术语“化合物”或“至少一种化合物”可以包括多种化合物,该多种化合物包括其混合物。
贯穿本申请,本发明的实施例可以参照范围格式呈现。应当理解的是,采用范围格式的描述仅为了方便和简洁起见,并且不应当解释为是对本发明的范围的硬性限制。因此,对范围的描述应当被认为是具有确切披露的所有可能的子范围以及所述范围内的单独数值。例如,如“从1到6”等范围描述应当被认为是具有如从“1到3”、“从1到4”、“从1到5”、“从2到4”、“从2到6”、“从3到6”等确切披露的子范围等;以及所述范围内的单独数字,例如,1、2、3、4、5和6。无论范围的宽度为多少,这都适用。
除非上下文另有明确说明,否则每当本文指示数值范围(例如,“10至15”、“10到15”、或由这些另一个这样的范围指示连接的任何数字对)时,都意味着包括在所指示的包括这些范围限制的范围限制内的任何数字(分数或整数)。短语第一指示数字与第二指示数字“之间的范围/变动范围/范围”以及从第一指示数字“到”、“达到”、“直到”或“至”(或另一个这种范围指示术语)第二指示数字的“范围/变动范围/范围”在本文中可互换使用,并且意指包括第一指示数字和第二指示数字以及在其之间的所有分数和整数。
除非另有说明,否则本文所使用的数字和基于其的任何数字范围是本领域技术人员理解的合理测量和舍入误差的准确度内的近似值。
应理解的是,为清楚起见在单独的实施例的背景下描述的本发明的某些特征也可以在单个实施例中组合提供。相反地,为简便起见,在单个实施例的背景下描述的本发明的不同特征也可以单独地或以任何适合的子组合或在适当情况下提供于本发明的任何其他已描述的实施例中。在不同实施例的背景下描述的某些特征不认为是那些实施例的必需特征,除非实施例在没有那些要素的情况下是无效的。
尽管结合其特定实施例描述了本发明,但是显然对于本领域的技术人员而言,许多变型、修改和变更是显而易见的。因此,意图涵盖落入所附权利要求书的精神和广泛范围内的所有这种替代方案、修改以及变化。
本说明书中所提及的所有公开、专利以及专利申请在本文通过引用以其全文结合到本说明书中,达到如同每一个单独的公开、专利或专利申请被专门地并且单独地指示通过引用结合在此的相同的程度。此外,本申请中对任何参考文件的引用或标识不应解释为承认这种参考文件是作为本发明的现有技术可获得的。在使用章节标题的意义上,它们不应被解释为必然进行限制。

Claims (123)

1.一种估计患者食道的至少一部分与患者的心脏腔室之间的空间关系的方法,该方法包括:
测量在所述心脏腔室内的一个或多个位置处的至少一个电参数以获得测量值;以及
基于所述测量值估计所述空间关系,
其中,所述测量至少一个电参数包括测量由以下项施加的电场的电参数:
置于所述患者的皮肤的外表面上的至少一个电极,或者
在所述患者的心脏中的至少一个电极;
其中,所述食道中没有电极。
2.一种估计患者食道的至少一部分与患者的心脏腔室之间的空间关系的方法,该方法包括:
通过置于所述患者的皮肤上的至少3对电极将至少3个电场施加到该患者的身体,以确定电极在所述心脏腔室内的位置;
测量在所述心脏腔室内的一个或多个位置处的至少一个电参数以获得测量值;以及
基于所述测量值估计所述空间关系,
其中,所述测量至少一个电参数包括通过定位于所述心脏腔室内的电极测量所述电场的电参数。
3.如权利要求1所述的方法,其中,所述估计包括估计所述心脏腔室中的治疗靶位点与该食道之间的所述空间关系。
4.如权利要求2所述的方法,其中,所述估计包括估计所述心脏腔室中的治疗靶位点与该食道之间的所述空间关系。
5.如权利要求1-4中任一项所述的方法,进一步包括:
基于这些测量值生成电性质图谱。
6.如权利要求1-4中任一项所述的方法,进一步包括:
基于这些测量值生成该心脏腔室或其一部分的解剖图谱。
7.如权利要求5所述的方法,其中,所述估计进一步包括标识所述电性质图谱内的至少一个区域,该至少一个区域具有由于所述食道接近所述心脏腔室而产生的所述测量值的偏差。
8.如权利要求7所述的方法,其中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近不存在食道。
9.如权利要求7所述的方法,其中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近存在食道。
10.如权利要求5所述的方法,其中,所述电性质图谱包括电势图谱。
11.如权利要求5所述的方法,其中,所述电性质图谱包括电阻抗图谱。
12.如权利要求1或2所述的方法,进一步包括:
基于这些测量值生成测得的电性质图谱;
将所述电性质图谱与至少一个模拟电势图谱进行比较;
标识基于这些测量值生成的所述电势图谱内的至少一个区域,所述至少一个区域具有由所述食道接近所述心脏腔室而产生的偏差;
其中,所述估计基于所述偏差。
13.如权利要求12所述的方法,其中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近不存在食道。
14.如权利要求12所述的方法,其中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近存在食道。
15.如权利要求1-4中任一项所述的方法,进一步包括:
基于这些测量值生成电性质图谱;
将所述电性质图谱与所述电性质的一个或多个模拟图谱进行比较;以及
标识与测得的电性质图谱类似的一个或多个模拟电性质图谱;
其中,所述估计基于所标识的一个或多个模拟电性质图谱。
16.如权利要求15所述的方法,其中,所述标识一个或多个类似的图谱包括标识具有低于阈值的值差聚合的一个或多个类似图谱。
17.如权利要求15所述的方法,其中,所述估计基于至少两个类似图谱的标识。
18.如权利要求1-4、7-11、13、14、16、17中任一项所述的方法,进一步包括:
判定所述空间关系是否是靶向空间关系。
19.如权利要求18所述的方法,进一步包括:
如果所述空间关系不是靶向空间关系,则进行指示。
20.如权利要求18所述的方法,进一步包括:
如果所述空间关系不是靶向关系,则自动地建议替代靶位点。
21.如权利要求18所述的方法,进一步包括:
如果所述空间关系不是靶向空间关系,则自动地建议消融方案参数的至少一个修改。
22.如权利要求18所述的方法,进一步包括:
如果所述空间关系不是靶向空间关系,则除非人类超控,否则停止消融程序。
23.如权利要求18所述的方法,进一步包括:
如果所述空间关系不是靶向空间关系,则自动地建议将所述食道移动到替代位置。
24.如权利要求2或当从属于权利要求2时的权利要求4-22中的任一项所述的方法,其中,定位于所述心脏腔室内的所述电极既用于估计该食道的位置又用于消融。
25.如权利要求1-4、7-11、13、14、16、17、19-23中任一项所述的方法,其中,所述测量至少一个电参数包括测量电势。
26.如权利要求3、4、7-11、13、14、16、17、19-23中任一项所述的方法,其中,所述估计包括估计所述食道不在某个范围内。
27.如权利要求3、4或从属于权利要求3时的权利要求5-11、15-26中任一项所述的方法,其中,所述治疗靶位点包括消融靶位点。
28.如权利要求1-4、7-11、13、14、16、17、19-23中任一项所述的方法,其中,所述心脏腔室包括左心房。
29.如权利要求1-4、7-11、13、14、16、17、19-23中任一项所述的方法,其中,所述空间关系包括距离。
30.如权利要求1-4、7-11、13、14、16、17、19-23中任一项所述的方法,包括基于所述空间关系估计该心脏腔室中的治疗对所述食道的影响。
31.一种提供对患者食道的至少一部分与患者的心脏腔室之间的空间关系的指示的方法,该方法包括:
接收所述心脏腔室内的一个或多个位置处的至少一个电参数的测量结果以获得测量值;
基于这些测量值生成该心脏腔室的图谱;
基于所述图谱估计所述空间关系;以及
提供所估计的空间关系的指示,
其中,所述至少一个电参数是由以下项施加的电场的至少一个参数:
置于所述患者的皮肤的外表面上的至少一个电极,或者
在所述患者的心脏中的至少一个电极。
32.如权利要求31所述的方法,其中,所述图谱是电参数图谱。
33.如权利要求31所述的方法,其中,所述图谱是解剖图谱。
34.如权利要求31、32或33所述的方法,其中,提供指示包括提供承载所估计的空间关系的指示的图谱。
35.如权利要求31至33中任一项所述的方法,其中,估计所述空间关系包括在该心脏腔室的壁处标识指示该心脏腔室的壁后面的空气场管的电场弯曲。
36.如权利要求31至33中任一项所述的方法,其中,估计所述空间关系包括在该图谱中标识指示该心脏腔室的壁后面的空气场管的变形。
37.一种用于从患者的心脏腔室内估计食道的至少一部分的位置的方法,该方法包括:
从所述心脏腔室内测量至少一个电参数以获得测量值;以及
基于这些测量值估计该食道的所述至少一部分的位置,其中,所述至少一个电参数是由以下项施加的电场的至少一个参数:
置于所述患者的皮肤的外表面上的至少一个电极,或者
在所述患者的心脏中的至少一个电极。
38.如权利要求37所述的方法,进一步包括:
在所述测量之后,基于所述电参数的测量值生成电势图谱;
将所述电势图谱与至少一个模拟电势图谱进行比较;
基于所述比较,标识基于这些测量值生成的所述电势图谱内的至少一个区域,所述至少一个区域具有由于所述食道接近所述心脏腔室而产生的变化;
其中,所述估计基于所述变化。
39.如权利要求37所述的方法,进一步包括:
在所述测量之后,基于所述电参数的测量值生成电势图谱;
将所述电势图谱与一个或多个模拟电势图谱进行比较;
标识所述模拟电势图谱的与基于测量值生成的所述电势图谱类似的一个或多个类似图谱;
其中,所述估计基于所标识的至少一个模拟电势图谱。
40.如权利要求37至39中任一项所述的方法,进一步包括:
判定所述食道的所述估计位置是否是靶向位置。
41.如权利要求40所述的方法,进一步包括:
如果所述估计位置不是靶向位置,则进行指示。
42.一种用于从患者的心脏腔室内估计治疗所述心脏腔室影响患者食道的至少一部分的概率的方法,该方法包括:
从所述心脏腔室内测量至少一个电参数;以及
基于所述电参数的测量值估计影响该食道的所述至少一部分的概率,其中,所述至少一个电参数是由以下项施加的电场的至少一个参数:
置于所述患者的皮肤的外表面上的至少一个电极,或者
在所述患者的心脏中的至少一个电极。
43.如权利要求42所述的方法,其中,所述估计包括:
估计损伤所述食道的概率。
44.如权利要求42或43所述的方法,进一步包括:
在所述测量之后,基于所述电参数的测量值生成电性质图谱;
其中,所述估计进一步包括标识所述图谱内的至少一个区域,该至少一个区域具有由于所述食道接近所述心脏腔室而产生的所述测量值的变化。
45.如权利要求44所述的方法,其中,所述电性质图谱包括电势图谱。
46.如权利要求45所述的方法,其中,所述电性质图谱包括根据所述电势图谱或根据所述电参数的所述测量值计算的阻抗图谱。
47.如权利要求42所述的方法,进一步包括:
在所述测量之后,基于所述电参数的测量值生成电势图谱;
将所述电势图谱与至少一个模拟电势图谱进行比较;
基于所述比较,标识基于这些测量值生成的所述电势图谱内的至少一个区域,所述至少一个区域具有由于所述食道接近所述心脏腔室而产生的变化;
其中,所述估计基于所述变化。
48.如权利要求42所述的方法,进一步包括:
在所述测量之后,基于所述电参数的测量值生成电势图谱;
将所述电势图谱与一个或多个模拟电势图谱进行比较;
标识所述模拟电势图谱的与基于测量值生成的所述电势图谱类似的一个或多个类似图谱;
其中,所述估计基于所标识的至少一个模拟电势图谱。
49.如权利要求42、43、45-48中任一项所述的方法,进一步包括:
判定所述概率是否大于靶向概率。
50.如权利要求49所述的方法,进一步包括:
如果所述概率大于靶向概率,则进行指示。
51.如权利要求49所述的方法,进一步包括:
如果所述概率大于靶向概率,则停止所述治疗的程序。
52.如权利要求42、43、45-48、51中任一项所述的方法,其中,所述电参数包括电势。
53.如权利要求42、43、45-48、51中任一项所述的方法,其中,所述心脏腔室包括左心房。
54.如权利要求17所述的方法,其中,所述空间关系位于该食道的所述至少一部分与用于消融的靶位点之间。
55.一种用于估计食道位置的装置,该装置包括:
至少一个体表电极,其能够连接到场发生器并被配置成将来自所述场发生器的电场施加到心脏腔室;
测量电路系统,其被配置成从在所述心脏腔室内导航的电极探针接收由所述至少一个体表电极施加的电场的电参数的信号测量结果;以及
控制电路系统,被配置成基于这些信号测量结果对该心脏腔室进行建模,并且基于所述信号测量结果来估计食道的与该心脏腔室相邻的至少一部分的位置。
56.如权利要求55所述的装置,进一步包括:
接口电路系统,其中,所述接口电路系统基于所述食道位置的所述估计生成对食道位置的指示。
57.如权利要求55或56所述的装置,进一步包括:
数字计算机存储器;
其中,所述控制电路系统通过将被构造成将这些信号测量结果与该心脏腔室中的位置相关联的测量图谱与存储在所述数字计算机存储器中的一个或多个参考图谱进行比较来估计所述食道位置,其中,这些参考图谱将所述电参数的预测值与该心脏腔室中的这些位置相关联。
58.如权利要求57所述的装置,其中,这些参考图谱中的至少一个参考图谱是模拟图谱。
59.如权利要求58所述的装置,其中,该模拟图谱还模拟食道在模拟位置处对该参考图谱的测量结果的影响。
60.如权利要求58所述的装置,其中,该模拟图谱省略了任何食道对该参考图谱的测量结果的影响。
61.如权利要求57所述的装置,其中,这些参考图谱中的至少一个参考图谱是使用测量图谱构造的图谱,该测量图谱具有该食道的与该心脏腔室相邻的至少一部分的已知位置。
62.如权利要求55或56所述的装置,其中,该控制电路系统通过将该心脏腔室的形状的使用这些信号测量结果构造的测量图谱与该心脏腔室的形状的一个或多个参考图谱进行比较来估计所述食道位置;其中,使用允许由于食道的存在而导致的电场畸变使该测量图谱的形状变形的方法来构造该测量图谱。
63.如权利要求62所述的装置,其中,这些参考图谱中的至少一个参考图谱是模拟图谱。
64.如权利要求63所述的装置,其中,该模拟图谱还模拟食道在模拟位置处对该参考图谱的心脏腔室形状的影响。
65.如权利要求63所述的装置,其中,该模拟图谱省略了任何食道对该参考图谱的心脏腔室形状的影响。
66.如权利要求62所述的装置,其中,这些参考图谱中的至少一个参考图谱是使用测量图谱构造的图谱,该测量图谱具有该食道的与该心脏腔室相邻的至少一部分的已知位置。
67.如权利要求63至66中任一项所述的装置,其中,该控制电路系统使用用于匹配该心脏腔室的测量图谱的形状的模板形状来估计该食道位置。
68.如权利要求55或56所述的装置,其中,所述测量电路系统连接至导管系统,该导管系统被配置成至少部分地置于心脏腔室内以测量所述电参数。
69.如权利要求55或56所述的装置,进一步包括:
至少一个电极,能够连接至所述测量电路系统;其中,所述电极的形状和大小被设置成置于心脏腔室内以测量所述电参数。
70.如权利要求55、56、58、59、60、61、63-66中任一项所述的装置,包括:
场发生器;其中,所述场发生器被配置成基于该食道的所述至少一部分的所述食道位置通过置于所述心脏腔室中的电极将能量场递送至心脏腔室。
71.一种计算机可读存储介质,其存储计算机程序指令,所述计算机程序指令在被处理器执行时能够执行操作以估计患者食道的至少一部分与患者的心脏腔室之间的空间关系,这些操作包括:
基于测量值估计所述空间关系,其中所述测量值通过测量在所述心脏腔室内的一个或多个位置处的至少一个电参数获得;
其中,所述测量至少一个电参数包括测量由以下项施加的电场的电参数:
置于所述患者的皮肤的外表面上的至少一个电极,或者
在所述患者的心脏中的至少一个电极。
72.一种计算机可读存储介质,其存储计算机程序指令,所述计算机程序指令在被处理器执行时能够执行操作以估计患者食道的至少一部分与患者的心脏腔室之间的空间关系,这些操作包括:
基于测量值估计所述空间关系,其中所述测量值通过测量在所述心脏腔室内的一个或多个位置处的至少一个电参数获得,以及其中电极在所述心脏腔室内的位置通过通过置于所述患者的皮肤上的至少3对电极将至少3个电场施加到该患者的身体确定;
其中,所述测量至少一个电参数包括通过定位于所述心脏腔室内的电极测量所述电场的电参数。
73.如权利要求71或72所述的计算机可读存储介质,其中,所述估计包括估计所述心脏腔室中的治疗靶位点与该食道之间的所述空间关系。
74.如权利要求71或72所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够基于这些测量值生成电性质图谱的计算机程序指令。
75.如权利要求71或72所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够基于这些测量值生成该心脏腔室或其一部分的解剖图谱的计算机程序指令。
76.如权利要求74所述的计算机可读存储介质,其中,所述估计进一步包括标识所述电性质图谱内的至少一个区域,该至少一个区域具有由于所述食道接近所述心脏腔室而产生的所述测量值的偏差。
77.如权利要求76所述的计算机可读存储介质,其中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近不存在食道。
78.如权利要求76所述的计算机可读存储介质,其中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近存在食道。
79.如权利要求74所述的计算机可读存储介质,其中,所述电性质图谱包括电势图谱。
80.如权利要求74所述的计算机可读存储介质,其中,所述电性质图谱包括电阻抗图谱。
81.如权利要求71或72所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够执行以下操作的计算机程序指令:
基于这些测量值生成测得的电性质图谱;
将所述电性质图谱与至少一个模拟电势图谱进行比较;
标识基于这些测量值生成的所述电势图谱内的至少一个区域,所述至少一个区域具有由所述食道接近所述心脏腔室而产生的偏差;
其中,所述估计基于所述偏差。
82.如权利要求81所述的计算机可读存储介质,其中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近不存在食道。
83.如权利要求81所述的计算机可读存储介质,其中,这些偏差是该电性质图谱与图谱值的偏差,这些图谱值对应于该至少一个区域附近存在食道。
84.如权利要求71或72所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够执行以下操作的计算机程序指令:
基于这些测量值生成电性质图谱;
将所述电性质图谱与所述电性质的一个或多个模拟图谱进行比较;以及
标识与测得的电性质图谱类似的一个或多个模拟电性质图谱;
其中,所述估计基于所标识的一个或多个模拟电性质图谱。
85.如权利要求84所述的计算机可读存储介质,其中,所述标识一个或多个类似的图谱包括标识具有低于阈值的值差聚合的一个或多个类似图谱。
86.如权利要求84所述的计算机可读存储介质,其中,所述估计基于至少两个类似图谱的标识。
87.如权利要求71、72、76-80、82、83、85、86中任一项所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够判定所述空间关系是否是靶向空间关系的计算机程序指令。
88.如权利要求87所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够在所述空间关系不是靶向空间关系时进行指示的计算机程序指令。
89.如权利要求87所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够在所述空间关系不是靶向关系时自动地建议替代靶位点的计算机程序指令。
90.如权利要求87所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够在所述空间关系不是靶向空间关系时自动地建议消融方案参数的至少一个修改的计算机程序指令。
91.如权利要求87所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够在所述空间关系不是靶向空间关系时若无人类超控则停止消融程序的计算机程序指令。
92.如权利要求87所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够在所述空间关系不是靶向空间关系时自动地建议将所述食道移动到替代位置的计算机程序指令。
93.如权利要求72或当从属于权利要求72时的权利要求73至91中的任一项所述的计算机可读存储介质,其中,定位于所述心脏腔室内的所述电极既用于估计该食道的位置又用于消融。
94.如权利要求71、72、76-80、82、83、85、86、88-92中任一项所述的计算机可读存储介质,其中,所述测量至少一个电参数包括测量电势。
95.如权利要求76-80、82、83、85、86、88-92中任一项所述的计算机可读存储介质,其中,所述估计包括估计所述食道不在某个范围内。
96.如权利要求73所述的计算机可读存储介质,其中,所述治疗靶位点包括消融靶位点。
97.如权利要求71、72、76-80、82、83、85、86、88-92中任一项所述的计算机可读存储介质,其中,所述心脏腔室包括左心房。
98.如权利要求71、72、76-80、82、83、85、86、88-92中任一项所述的计算机可读存储介质,其中,所述空间关系包括距离。
99.如权利要求71、72、76-80、82、83、85、86、88-92中任一项所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够基于所述空间关系估计该心脏腔室中的治疗对所述食道的影响的计算机程序指令。
100.一种计算机可读存储介质,其存储计算机程序指令,所述计算机程序指令在被处理器执行时能够执行操作以提供对患者食道的至少一部分与患者的心脏腔室之间的空间关系的指示,这些操作包括:
接收所述心脏腔室内的一个或多个位置处的至少一个电参数的测量结果以获得测量值;
基于这些测量值生成该心脏腔室的图谱;
基于所述图谱估计所述空间关系;以及
提供所估计的空间关系的指示,
其中,所述至少一个电参数是由以下项施加的电场的至少一个参数:
置于所述患者的皮肤的外表面上的至少一个电极,或者
在所述患者的心脏中的至少一个电极。
101.如权利要求100所述的计算机可读存储介质,其中,所述图谱是电参数图谱。
102.如权利要求100所述的计算机可读存储介质,其中,所述图谱是解剖图谱。
103.如权利要求100、101或102所述的计算机可读存储介质,其中,提供指示包括提供承载所估计的空间关系的指示的图谱。
104.如权利要求100至102中任一项所述的计算机可读存储介质,其中,估计所述空间关系包括在该心脏腔室的壁处标识指示该心脏腔室的壁后面的空气场管的电场弯曲。
105.如权利要求100至102中任一项所述的计算机可读存储介质,其中,估计所述空间关系包括在该图谱中标识指示该心脏腔室的壁后面的空气场管的变形。
106.一种计算机可读存储介质,其存储计算机程序指令,所述计算机程序指令在被处理器执行时能够执行操作以从患者的心脏腔室内估计食道的至少一部分的位置,这些操作包括:
基于测量值估计该食道的所述至少一部分的位置,其中,所述测量值是从所述心脏腔室内测量至少一个电参数获得的,以及其中所述至少一个电参数是由以下项施加的电场的至少一个参数:
置于所述患者的皮肤的外表面上的至少一个电极,或者
在所述患者的心脏中的至少一个电极。
107.如权利要求106所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够执行以下操作的计算机程序指令:
在所述测量之后,基于所述电参数的测量值生成电势图谱;
将所述电势图谱与至少一个模拟电势图谱进行比较;
基于所述比较,标识基于这些测量值生成的所述电势图谱内的至少一个区域,所述至少一个区域具有由于所述食道接近所述心脏腔室而产生的变化;
其中,所述估计基于所述变化。
108.如权利要求106所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够执行以下操作的计算机程序指令:
在所述测量之后,基于所述电参数的测量值生成电势图谱;
将所述电势图谱与一个或多个模拟电势图谱进行比较;
标识所述模拟电势图谱的与基于测量值生成的所述电势图谱类似的一个或多个类似图谱;
其中,所述估计基于所标识的至少一个模拟电势图谱。
109.如权利要求106至108中任一项所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够判定所述食道的所估计位置是否是靶向位置的计算机程序指令。
110.如权利要求109所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够在所述估计位置不是靶向位置时进行指示的计算机程序指令。
111.一种计算机可读存储介质,其存储计算机程序指令,所述计算机程序指令在被处理器执行时能够执行操作以从患者的心脏腔室内估计治疗所述心脏腔室影响患者食道的至少一部分的概率,这些操作包括:
基于电参数的测量值估计影响该食道的所述至少一部分的概率,其中,所述电参数的测量值是从所述心脏腔室内测量的,以及其中所述至少一个电参数是由以下项施加的电场的至少一个参数:
置于所述患者的皮肤的外表面上的至少一个电极,或者
在所述患者的心脏中的至少一个电极。
112.如权利要求111所述的计算机可读存储介质,其中,所述估计包括:
估计损伤所述食道的概率。
113.如权利要求111或112所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够执行以下操作的计算机程序指令:
在所述测量之后,基于所述电参数的测量值生成电性质图谱;
其中,所述估计进一步包括标识所述图谱内的至少一个区域,该至少一个区域具有由于所述食道接近所述心脏腔室而产生的所述测量值的变化。
114.如权利要求113所述的计算机可读存储介质,其中,所述电性质图谱包括电势图谱。
115.如权利要求114所述的计算机可读存储介质,其中,所述电性质图谱包括根据所述电势图谱或根据所述电参数的所述测量值计算的阻抗图谱。
116.如权利要求111所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够执行以下操作的计算机程序指令:
在所述测量之后,基于所述电参数的测量值生成电势图谱;
将所述电势图谱与至少一个模拟电势图谱进行比较;
基于所述比较,标识基于这些测量值生成的所述电势图谱内的至少一个区域,所述至少一个区域具有由于所述食道接近所述心脏腔室而产生的变化;
其中,所述估计基于所述变化。
117.如权利要求111所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够执行以下操作的计算机程序指令:
在所述测量之后,基于所述电参数的测量值生成电势图谱;
将所述电势图谱与一个或多个模拟电势图谱进行比较;
标识所述模拟电势图谱的与基于测量值生成的所述电势图谱类似的一个或多个类似图谱;
其中,所述估计基于所标识的至少一个模拟电势图谱。
118.如权利要求111、112、114-117中任一项所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够判定所述概率是否大于靶向概率的计算机程序指令。
119.如权利要求118所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够在所述概率大于靶向概率时进行指示的计算机程序指令。
120.如权利要求118所述的计算机可读存储介质,其中,所述计算机可读存储介质还存储当被所述处理器执行时能够在所述概率大于靶向概率时停止所述治疗的程序的计算机程序指令。
121.如权利要求111、112、114-117、119、120中任一项所述的计算机可读存储介质,其中,所述电参数包括电势。
122.如权利要求111、112、114-117、119、120中任一项所述的计算机可读存储介质,其中,所述心脏腔室包括左心房。
123.如权利要求86所述的计算机可读存储介质,其中,所述空间关系位于该食道的所述至少一部分与用于消融的靶位点之间。
CN201780077003.7A 2016-11-16 2017-11-16 通过电标测进行的食道位置检测 Active CN110072449B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201662422767P 2016-11-16 2016-11-16
US62/422,767 2016-11-16
US201762445433P 2017-01-12 2017-01-12
US62/445,433 2017-01-12
US201762546775P 2017-08-17 2017-08-17
US62/546,775 2017-08-17
PCT/IB2017/057185 WO2018092070A1 (en) 2016-11-16 2017-11-16 Esophagus position detection by electrical mapping

Publications (2)

Publication Number Publication Date
CN110072449A CN110072449A (zh) 2019-07-30
CN110072449B true CN110072449B (zh) 2023-02-24

Family

ID=60574667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780077003.7A Active CN110072449B (zh) 2016-11-16 2017-11-16 通过电标测进行的食道位置检测

Country Status (3)

Country Link
US (2) US11331029B2 (zh)
CN (1) CN110072449B (zh)
WO (1) WO2018092070A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181317A2 (en) 2015-05-12 2016-11-17 Navix International Limited Calculation of an ablation plan
WO2018011757A1 (en) 2016-07-14 2018-01-18 Navix International Limited Characteristic track catheter navigation
US11010983B2 (en) 2016-11-16 2021-05-18 Navix International Limited Tissue model dynamic visual rendering
CN110072449B (zh) 2016-11-16 2023-02-24 纳维斯国际有限公司 通过电标测进行的食道位置检测
WO2018092063A1 (en) 2016-11-16 2018-05-24 Navix International Limited Real-time display of treatment-related tissue changes using virtual material
EP3541313B1 (en) 2016-11-16 2023-05-10 Navix International Limited Estimators for ablation effectiveness
WO2018092062A1 (en) 2016-11-16 2018-05-24 Navix International Limited Real-time display of tissue deformation by interactions with an intra-body probe
US20220296121A1 (en) * 2019-04-16 2022-09-22 Navix International Limited System, method and accesories for dielectric-mapping
WO2021129965A1 (en) 2019-12-24 2021-07-01 Navix International Limited System, method and accesories for dielectric-mapping

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529568A (en) * 1994-03-18 1996-06-25 Surgery Futures Research, Inc. Magnetic operating table
ES2255230T3 (es) * 1998-10-15 2006-06-16 Biosense Webster, Inc. Sistema de seguimiento de un objeto.
CN1853573A (zh) * 2005-04-26 2006-11-01 韦伯斯特生物官能公司 使用超声以预获取图像配准电解剖图
CN1915183A (zh) * 2005-08-02 2007-02-21 韦伯斯特生物官能公司 侵入性过程的模拟
DE102006001884A1 (de) * 2006-01-13 2007-07-19 Siemens Ag Verfahren zur bildlichen Unterstützung einer Führung eines in einen Hohlraum eines Untersuchungsobjekts mindestens teilweise eingeführten medizinischen Instruments
CN101327124A (zh) * 2007-06-04 2008-12-24 韦伯斯特生物官能公司 具有运动补偿的体内位置系统
CN101676004A (zh) * 2008-08-28 2010-03-24 韦伯斯特生物官能公司 具有位置感测的起搏器
CN101912265A (zh) * 2008-11-12 2010-12-15 韦伯斯特生物官能公司 位置测量误差的校正和补偿
CN103327887A (zh) * 2011-01-13 2013-09-25 里斯米亚医疗公司 电解剖标测

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917097A (en) 1987-10-27 1990-04-17 Endosonics Corporation Apparatus and method for imaging small cavities
US5109851A (en) * 1989-02-06 1992-05-05 Arzco Medical Systems, Inc. Multiple electrode affixable sheet
US5662108A (en) 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
US6240307B1 (en) 1993-09-23 2001-05-29 Endocardial Solutions, Inc. Endocardial mapping system
US5297549A (en) * 1992-09-23 1994-03-29 Endocardial Therapeutics, Inc. Endocardial mapping system
US7189208B1 (en) 1992-09-23 2007-03-13 Endocardial Solutions, Inc. Method for measuring heart electrophysiology
EP0661948B1 (en) 1992-09-23 1997-11-19 Endocardial Solutions, Inc. Endocardial mapping system
US5553611A (en) 1994-01-06 1996-09-10 Endocardial Solutions, Inc. Endocardial measurement method
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US6947785B1 (en) 1993-09-23 2005-09-20 Endocardial Solutions, Inc. Interface system for endocardial mapping catheter
US6322558B1 (en) 1995-06-09 2001-11-27 Engineering & Research Associates, Inc. Apparatus and method for predicting ablation depth
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
IL119262A0 (en) 1996-02-15 1996-12-05 Biosense Israel Ltd Locatable biopsy needle
DE19622078A1 (de) * 1996-05-31 1997-12-04 Siemens Ag Vorrichtung zum Lokalisieren von Aktionsströmen im Herzen
SE9602574D0 (sv) 1996-06-28 1996-06-28 Siemens Elema Ab Method and arrangement for locating a measurement and/or treatment catheter in a vessel or organ of a patient
AU4408797A (en) 1996-07-05 1998-02-02 Carolinas Heart Institute, The Electromagnetic imaging and therapeutic (emit) systems
WO1998011840A1 (en) 1996-09-17 1998-03-26 Biosense Inc. Position confirmation with learn and test functions
US5724978A (en) 1996-09-20 1998-03-10 Cardiovascular Imaging Systems, Inc. Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction
US6019725A (en) 1997-03-07 2000-02-01 Sonometrics Corporation Three-dimensional tracking and imaging system
GB2329709B (en) 1997-09-26 2001-12-19 Roke Manor Research Catheter localisation system
US7187973B2 (en) 1998-06-30 2007-03-06 Endocardial Solutions, Inc. Congestive heart failure pacing optimization method and device
US6226542B1 (en) 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US20030074011A1 (en) 1998-09-24 2003-04-17 Super Dimension Ltd. System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US6423057B1 (en) 1999-01-25 2002-07-23 The Arizona Board Of Regents On Behalf Of The University Of Arizona Method and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures
DE19919907C2 (de) 1999-04-30 2003-10-16 Siemens Ag Verfahren und Vorrichtung zur Katheter-Navigation in dreidimensionalen Gefäßbaum-Aufnahmen
US6696844B2 (en) 1999-06-04 2004-02-24 Engineering & Research Associates, Inc. Apparatus and method for real time determination of materials' electrical properties
US6385476B1 (en) * 1999-09-21 2002-05-07 Biosense, Inc. Method and apparatus for intracardially surveying a condition of a chamber of a heart
US6515657B1 (en) 2000-02-11 2003-02-04 Claudio I. Zanelli Ultrasonic imager
US7146210B2 (en) 2000-02-17 2006-12-05 Standen Ltd. Apparatus and method for optimizing tumor treatment efficiency by electric fields
JP2001340336A (ja) 2000-06-01 2001-12-11 Toshiba Medical System Co Ltd 超音波診断装置及び超音波診断方法
US20080125775A1 (en) 2001-02-28 2008-05-29 Morris David L Hemostasis and/or coagulation of tissue
US6751502B2 (en) * 2001-03-14 2004-06-15 Cardiac Pacemakers, Inc. Cardiac rhythm management system with defibrillation threshold prediction
JP3996359B2 (ja) 2001-07-12 2007-10-24 株式会社日立メディコ 磁気共鳴イメージング装置
US6735465B2 (en) * 2001-10-24 2004-05-11 Scimed Life Systems, Inc. Systems and processes for refining a registered map of a body cavity
WO2003097125A2 (en) 2002-05-17 2003-11-27 Case Western Reserve University Double contrast technique for mri-guided vascular interventions
US7894877B2 (en) 2002-05-17 2011-02-22 Case Western Reserve University System and method for adjusting image parameters based on device tracking
US6780182B2 (en) 2002-05-23 2004-08-24 Adiana, Inc. Catheter placement detection system and operator interface
US7306593B2 (en) 2002-10-21 2007-12-11 Biosense, Inc. Prediction and assessment of ablation of cardiac tissue
US7881769B2 (en) 2002-11-18 2011-02-01 Mediguide Ltd. Method and system for mounting an MPS sensor on a catheter
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
JP4469723B2 (ja) 2002-11-27 2010-05-26 メディカル・デバイス・イノベーションズ・リミテッド 組織焼勺装置および組織を焼勺する方法
US20040220461A1 (en) 2003-04-29 2004-11-04 Yitzhack Schwartz Transseptal facilitation using sheath with electrode arrangement
US20050054913A1 (en) 2003-05-05 2005-03-10 Duerk Jeffrey L. Adaptive tracking and MRI-guided catheter and stent placement
DE10325003A1 (de) 2003-06-03 2004-12-30 Siemens Ag Visualisierung von 2D/ 3D-fusionierten Bilddaten für die Katheterangiografie
WO2005017830A1 (en) 2003-08-04 2005-02-24 Siemens Corporate Research, Inc. Virtual organ unfolding for visualization
US8150495B2 (en) 2003-08-11 2012-04-03 Veran Medical Technologies, Inc. Bodily sealants and methods and apparatus for image-guided delivery of same
US20050054918A1 (en) 2003-09-04 2005-03-10 Sra Jasbir S. Method and system for treatment of atrial fibrillation and other cardiac arrhythmias
US7505808B2 (en) 2004-04-28 2009-03-17 Sunnybrook Health Sciences Centre Catheter tracking with phase information
US8446473B2 (en) 2004-10-05 2013-05-21 Brainlab Ag Tracking system with scattering effect utilization, in particular with star effect and/or cross effect utilization
US7684850B2 (en) 2005-01-07 2010-03-23 Biosense Webster, Inc. Reference catheter for impedance calibration
US20090030332A1 (en) * 2005-01-26 2009-01-29 Schecter Stuart O microfabricated cardiac sensor with tactile feedback and method and apparatus for calibrating the same using a plurality of signals
JP4904293B2 (ja) 2005-03-03 2012-03-28 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド 卵円窩の位置を決定し、仮想卵円窩を作り、中隔横断穿刺を実行するための方法及び装置
EP1890598A1 (en) * 2005-03-31 2008-02-27 Gregersen Enterprises 2005 Aps Apparatus and method for a global model of hollow internal organs including the determination of cross-sectional areas and volume in internal hollow organs and wall properties
WO2006120982A1 (ja) 2005-05-06 2006-11-16 National University Corpration Nagoya University カテーテル手術シミュレータ
US7527599B2 (en) * 2005-06-17 2009-05-05 The Research Foundation Of State University Of New York Method of determining cardiac indicators
US7681579B2 (en) * 2005-08-02 2010-03-23 Biosense Webster, Inc. Guided procedures for treating atrial fibrillation
US20070049915A1 (en) 2005-08-26 2007-03-01 Dieter Haemmerich Method and Devices for Cardiac Radiofrequency Catheter Ablation
DE102005042329A1 (de) 2005-09-06 2007-03-08 Siemens Ag Verfahren und Vorrichtung zur visuellen Unterstützung einer elektrophysiologischen Katheteranwendung am Herzen durch bidirektionalen Informationstransfer
US8355801B2 (en) 2005-09-26 2013-01-15 Biosense Webster, Inc. System and method for measuring esophagus proximity
WO2007067628A1 (en) 2005-12-06 2007-06-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
JP5270365B2 (ja) 2005-12-15 2013-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電気生理マッピングおよび治療の際の心臓形態可視化のシステムおよび方法
US8457712B2 (en) 2005-12-30 2013-06-04 Wisconsin Alumni Research Foundation Multi-mode medical device system and methods of manufacturing and using same
US7996060B2 (en) 2006-10-09 2011-08-09 Biosense Webster, Inc. Apparatus, method, and computer software product for registration of images of an organ using anatomical features outside the organ
JP5512271B2 (ja) 2006-10-10 2014-06-04 バイオセンス・ウエブスター・インコーポレーテツド 食道マッピングカテーテル
US20100283484A1 (en) 2006-10-16 2010-11-11 Cohen Richard J Method and Apparatus for Localizing an Object in the Body
WO2008125910A2 (en) 2006-11-10 2008-10-23 Superdimension, Ltd. Adaptive navigation technique for navigating a catheter through a body channel or cavity
US8532742B2 (en) 2006-11-15 2013-09-10 Wisconsin Alumni Research Foundation System and method for simultaneous 3DPR device tracking and imaging under MR-guidance for therapeutic endovascular interventions
US8473030B2 (en) 2007-01-12 2013-06-25 Medtronic Vascular, Inc. Vessel position and configuration imaging apparatus and methods
US20080183070A1 (en) 2007-01-29 2008-07-31 Wisconsin Alumni Research Foundation Multi-mode medical device system with thermal ablation capability and methods of using same
US20080190438A1 (en) 2007-02-08 2008-08-14 Doron Harlev Impedance registration and catheter tracking
EP2129316A2 (en) 2007-02-26 2009-12-09 Koninklijke Philips Electronics N.V. Pointing device for medical imaging
US20080208039A1 (en) 2007-02-28 2008-08-28 Wisconsin Alumni Research Foundation System and method of performing therapeutic endovascular interventions
US10433929B2 (en) 2007-03-09 2019-10-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for local deformable registration of a catheter navigation system to image data or a model
US20080275440A1 (en) 2007-05-03 2008-11-06 Medtronic, Inc. Post-ablation verification of lesion size
JP5523681B2 (ja) 2007-07-05 2014-06-18 株式会社東芝 医用画像処理装置
US8702690B2 (en) 2007-11-16 2014-04-22 St. Jude Medical, Atrial Fibrillation Division, Inc. Device and method for real-time lesion estimation during ablation
US8320711B2 (en) 2007-12-05 2012-11-27 Biosense Webster, Inc. Anatomical modeling from a 3-D image and a surface mapping
EP2197347B1 (en) 2007-12-17 2015-06-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Systems and methods for modeling both unobstructed and obstructed portions of a catheter
US8103327B2 (en) 2007-12-28 2012-01-24 Rhythmia Medical, Inc. Cardiac mapping catheter
US8649866B2 (en) * 2008-02-14 2014-02-11 Cardiac Pacemakers, Inc. Method and apparatus for phrenic stimulation detection
US20090221908A1 (en) 2008-03-01 2009-09-03 Neil David Glossop System and Method for Alignment of Instrumentation in Image-Guided Intervention
US8300047B2 (en) 2008-03-10 2012-10-30 Siemens Aktiengesellschaft System and method for colon unfolding via skeletal subspace deformation
US8532734B2 (en) 2008-04-18 2013-09-10 Regents Of The University Of Minnesota Method and apparatus for mapping a structure
US9198733B2 (en) 2008-04-29 2015-12-01 Virginia Tech Intellectual Properties, Inc. Treatment planning for electroporation-based therapies
US20090275828A1 (en) 2008-05-01 2009-11-05 Magnetecs, Inc. Method and apparatus for creating a high resolution map of the electrical and mechanical properties of the heart
US8676303B2 (en) * 2008-05-13 2014-03-18 The Regents Of The University Of California Methods and systems for treating heart instability
US20100063400A1 (en) 2008-09-05 2010-03-11 Anne Lindsay Hall Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging
US8167876B2 (en) 2008-10-27 2012-05-01 Rhythmia Medical, Inc. Tracking system using field mapping
US9775538B2 (en) 2008-12-03 2017-10-03 Mediguide Ltd. System and method for determining the position of the tip of a medical catheter within the body of a patient
GB0904194D0 (en) 2009-03-11 2009-04-22 Southern Health And Social Care Trust Apparatus for carrying out intravascular procedures and/or diagnosis
WO2010129095A2 (en) 2009-05-08 2010-11-11 Rhythmia Medical, Inc. Impedance based anatomy generation
CN104605928B (zh) 2009-05-08 2018-01-05 圣犹达医疗用品国际控股有限公司 用于在基于导管的消融治疗中控制损伤尺寸的系统
US9439735B2 (en) * 2009-06-08 2016-09-13 MRI Interventions, Inc. MRI-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time
DE102009032442B4 (de) * 2009-07-09 2017-02-16 Siemens Healthcare Gmbh Verfahren und Vorrichtung zur Nachbearbeitung von mittels eines bildgebenden Systems erfassten Messwerten
US8454589B2 (en) 2009-11-20 2013-06-04 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing effective delivery of ablation therapy
US9918787B2 (en) 2010-05-05 2018-03-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Monitoring, managing and/or protecting system and method for non-targeted tissue
US8694074B2 (en) 2010-05-11 2014-04-08 Rhythmia Medical, Inc. Electrode displacement determination
CN101916333B (zh) * 2010-08-12 2012-07-04 四川大学华西医院 经食道心脏超声可视化仿真系统及方法
WO2012047563A1 (en) 2010-09-27 2012-04-12 Bailin Steven J Method for determining the location of regions in tissue relevant to electrical propagation
US9254090B2 (en) 2010-10-22 2016-02-09 Intuitive Surgical Operations, Inc. Tissue contrast imaging systems
US9039687B2 (en) 2010-10-28 2015-05-26 Medtronic Ablation Frontiers Llc Reactance changes to identify and evaluate cryo ablation lesions
EP2632360A4 (en) * 2010-10-29 2014-05-21 Bard Inc C R IMPROVED ASSISTED BY BIO-IMPEDANCE OF A MEDICAL DEVICE
US9999399B2 (en) 2010-11-16 2018-06-19 Siemens Healthcare Gmbh Method and system for pigtail catheter motion prediction
EP3242270B1 (en) 2010-12-20 2021-03-03 Koninklijke Philips N.V. System and method for automatic generation of initial radiation treatment plans
JP6027024B2 (ja) 2010-12-27 2016-11-16 セント・ジュード・メディカル・ルクセンブルク・ホールディング・エスエーアールエル Rfアブレーション中に測定される接触力に基づく心房壁電気的再接続の予測
US8708902B2 (en) 2010-12-30 2014-04-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter configuration interface and related system
EP2627243B1 (en) 2010-12-30 2020-01-22 St. Jude Medical, Atrial Fibrillation Division, Inc. System for diagnosing arrhythmias and directing catheter therapies
US20120172724A1 (en) 2010-12-31 2012-07-05 Hill Anthony D Automatic identification of intracardiac devices and structures in an intracardiac echo catheter image
US9265557B2 (en) 2011-01-31 2016-02-23 Medtronic Ablation Frontiers Llc Multi frequency and multi polarity complex impedance measurements to assess ablation lesions
JP6203641B2 (ja) 2011-02-11 2017-09-27 ザ・ジョンズ・ホプキンス・ユニバーシティー 患者別に心臓手術を計画するシステム、方法、およびプログラム
US9014423B2 (en) 2011-03-14 2015-04-21 Siemens Aktiengesellschaft Method and system for catheter tracking in fluoroscopic images using adaptive discriminant learning and measurement fusion
WO2013082143A1 (en) 2011-11-28 2013-06-06 Acist Medical Systems, Inc. Catheters for imaging and ablating tissue
CA2864860C (en) 2012-04-05 2020-12-15 Bard Access Systems, Inc. Devices and systems for navigation and positioning a central venous catheter within a patient
US20130310673A1 (en) 2012-05-17 2013-11-21 Assaf Govari Guide wire with position sensing electrodes
JP2015528713A (ja) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド 手術ロボットプラットフォーム
US10827995B2 (en) * 2012-06-21 2020-11-10 Given Imaging Ltd. System and method for spatiotemporally synchronizing and displaying bodily organ images and physiological parameter(s) related thereto
CN102789732B (zh) * 2012-08-08 2014-08-06 四川大学华西医院 用于教学及临床技能培训的经食管超声可视化仿真系统与方法
US8923959B2 (en) 2012-08-27 2014-12-30 Birinder Robert Boveja Methods and system for real-time cardiac mapping
WO2014036439A2 (en) 2012-08-31 2014-03-06 Acutus Medical, Inc. Catheter system and methods of medical uses of same, including diagnostic and treatment uses for the heart
EP2897545A1 (en) * 2012-09-20 2015-07-29 Boston Scientific Scimed, Inc. Nearfield ultrasound echography mapping
US9895079B2 (en) 2012-09-26 2018-02-20 Biosense Webster (Israel) Ltd. Electropotential mapping
EP2903512A4 (en) * 2012-10-03 2016-07-06 Univ Ramot PARAMETRIC ELECTRICAL IMPEDANCE TOMOGRAPHY OF CHEST
US20140188440A1 (en) 2012-12-31 2014-07-03 Intuitive Surgical Operations, Inc. Systems And Methods For Interventional Procedure Planning
GB2510452A (en) 2013-01-31 2014-08-06 Naviconix Ltd Method of mapping the heart with a trackable electrode catheter
US9993287B2 (en) 2013-03-13 2018-06-12 Covidien Lp System configured to provide controlled depth of hemostasis
US9693820B2 (en) 2013-03-15 2017-07-04 St. Jude Medical, Atrial Fibrillation Division, Inc. System for detecting catheter electrodes entering into and exiting from an introducer
US9980653B2 (en) 2013-05-03 2018-05-29 Biosense Webster (Israel), Ltd. Valve view map
US9808171B2 (en) 2013-05-07 2017-11-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Utilization of electrode spatial arrangements for characterizing cardiac conduction conditions
WO2015017837A1 (en) * 2013-08-01 2015-02-05 The Regents Of The University Of California Estimating gastroenterology tract parameters
US20150099942A1 (en) 2013-10-04 2015-04-09 Volcano Corporation Vascular securement catheter with imaging
EP3062693A1 (en) * 2013-11-01 2016-09-07 Koninklijke Philips N.V. System for determining electrical characteristics on a surface of a heart
US9314191B2 (en) * 2013-11-19 2016-04-19 Pacesetter, Inc. Method and system to measure cardiac motion using a cardiovascular navigation system
US9986928B2 (en) * 2013-12-09 2018-06-05 Medtronic, Inc. Noninvasive cardiac therapy evaluation
US11219487B2 (en) 2014-09-08 2022-01-11 Koninklijke Philips N.V. Shape sensing for orthopedic navigation
WO2016088084A1 (en) 2014-12-03 2016-06-09 Baylis Medical Company Inc. Devices and methods for electrosurgical navigation
US20160242667A1 (en) 2015-02-20 2016-08-25 Boston Scientific Scimed Inc. Tissue contact sensing using a medical device
EP3261549B1 (en) 2015-02-27 2021-08-04 Koninklijke Philips N.V. System for adaptive ablation and therapy based on elastography monitoring
JP2018520718A (ja) 2015-05-12 2018-08-02 ナヴィックス インターナショナル リミテッドNavix International Limited 誘電特性分析による接触品質評価
WO2016181317A2 (en) 2015-05-12 2016-11-17 Navix International Limited Calculation of an ablation plan
US10278616B2 (en) 2015-05-12 2019-05-07 Navix International Limited Systems and methods for tracking an intrabody catheter
WO2016181318A1 (en) 2015-05-12 2016-11-17 Navix International Limited Lesion assessment by dielectric property analysis
CA2986462A1 (en) * 2015-05-20 2016-11-24 Gravitas Medical, Inc. Methods and apparatus for guiding medical care based on sensor data from the gastrointestinal tract
US10517670B2 (en) 2015-07-16 2019-12-31 Biosense Webster (Israel) Ltd. Estimation of lesion size
US10792097B2 (en) 2015-12-03 2020-10-06 Biosense Webster (Israel) Ltd. Ablation line contiguity index
US20190059782A1 (en) * 2016-02-29 2019-02-28 The Methodist Hospital System System and method using cardiac-esophageal impedance mapping to predict and detect esophageal injury during cardiac ablation procedures
CN115633942A (zh) * 2016-06-16 2023-01-24 瑟克科学股份有限公司 食道监测
WO2018011757A1 (en) 2016-07-14 2018-01-18 Navix International Limited Characteristic track catheter navigation
US11266467B2 (en) 2016-10-25 2022-03-08 Navix International Limited Systems and methods for registration of intra-body electrical readings with a pre-acquired three dimensional image
WO2018092062A1 (en) 2016-11-16 2018-05-24 Navix International Limited Real-time display of tissue deformation by interactions with an intra-body probe
WO2018092063A1 (en) 2016-11-16 2018-05-24 Navix International Limited Real-time display of treatment-related tissue changes using virtual material
EP3541313B1 (en) 2016-11-16 2023-05-10 Navix International Limited Estimators for ablation effectiveness
US11010983B2 (en) 2016-11-16 2021-05-18 Navix International Limited Tissue model dynamic visual rendering
CN110072449B (zh) 2016-11-16 2023-02-24 纳维斯国际有限公司 通过电标测进行的食道位置检测
WO2018130976A1 (en) 2017-01-12 2018-07-19 Navix International Limited Estimation of effectiveness of ablation adjacency
WO2018146613A2 (en) 2017-02-09 2018-08-16 Navix International Limited Intrabody probe navigation by electrical self-sensing
US11311204B2 (en) 2017-01-12 2022-04-26 Navix International Limited Systems and methods for reconstruction of intrabody electrical readings to anatomical structure
CN110383345B (zh) 2017-01-12 2023-08-15 纳维斯国际有限公司 用于内腔导航的扁平化视图
US11464422B2 (en) 2017-01-22 2022-10-11 Navix Internatonal Limited Coronary sinus-based electromagnetic mapping
WO2018207128A1 (en) 2017-05-10 2018-11-15 Navix International Limited Property- and position-based catheter probe target identification
CN111163692B (zh) 2017-08-17 2023-08-15 纳维斯国际有限公司 依据体内测量重建解剖结构
US11583202B2 (en) 2017-08-17 2023-02-21 Navix International Limited Field gradient-based remote imaging
EP3476286B1 (en) * 2017-10-24 2023-08-30 Berner Fachhochschule Apparatus for providing electrocardiographic and especially arrhythmia information
US20200305970A1 (en) 2017-12-05 2020-10-01 Navix International Limited Electrophysiology procedure without ionizing radiation imaging
JP2023509387A (ja) * 2019-12-18 2023-03-08 ガルヴァナイズ セラピューティクス,インコーポレイテッド パルス電界による心臓組織の治療

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529568A (en) * 1994-03-18 1996-06-25 Surgery Futures Research, Inc. Magnetic operating table
ES2255230T3 (es) * 1998-10-15 2006-06-16 Biosense Webster, Inc. Sistema de seguimiento de un objeto.
CN1853573A (zh) * 2005-04-26 2006-11-01 韦伯斯特生物官能公司 使用超声以预获取图像配准电解剖图
CN1915183A (zh) * 2005-08-02 2007-02-21 韦伯斯特生物官能公司 侵入性过程的模拟
DE102006001884A1 (de) * 2006-01-13 2007-07-19 Siemens Ag Verfahren zur bildlichen Unterstützung einer Führung eines in einen Hohlraum eines Untersuchungsobjekts mindestens teilweise eingeführten medizinischen Instruments
CN101327124A (zh) * 2007-06-04 2008-12-24 韦伯斯特生物官能公司 具有运动补偿的体内位置系统
CN101676004A (zh) * 2008-08-28 2010-03-24 韦伯斯特生物官能公司 具有位置感测的起搏器
CN101912265A (zh) * 2008-11-12 2010-12-15 韦伯斯特生物官能公司 位置测量误差的校正和补偿
CN103327887A (zh) * 2011-01-13 2013-09-25 里斯米亚医疗公司 电解剖标测

Also Published As

Publication number Publication date
CN110072449A (zh) 2019-07-30
WO2018092070A1 (en) 2018-05-24
US20220273219A1 (en) 2022-09-01
US20200163569A1 (en) 2020-05-28
US11331029B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
CN110072449B (zh) 通过电标测进行的食道位置检测
US11523749B2 (en) Systems and methods for tracking an intrabody catheter
US10828106B2 (en) Fiducial marking for image-electromagnetic field registration
JP6987040B2 (ja) 運動関係を決定する方法及び装置
CN104434299B (zh) 用于在窦性节律期间标测室性/房性早搏的方法
JP7046591B2 (ja) インタラクティブ方式の解剖学的マッピング及び解剖学的マッピングの品質の推定
US10342620B2 (en) Efficient treatment of atrial fibrillation using three-dimensional electrical potential model
JP2019188160A (ja) 心臓のアブレーション部位間にある空白域の識別及び視覚化
KR20080022527A (ko) 신체 표면 측정치와 심장 전기 맵을 상관시키는 방법
US20190175057A1 (en) Systems, methods, and computer-readable media of estimating thoracic cavity movement during respiration
US11854217B2 (en) Co-registration of cardiac images
JP6599122B2 (ja) 心臓に近接させた電極の配置
JP2015093201A (ja) 反転ecgマッピング
JP2015020074A (ja) 周波数の識別による心臓活動の可視化
Nguyen et al. The region-of-interest based measurement selection process for electrical impedance tomography in radiofrequency cardiac ablation with known anatomical information
JP2019018017A (ja) 散乱補間を用いたインピーダンスに基づく位置追跡の性能の改善
JP7330696B2 (ja) 主成分分析を用いたインピーダンスに基づく位置追跡の性能の改善
US11482338B2 (en) Simulation of heart pacing for modeling arrhythmia
CN114271909A (zh) 胸部穿刺的信息处理方法、装置、系统、设备与介质
JP2020142079A (ja) ミッドフィールド信号抽出
EP3753488A1 (en) System and method for determining a ventricular geometry, electroanatomical mapping system comprising such a system, and method for determining a ventricular geometry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant