CN110044577B - 基于变论域模糊控制的多模态振动主动控制方法 - Google Patents

基于变论域模糊控制的多模态振动主动控制方法 Download PDF

Info

Publication number
CN110044577B
CN110044577B CN201910307227.3A CN201910307227A CN110044577B CN 110044577 B CN110044577 B CN 110044577B CN 201910307227 A CN201910307227 A CN 201910307227A CN 110044577 B CN110044577 B CN 110044577B
Authority
CN
China
Prior art keywords
vibration
order
fuzzy
low
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910307227.3A
Other languages
English (en)
Other versions
CN110044577A (zh
Inventor
刘巍
温正权
周孟德
姚壮
唐琳琳
梁冰
贾振元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910307227.3A priority Critical patent/CN110044577B/zh
Publication of CN110044577A publication Critical patent/CN110044577A/zh
Application granted granted Critical
Publication of CN110044577B publication Critical patent/CN110044577B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/08Aerodynamic models
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明基于变论域模糊控制的多模态振动主动控制方法属于振动控制领域,涉及一种多模态振动系统的变论域模糊振动主动控制方法。该方法考虑了高低阶模态振动特性及阻尼振动时域信号的非线性特性,采用变时域模糊控制方法实现高低阶输出比重系数的合理分配。以低、高阶振动烈度作为输入量,通过振动系统特性计算得到参数以修正变论域模糊控制器输入量论域,通过变论域模糊控制器计算得到控制比重系数,通过模糊P控制器计算得到比例系数,各阶系数与时域信号计算输出控制信号实现多模态振动主动控制。该方法提高了系统的收敛速度、控制精度及输出效率,可调整参数以适应系统自身特性变化及外界扰动,适应性好。

Description

基于变论域模糊控制的多模态振动主动控制方法
技术领域
本发明属于振动控制领域,涉及一种多模态振动系统的变论域模糊振动主动控制方法。
背景技术
风洞模型试验是将飞行器缩比模型安置在风洞中,通过模拟飞行器实际飞行条件以获取精确气动载荷试验数据的试验方法。由于尾部支撑方式对飞行器模型周围流场影响较小,目前在风洞试验中主要采用尾撑支杆的方式使风洞模型保持在风洞界面的中心部位。
由风洞模型、测力天平、支杆、固支端组成的悬臂梁系统由于支杆细长、质量在自由端集中分布等原因导致其为低刚度结构。由有限元分析结果及试验结果表明,该结构为宽频多模态结构,且低阶振动模态具有强方向性。同向模态振动随模态阶次增加,振动幅值更高,但振动衰减速度更快即阻尼比随阶次升高而增大。由于支杆空间有限,且为防止支杆气动外形的破坏及减小对支杆模态的影响,只能布局有限数量抑振器。由于抑振器输出能力有限,需要将作动器的控制力主要作用于整体占比较大的主模态上以提高输出效率。
南京航空航天大学的邵敏强等人于2017年在《振动与冲击》第36卷第二期发表了文章《基于ERA模型辨识的H振动主动控制试验研究》,基于俯仰方向放置的加速度计设计了一种安装于模型内部空腔的电磁作动减振系统,抑制了地面试验中支杆系统俯仰方向的窄频振动。南京航空航天大学的沈星等人于2014年在《振动、测试与诊断》第34卷第三期发表了文章《风洞悬臂杆结构主动减振系统的研究》,设计了一种支杆尾部截断式压电作动器减振结构,将一对压电陶瓷分布在支杆尾部俯仰方向,并利用神经网络PID控制器实现了风洞下振动的一阶模态振动控制。ViGYAN Inc.的S.Balakrishna等人和NASA LangleyResearch Center的W.A.Kilgore等人于2008年发表了文章标识号为AIAA2008-840的文章《Active Damping of Sting Vibrations in Transonic Wind Tunnel Testing》,以叠堆式压电陶瓷作为阻尼器,设计了阻尼器前后置两种减振系统,都有效控制了系统的多阶模态振动,但未考虑模态配比方法。
上述试验方法均存在的问题是只关心低阶振动模态而忽略了幅值高衰减快的高阶振动模态,忽略了由于安装等原因导致的系统模态阻尼变化,没有考虑宽频多模态振动主动控制中输出信号的配比问题。另外,大多数相关控制系统没有考虑阻尼系统的时域非线性衰减特性,从而影响低阶振动模态低幅振动及高阶振动模态大幅振动的收敛速度及控制精度。
发明内容
本发明为克服现有技术的缺陷,发明一种基于变论域模糊控制的多模态振动主动控制方法。该方法考虑了高低阶模态振动特性及阻尼振动时域信号的非线性特性,预设计均匀模糊子集的模糊比重控制器,根据系统特性设置相应的量化因子、等比因子、滑动因子、比例因子等参数以改变模糊控制的论域,实现更高效的负反馈振动主动控制。该方法考虑了高低阶模态振动特性及阻尼振动时域信号的非线性特性,提高了高阶大幅振动及低阶小幅振动的收敛速度及控制精度,提高了系统的输出效率,增强了系统的适应性。
本发明采用的技术方案是一种基于变论域模糊控制的多模态振动主动控制方法,其特征是,该方法考虑了高低阶模态振动特性及阻尼振动时域信号的非线性特性,采用变时域模糊控制方法实现高低阶输出比重系数的合理分配;以低、高阶振动模态时域信号短时均方根值作为输入量,以低、高阶控制信号比重系数作为输出量设计均匀模糊子集的模糊比重控制器;对振动系统进行模态测试,通过振动范围确定系统的量化因子,通过测量得到的系统阻尼比计算得到等比因子和滑动因子;以低阶模态加速度信号及其变化率作为输入量,通过模糊P控制器计算比例因子;将比例因子与各阶比重系数相乘得到各阶比例系数,比例系数与各阶加速度信号相乘得到输出控制信号,实现多模态振动系统的振动主动控制;方法的具体步骤如下:
步骤1安装振动模拟系统
振动模拟系统由加速度传感器1,飞行器模型2,测力天平3,支杆4,压电陶瓷作动器5,计算机6,信号放大器7,实时控制器8组成。飞行器模型2通过置于飞行器模型2尾部的测力天平3与支杆4相连,加速度传感器1安装于飞行器模型2外表面,实时控制器8将加速度传感器1测量的振动加速度信号传输给计算机6,通过计算机6计算控制信号,经信号放大器7将电压信号传给压电陶瓷作动器5,压电陶瓷作动器输出反向力矩实现振动抑制。
步骤2设计均匀模糊子集的模糊比重控制器
以低、高阶振动模态时域信号NT时间内低、高阶模态振动烈度aRMS-l、aRMS-h衡量实时振动强度,并将其作为输入量,其公式为:
Figure BDA0002030268760000031
Figure BDA0002030268760000032
其中,N为单次处理加速度信号数量,T为采样时间,
Figure BDA0002030268760000033
为NT时间内加速度均方值,ai为NT时间内i时刻加速度值;
以低、高阶控制信号比重系数kl、kh作为输出量,通过比较低、高阶振动模态振动烈度,确定低、高阶控制信号比重系数,既防止超调、又防止比重不足,具体控制规则为:
1)当aRMS-h较大、aRMS-l也较大时,kh较大、kl中等偏小,以防止合输出过大,导致超调,
2)当aRMS-h较大、aRMS-l较小时,kh适中、kl中等偏小,使得系统有较好的稳态性能,
3)当aRMS-h较小、aRMS-l较大时,kh较小、kl适中,使得低阶模态得到有效控制的同时系统具有较好的稳态特性;
4)当aRMS-h较小、aRMS-l也较小时,kh较小、kl适中,使得衰减较慢的低幅振动能有效控制,又防止高频信号对系统产生震荡;
5)当aRMS-h适中、aRMS-l也适中时,kh中等偏小、kl较大,高阶模态衰减较快,在中等振幅时所需外界控制作用较小,较大的比重使低阶模态的响应速度增快;
模糊输入变量aRMS-l、aRMS-h基础论域均为[0,24],模糊集合均为{NB,NM,NS,Z,PS,PM,PB},边界隶属度函数选用Trapezoid,中间隶属度函数选用Triangle,均匀分布于论域上;
模糊输出变量kl、kh论域均为[0,0.9],模糊集合均为{0,1,2,3,4,5,6},边界隶属度函数选用Trapezoid,中间隶属度函数选用Triangle,均匀分布于论域上;采用取小“与”算法,Larsen求积“蕴涵”算法,选用面积中心法的清晰化方法,均匀模糊子集的模糊比重控制器的低阶比重系数模糊控制规则表如表1所示:
表1
Figure BDA0002030268760000051
高阶比重系数模糊控制规则表2所示
表2
Figure BDA0002030268760000052
步骤3系统模态测试确定变论域模糊比重控制器参数
通过宽频激励方式锤击系统激发多阶振动模态,记录最大振幅amax,其公式为:
amax=max{al-max,ah-max} (3)
其中,al-max为低阶振动模态的最大振幅,ah-max为高阶振动模态的最大振幅;
取Amax使得Amax>amax,则量化因子αl、αh的公式为:
Figure BDA0002030268760000061
其中,max(aRMS)为输入量论域的右边界;
经锤击激励后系统进行自由衰减,通过自由衰减时域信号计算各阶振动阻尼比ξh、ξl;各阶模态振动各通过一个二阶振动模型
Figure BDA0002030268760000062
描述,通过风洞支杆模型地面试验结果将低、高阶振动各建立一个二阶振动模型,具体过程如下:
1)单次采集n个离散数据点,监测该时域段所有正峰值,并从中记录最大峰值xpeak-max和最小峰值xpeak-min及相应的索引位置lpeak-max、lpeak-min
2)根据下式计算对数衰减率及阻尼比,公式为:
Figure BDA0002030268760000063
Figure BDA0002030268760000064
其中,δ为对数衰减率,ξ为阻尼比,
3)再次采集n个离散数据点,并与(1)中n个离散数据点所形成的数组拼接,重复上述步骤,
4)重复上述步骤,直至阻尼比收敛于稳定值;
根据计算所得低、高阶振动阻尼比ξl、ξh,确定等比因子Φl、Φh和滑动因子sl、sh,具体规则为:
1)尽量保证等比因子为1,以保证隶属度函数的对称性,如果阻尼比较大则可设定大于1的等比因子,如果阻尼比较小则可设定小于1的等比因子,
2)sl<0并根据ξl大小进行适当调节,sh>0并根据ξh大小进行适当调节;
步骤4设计模糊P控制器
以低阶模态加速度信号al及其变化率alc作为输入量,alc公式为:
Figure BDA0002030268760000071
通过模糊P控制器计算比例因子KP
通过判断输入量的状态,确定比例因子KP,既要实现快速响应又需防止超出抑振器输出能力,具体控制规则为:
1)当|al|较大、|alc|也较大、且二者同号时,KP中等偏大以加快系统响应速度又防止超出抑振器输出能力,
2)当输入量异号时,KP适中以保持系统稳态性能,
3)当|al|较小、|alc|较大时,KP较大以保证系统稳态性能;
模糊输入变量al论域为[-12,12]、alc论域为[-1200,1200],模糊集合均为{NB,NM,NS,Z,PS,PM,PB},边界隶属度函数选用Trapezoid,中间隶属度函数选用Triangle,均匀分布于论域上;模糊输出变量KP论域为[4,16],模糊集合为{1,2,3,4,5},边界隶属度函数选用Trapezoid,中间隶属度函数选用Triangle,均匀分布于论域上;采用取小“与”算法,Larsen求积“蕴涵”算法,选用面积中心清晰化方法,模糊P控制器的模糊控制规则表如表3所示:
表3
Figure BDA0002030268760000081
步骤5输出振动控制信号将比例因子KP与各阶比重系数相乘得到各阶比例系数Kl、Kh,其公式为:
Kl=Kpkl (8)
Kh=Kpkh (9)
将比例系数与各阶加速度信号相乘得到控制信号,将控制信号输出给抑振器实现多模态振动系统的振动主动控制。
本发明的显著效果是考虑到多模态振动系统非线性特性,结合实际振动主动控制系统抑振器数量及其输出能力有限,采用变时域模糊控制方法实现高低阶输出比重系数的合理分配,提高了高阶大幅振动及低阶小幅振动的收敛速度及控制精度,提高了系统的输出效率;该方法考虑不同振动系统阻尼特性的不同,可根据不同阻尼关系调整模糊控制器输入量时域以适应系统的变化;以衰减较慢的低阶模态振动状态作为输入量通过模糊P控制器决策系统比例因子,以增强系统对不同激励的适应性。该方法提高了系统的收敛速度、控制精度及输出效率,可调整参数以适应系统自身特性变化及外界扰动,适应性好。
附图说明
图1是一种基于变论域模糊控制的多模态振动主动控制系统示意图。其中,1-加速度传感器,2-飞行器模型,3-测力天平,4-支杆,5-压电陶瓷作动器,6-计算机,7-信号放大器,8-实时控制器
图2是变论域模糊控制原理图。
图3是变论域模糊比重控制器参数示意图。
图4是变论域模糊控制仿真流程图。
图5a)是低阶振动烈度隶属度函数,图5b)是高阶振动烈度隶属度函数。
图6a)是变论域模糊控制低阶模态加速度信号,图6b)是变论域模糊控制高阶模态加速度信号。
图7a)是PID控制低阶模态加速度信号,图7b)是PID控制高阶模态加速度信号。
具体实施方式
下面结合附图和技术方案通过实施例详细说明本发明的具体实施方法,
如图1所示,本发明一种振动模拟系统由加速度传感器1,飞行器模型2,测力天平3,支杆4,压电陶瓷作动器5,计算机6,信号放大器7,实时控制器8组成。飞行器模型2通过置于飞行器模型2尾部的测力天平3与支杆4相连,加速度传感器1安装于飞行器模型2外表面,实时控制器8将加速度传感器1测量的振动加速度信号传输给计算机6,通过计算机6计算控制信号,经信号放大器7将电压信号传给压电陶瓷作动器5,压电陶瓷作动器输出反向力矩实现振动抑制。
图2是本发明一种基于变论域模糊控制的多模态振动主动控制方法原理图,利用加速度传感器1测量得到多模态加速度振动信号,经实时控制器8将信号传递给计算机6,利用模态截断获得低、高阶振动模态时域信号,计算NT时间内低、高阶模态振动烈度aRMS-l、aRMS-h作为变论域模糊比重控制器的输入量,通过系统模态测试确定量化因子αl、αh,等比因子Φl、Φh和滑动因子sl、sh用以调节基于低、高阶比重系数模糊控制规则表设计的均匀模糊子集的模糊比重控制器的输入量论域及其隶属度函数形状,图3是变论域模糊比重控制器参数示意图,量化因子α可实现论域整体保形放大缩小,等比因子
Figure BDA0002030268760000101
滑动因子s可实现部分隶属度函数保形移动使得隶属度函数集中于感兴趣区域,经变论域模糊控制器计算得到低、高阶控制信号比重系数kl、kh,将低阶模态加速度信号al及其变化率alc作为基于比例因子模糊控制规则表设计的模糊P控制器的输入量计算得到比例因子KP,将比例因子与各阶比重系数相乘得到各阶比例系数Kl、Kh,比例系数与各阶加速度信号相乘得到输出控制信号,计算机6将控制信号经实时控制器8传输给信号放大器7,经信号放大后的控制信号控制压电陶瓷作动器5产生反向力矩以实现多模态振动系统的振动主动控制。
图4是变论域模糊控制仿真流程图,具体步骤如下:
步骤1各阶模态振动可各通过一个二阶振动模型
Figure BDA0002030268760000102
描述,通过风洞支杆模型地面试验结果将低、高阶振动各建立一个二阶振动模型,Kl=3×10-4、ξl=6.6368×10-4、ωnl=25.5Hz,则低阶模型传递函数为
Figure BDA0002030268760000111
Kh=9×10-4、ξh=2.4410×10-3、ωnh=113Hz,则高阶模型传递函数为
Figure BDA0002030268760000112
通过信号激励产生低、高阶模态振动信号。
步骤2根据式(3)取Amax=20,根据式(4)得到αl=αh=0.8333,该系统阻尼比适中结合等比因子选取规则取Φl=Φh=1,根据系统阻尼比并结合仿真调试结果最终确定滑动因子sl=1.4694、sh=1.0533,输入基于低、高阶比重系数模糊控制规则表设计的变论域模糊比重控制器得到如图5a)、图5b)所示的输入量模糊集的隶属度函数。
步骤3根据式(7)实时计算低阶模态加速度信号变化率alc,通过基于比例因子模糊控制规则表设计的模糊P控制器实时计算得到比例因子KP
步骤4根据式(1)-式(2)计算低、高阶模态振动烈度aRMS-l、aRMS-h,通过变论域模糊控制器计算得到低、高阶控制信号比重系数kl、kh
步骤5根据式(8)-式(9)计算各阶比例系数Kl、Kh,比例系数与各阶加速度信号相乘得到输出控制信号,用以抑制振动信号。
步骤6重复上述步骤直至仿真结束,并记录振动信号。
图6a)、图6b)是利用变时域模糊控制的仿真结果,对比图7a)、图7b)利用PID控制仿真的结果,本发明变时域控制模糊控制有效抑制了多阶振动模态,具有较高的收敛速度、控制精度及输出效率。
该方法通过变时域模糊控制实现了高低阶输出信号的合理配比,提高了系统的收敛速度、控制精度及输出效率;可调整参数以适应系统自身特性变化及外界扰动,适应性好。

Claims (1)

1.一种基于变论域模糊控制的多模态振动主动控制方法,其特征是,该方法考虑了高低阶模态振动特性及阻尼振动时域信号的非线性特性,采用变时域模糊控制方法实现高低阶输出比重系数的合理分配;以低、高阶振动模态时域信号短时均方根值作为输入量,以低、高阶控制信号比重系数作为输出量设计均匀模糊子集的模糊比重控制器;对振动系统进行模态测试,通过振动范围确定系统的量化因子,通过测量得到的系统阻尼比计算得到等比因子和滑动因子;以低阶模态加速度信号及其变化率作为输入量,通过模糊P控制器计算比例因子;将比例因子与各阶比重系数相乘得到各阶比例系数,比例系数与各阶加速度信号相乘得到输出控制信号,实现多模态振动系统的振动主动控制;方法的具体步骤如下:
步骤1 安装振动模拟系统
振动模拟系统由加速度传感器(1),飞行器模型(2),测力天平(3),支杆(4),压电陶瓷作动器(5),计算机(6),信号放大器(7),实时控制器(8)组成;飞行器模型(2)通过置于飞行器模型(2)尾部的测力天平(3)与支杆(4)相连,加速度传感器(1)安装于飞行器模型(2)外表面,实时控制器(8)将加速度传感器(1)测量的振动加速度信号传输给计算机(6),通过计算机(6)计算控制信号,经信号放大器(7)将电压信号传给压电陶瓷作动器(5),压电陶瓷作动器输出反向力矩实现振动抑制;
步骤2 设计均匀模糊子集的模糊比重控制器
以低、高阶振动模态时域信号NT时间内低、高阶模态振动烈度aRMS-l、aRMS-h衡量实时振动强度,并将其作为输入量,其公式为:
Figure FDA0002367840480000021
Figure FDA0002367840480000022
其中,N为单次处理加速度信号数量,T为采样时间,
Figure FDA0002367840480000023
为NT时间内加速度均方值,ai为NT时间内i时刻加速度值;
以低、高阶控制信号比重系数kl、kh作为输出量;通过比较低、高阶振动模态振动烈度,确定低、高阶控制信号比重系数,既防止超调、又防止比重不足,具体控制规则为:
1)当aRMS-h较大、aRMS-l也较大时,kh较大、kl中等偏小,以防止合输出过大,导致超调,
2)当aRMS-h较大、aRMS-l较小时,kh适中、kl中等偏小,使得系统有较好的稳态性能,
3)当aRMS-h较小、aRMS-l较大时,kh较小、kl适中,使得低阶模态得到有效控制的同时系统具有较好的稳态特性,
4)当aRMS-h较小、aRMS-l也较小时,kh较小、kl适中,使得衰减较慢的低幅振动能有效控制,又防止高频信号对系统产生震荡;
5)当aRMS-h适中、aRMS-l也适中时,kh中等偏小、kl较大,高阶模态衰减较快,在中等振幅时所需外界控制作用较小,较大的比重使低阶模态的响应速度增快;
模糊输入变量aRMS-l、aRMS-h基础论域均为[0,24],模糊集合均为{NB,NM,NS,Z,PS,PM,PB},边界隶属度函数选用Trapezoid,中间隶属度函数选用Triangle,均匀分布于论域上;
模糊输出变量kl、kh论域均为[0,0.9],模糊集合均为{0,1,2,3,4,5,6},边界隶属度函数选用Trapezoid,中间隶属度函数选用Triangle,均匀分布于论域上;采用取小“与”算法,Larsen求积“蕴涵”算法,选用面积中心法的清晰化方法,制作均匀模糊子集的模糊比重控制器的低阶比重系数模糊控制规则表和高阶比重系数模糊控制规则表;
步骤3 系统模态测试确定变论域模糊比重控制器参数
通过宽频激励方式锤击系统激发多阶振动模态,记录最大振幅amax,其公式为:
amax=max{al-max,ah-max} (3)
其中,al-max为低阶振动模态的最大振幅,ah-max为高阶振动模态的最大振幅;取Amax使得Amax>amax,则量化因子αl、αh的公式为:
Figure FDA0002367840480000031
其中,max(aRMS)为输入量论域的右边界;
经锤击激励后系统进行自由衰减,通过自由衰减时域信号计算各阶振动阻尼比ξh、ξl;各阶模态振动各通过一个二阶振动模型
Figure FDA0002367840480000032
描述,通过风洞支杆模型地面试验结果将低、高阶振动各建立一个二阶振动模型:
①首先单次采集n个离散数据点,监测该时域段所有正峰值,并从中记录最大峰值xpeak-max和最小峰值xpeak-min及相应的索引位置lpeak-max、lpeak-min
②然后,根据下式计算对数衰减率及阻尼比,公式为:
Figure FDA0002367840480000041
Figure FDA0002367840480000042
其中,δ为对数衰减率,ξ为阻尼比,
③再次采集n个离散数据点,并与步骤①中n个离散数据点所形成的数组拼接,重复步骤①至步骤③,直至阻尼比收敛于稳定值;
根据计算所得低、高阶振动阻尼比ξl、ξh,确定等比因子Φl、Φh和滑动因子sl、sh;尽量保证等比因子为1,以保证隶属度函数的对称性,如果阻尼比较大则设定大于1的等比因子,如果阻尼比较小则设定小于1的等比因子;
若sl<0,并根据ξl大小进行适当调节;sh>0并根据ξh大小进行适当调节;
步骤4 设计模糊P控制器
以低阶模态加速度信号al及其变化率alc作为输入量,alc公式为:
Figure FDA0002367840480000043
通过模糊P控制器计算比例因子KP
通过判断输入量的状态,确定比例因子KP,既要实现快速响应又需防止超出抑振器输出能力,具体控制规则为:
1)当|al|较大、|alc|也较大、且二者同号时,KP中等偏大以加快系统响应速度又防止超出抑振器输出能力,
2)当输入量异号时,KP适中以保持系统稳态性能,
3)当|al|较小、|alc|较大时,KP较大以保证系统稳态性能;
模糊输入变量al论域为[-12,12]、alc论域为[-1200,1200],模糊集合均为{NB,NM,NS,Z,PS,PM,PB},边界隶属度函数选用Trapezoid,中间隶属度函数选用Triangle,均匀分布于论域上;模糊输出变量KP论域为[4,16],模糊集合为{1,2,3,4,5},边界隶属度函数选用Trapezoid,中间隶属度函数选用Triangle,均匀分布于论域上;
采用取小“与”算法,Larsen求积“蕴涵”算法,选用面积中心清晰化方法,制作模糊P控制器的模糊控制规则表;
步骤5 输出振动控制信号
将比例因子KP与各阶比重系数相乘得到各阶比例系数Kl、Kh,其公式为:
Kl=Kpkl (8)
Kh=Kpkh (9)
将比例系数与各阶加速度信号相乘得到控制信号,将控制信号输出给抑振器实现多模态振动系统的振动主动控制。
CN201910307227.3A 2019-04-17 2019-04-17 基于变论域模糊控制的多模态振动主动控制方法 Active CN110044577B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910307227.3A CN110044577B (zh) 2019-04-17 2019-04-17 基于变论域模糊控制的多模态振动主动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910307227.3A CN110044577B (zh) 2019-04-17 2019-04-17 基于变论域模糊控制的多模态振动主动控制方法

Publications (2)

Publication Number Publication Date
CN110044577A CN110044577A (zh) 2019-07-23
CN110044577B true CN110044577B (zh) 2020-07-14

Family

ID=67277458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910307227.3A Active CN110044577B (zh) 2019-04-17 2019-04-17 基于变论域模糊控制的多模态振动主动控制方法

Country Status (1)

Country Link
CN (1) CN110044577B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759754B (zh) * 2021-09-14 2024-04-02 兰州交通大学 一种大风环境下列车主动悬挂系统控制方法
CN114237055B (zh) * 2021-12-19 2022-12-27 西北工业大学 极大型空间刚-柔耦合系统多阶模态主动振动抑制方法
CN116628878B (zh) * 2023-05-22 2024-01-16 深圳大学 基于主动振动控制的减振方法、结构及计算机系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6192352B1 (en) * 1998-02-20 2001-02-20 Tennessee Valley Authority Artificial neural network and fuzzy logic based boiler tube leak detection systems
US6556876B1 (en) * 2000-10-12 2003-04-29 National Semiconductor Corporation Hybrid fuzzy closed-loop sub-micron critical dimension control in wafer manufacturing
CN103034126A (zh) * 2012-12-24 2013-04-10 江苏大学 恒流源偏置外转子轴向磁轴承的控制系统及其控制方法
CN103499923A (zh) * 2013-09-17 2014-01-08 北京工业大学 一种结构amd主动控制器
CN104714569A (zh) * 2015-03-16 2015-06-17 重庆工商职业学院 一种基于模糊pid控制的车身振动控制系统及方法
CN205724917U (zh) * 2016-06-27 2016-11-23 陕西博华高低压开关成套设备制造有限公司 一种基于变论域模糊控制器的新型静止无功发生器
CN106444357A (zh) * 2016-05-17 2017-02-22 长春工业大学 一种变论域模糊pid双液压缸电液伺服同步控制方法
CN108828934A (zh) * 2018-09-26 2018-11-16 云南电网有限责任公司电力科学研究院 一种基于模型辨识的模糊pid控制方法及装置
CN109270833A (zh) * 2018-10-23 2019-01-25 大连海事大学 一种基于无刷直流电机q学习的变论域模糊控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6192352B1 (en) * 1998-02-20 2001-02-20 Tennessee Valley Authority Artificial neural network and fuzzy logic based boiler tube leak detection systems
US6556876B1 (en) * 2000-10-12 2003-04-29 National Semiconductor Corporation Hybrid fuzzy closed-loop sub-micron critical dimension control in wafer manufacturing
CN103034126A (zh) * 2012-12-24 2013-04-10 江苏大学 恒流源偏置外转子轴向磁轴承的控制系统及其控制方法
CN103499923A (zh) * 2013-09-17 2014-01-08 北京工业大学 一种结构amd主动控制器
CN104714569A (zh) * 2015-03-16 2015-06-17 重庆工商职业学院 一种基于模糊pid控制的车身振动控制系统及方法
CN106444357A (zh) * 2016-05-17 2017-02-22 长春工业大学 一种变论域模糊pid双液压缸电液伺服同步控制方法
CN205724917U (zh) * 2016-06-27 2016-11-23 陕西博华高低压开关成套设备制造有限公司 一种基于变论域模糊控制器的新型静止无功发生器
CN108828934A (zh) * 2018-09-26 2018-11-16 云南电网有限责任公司电力科学研究院 一种基于模型辨识的模糊pid控制方法及装置
CN109270833A (zh) * 2018-10-23 2019-01-25 大连海事大学 一种基于无刷直流电机q学习的变论域模糊控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
一种基于模糊自适应的速度反馈主动抑振方法;刘惟肖 等;《新技术新工艺》;20180831(第8(2018)期);第31-35页 *
基于PID控制方法的模糊变增益振动主动控制试验研究;邵敏强 等;《南京航空航天大学学报》;20120229;第44卷(第1期);第20-24页 *
基于模糊控制的轮式机器人振动主动控制;张梁 等;《国外电子测量技术》;20171130;第36卷(第11期);第129-133页 *
风洞模型支杆系统设计及振动主动控制;鲁继文 等;《计测技术》;20180831;第38卷(第4期);第10-16页 *

Also Published As

Publication number Publication date
CN110044577A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN110044577B (zh) 基于变论域模糊控制的多模态振动主动控制方法
CN103528782B (zh) 基于压电陶瓷激振器的薄壁结构件振动测试装置及方法
CN101560950B (zh) 基于预测控制风力涡轮机的方法和装置
WO2020125109A1 (zh) 支杆尾撑式飞行器模型多维振动控制方法
CN108638056A (zh) 基于柔体动力学模型的机器人关节振动分析与抑制方法
Xu et al. Dynamic decoupling and compensating methods of multi-axis force sensors
CN105466655A (zh) 测量结构微振动特性的加载装置及方法
CN105652662A (zh) 一种窄带自适应滤波的压电结构振动主动控制方法
CN114993603B (zh) 大展弦比模型纵向振动前后减振器配合控制方法及系统
EP0893679A2 (en) Method and apparatus for modelling a tyre for use with a vehicle spindle-coupled simulator
CN111783201A (zh) 一种三跨自锚式悬索桥动力特性的快速分析方法
CN115168970A (zh) 融合时域分析和疲劳分析的塔吊结构疲劳损伤确定方法
CN113759754B (zh) 一种大风环境下列车主动悬挂系统控制方法
CN113618732B (zh) 一种柔性机械臂的主共振控制方法
CN112001017B (zh) 一种高频耗散可控的结构动力响应数值计算方法
CN107315343A (zh) 一种机械主动隔振的多振源多参考窄带自适应方法
CN107314883B (zh) 一种风洞模型振动的风载自减振方法
CN115576189A (zh) 基于自适应齐次微分器的进气环境模拟系统pid控制方法
CN109145369A (zh) 一种计及非共振传输的中高频局部动响应预示方法
Che et al. Simulation and experimental research on adaptive active vibration control for test model in wind tunnel
CN110968935B (zh) 一种任意高差覆冰输电线路脱冰最大跳跃高度的算法
JP7046774B2 (ja) 制御器設計方法
CN109753018B (zh) 一种基于云端智能的误差补偿系统及动态补偿方法
Li et al. Dual-driver standing wave tube: acoustic impedance matching with robust repetitive control
CN114063667B (zh) 一种基于压力敏感电阻的无源自适应振动控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant