CN110044210B - 考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法 - Google Patents

考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法 Download PDF

Info

Publication number
CN110044210B
CN110044210B CN201910324167.6A CN201910324167A CN110044210B CN 110044210 B CN110044210 B CN 110044210B CN 201910324167 A CN201910324167 A CN 201910324167A CN 110044210 B CN110044210 B CN 110044210B
Authority
CN
China
Prior art keywords
expression
point
trajectory
earth
missile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910324167.6A
Other languages
English (en)
Other versions
CN110044210A (zh
Inventor
郑伟
王磊
张洪波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201910324167.6A priority Critical patent/CN110044210B/zh
Publication of CN110044210A publication Critical patent/CN110044210A/zh
Application granted granted Critical
Publication of CN110044210B publication Critical patent/CN110044210B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means

Abstract

本发明提供一种考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,包括以下步骤:第一步、沿弹道扰动引力重构模型离线构建;第二步、在弹上每一个制导周期内,基于二体动力学模型计算需要速度vR;第三步、以弹上实时预测的关机点状态为输入条件,采用考虑地球非球型引力摄动的弹道偏差解析预报模型快速计算弹道终端状态偏差△Xc;第四步、根据弹道终端状态偏差△Xc解析计算需要速度修正量△vR;第五步、求解考虑地球非球型引力摄动的控制量U。本发明基于弹道导弹自由段弹道偏差解析预报模型,提出了一种全新的闭路制导在线补偿方法,为进一步提升我国战略导弹制导方法的精度提供方法支撑。

Description

考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法
技术领域
本发明涉及飞行动力学技术领域,具体涉及一种考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法。
背景技术
弹上制导系统的性能是影响战略导弹作战效能的关键因素。不断提升导弹制导系统的精度、对弹道偏差的适应性是应对当前战略导弹快速机动发射及高精度命中需求的根本途径。闭路制导是根据目标数据和导弹的实时运动参数,按控制泛函(如射程偏差、需要速度或轨道运行周期等)的函数表达式进行实时计算的制导方法。该方法具有较高的适应性和鲁棒性,已成为当前战略导弹制导方法的首要选择。但闭路制导算法通常比较复杂,因此在进行制导指令的计算时很难顾及地球高阶非球型引力的影响,而基于弹道诸元修正的补偿思路对大范围弹道偏差的适应性较差,而且会增加战略导弹的发射准备时间,进而降低其射前生存能力。
针对当前存在的问题的不足,设计一种考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法具有重要意义。
发明内容
本发明的目的在于提供一种考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,本发明基于弹道导弹自由段弹道偏差解析预报模型,提出了一种全新的闭路制导在线补偿方法,为进一步提升我国战略导弹制导方法的精度提供方法支撑。具体技术方案如下:
一种考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,包括以下步骤:
第一步、沿弹道扰动引力重构模型离线构建;第二步、在弹上每一个制导周期内,基于二体动力学模型计算需要速度vR;第三步、以弹上实时预测的关机点状态为输入条件,采用考虑地球非球型引力摄动的弹道偏差解析预报模型快速计算弹道终端状态偏差△Xc;第四步、根据弹道终端状态偏差△Xc解析计算需要速度修正量△vR;第五步、求解考虑地球非球型引力摄动的控制量U。
以上技术方案中优选的,沿弹道扰动引力重构模型离线构建具体是:根据导弹飞行任务设计一条标准弹道,以标准弹道关机点参数为基准,在导弹发射前构建扰动引力重构模型,并将每个网格节点的位置坐标矢量及扰动引力矢量信息存储在弹上。
以上技术方案中优选的,基于弹上导航系统解算出的导弹当前位置矢量r0、目标点位置矢量rF、导弹总飞行时间ttotal及当前时刻t,采用Lambert算法计算当前点处的需要速度vR,其中导弹总飞行时间为提前设计的固定值,Lambert问题求解时输入的时间项为导弹总飞行时间减去当前时刻,即ttotal-t;Lambert问题求解时,需要速度
Figure BDA0002035749590000021
和飞行时间
Figure BDA0002035749590000022
采用表达式1)和表达式2)进行计算:
Figure BDA0002035749590000023
Figure BDA0002035749590000024
以上技术方案中优选的,地球非球型引力引起的弹道终端偏差△Xc采用表达式3)进行计算:
Figure BDA0002035749590000025
以上技术方案中优选的,地球J2项引力引起的弹道偏差△XJ2的计算方法包括J2项引力矢量的分解以及自由段弹道偏差解析预报模型推导;
J2项引力矢量的分解得到不同坐标轴方向上的摄动力如表达式3-1-8):
Figure BDA0002035749590000026
自由段弹道偏差解析预报模型推导具体是:
根据状态空间摄动理论,得到考虑J2项影响的自由段弹道偏差解析解如表达式3-1-9)-3-1-14):
Figure BDA0002035749590000031
Figure BDA0002035749590000032
Figure BDA0002035749590000033
Figure BDA0002035749590000034
Figure BDA0002035749590000035
Figure BDA0002035749590000036
则有表达式3-1-15):
△XJ2=[△vr(f),△r(f),△vβ(f),△t(f),△vz(f),△z(f)]T 3-1-15)。
以上技术方案中优选的,J2项引力矢量的分解,具体是:
令U2表示地球J2项引力势,在地球惯性系中J2项引力势为表达式3-1-1):
Figure BDA0002035749590000037
根据球面三角学将表达式1)的自变量由地心纬度转换为真近点角f;取N为天球坐标系的北天极,大圆弧
Figure BDA0002035749590000038
为由导弹关机点参数确定的标准二体弹道在球面上的投影,曲线AB表示导弹受摄运动轨迹在球面上的投影,直线OP垂直于平面OAB*,αA、△f分别为平面POC与POA的二面角和平面POA与POB*的二面角,
Figure BDA0002035749590000039
分别为A点的纬度和P点的纬度,λA和λP分别为A点和P点的经度,则有:
在球面三角形ANP中,得表达式3-1-2)至3-1-4):
Figure BDA00020357495900000310
Figure BDA00020357495900000311
Figure BDA0002035749590000041
在球面三角形BPN中,得表达式3-1-5):
Figure BDA0002035749590000042
将表达式3-1-5)带入表达式3-1-1),即得到J2项引力势关于真近点角的函数为表达式3-1-6):
Figure BDA0002035749590000043
分别求U2(f)关于r、f、σ的偏导数,即得到J2项引力矢量在轨道柱坐标系中的表达式为表达式3-1-7):
Figure BDA0002035749590000044
基于二体标准弹道进行计算,此时σ=0,表达式3-1-7)中的如下系数退化为零,即
Figure BDA0002035749590000045
将不同坐标轴方向上的摄动力统一用表达式3-1-8)表示:
Figure BDA0002035749590000046
以上技术方案中优选的,由扰动引力引起的弹道偏差△Xδg的计算方法包括高阶扰动引力矢量分解和状态偏差解析预报模型推导;
任意阶扰动引力矢量的分解包括以下过程:
先得到P点处扰动引力矢量δg关于真近点角的函数表达式如表达式3-2-4):
Figure BDA0002035749590000047
再获得扰动引力三分量的表达式为表达式3-2-5):
Figure BDA0002035749590000051
最后得到表达式3-2-6):
Figure BDA0002035749590000052
状态偏差解析预报模型推导具体包括以下步骤:
根据状态空间摄动理论,获得考虑高阶扰动引力影响的自由段弹道偏差解析解如表达式3-2-7)至3-2-12):
Figure BDA0002035749590000053
Figure BDA0002035749590000054
Figure BDA0002035749590000055
Figure BDA0002035749590000056
Figure BDA0002035749590000057
Figure BDA0002035749590000058
则有表达式3-2-13):
△Xδg=[△v′r(f),△r′(f),△v′β(f),△t′(f),△v′z(f),△z′(f)]T 3-2-13)。
以上技术方案中优选的,P点处扰动引力矢量δg关于真近点角的函数表达式3-2-4)获得的具体过程如下:
根据沿飞行弹道的扰动引力重构模型,弹道上任意一点的扰动引力矢量表示为八面体网格八个节点扰动引力矢量的加权和,即为表达式3-2-1):
Figure BDA0002035749590000061
其中:插值核函数
Figure BDA0002035749590000068
满足
Figure BDA0002035749590000062
式中,ξk
Figure BDA0002035749590000069
和ηk为第k个节点的位置坐标,而ξ′k
Figure BDA00020357495900000610
和η′k分别为与该节点相邻的三个节点对应坐标轴方向上的坐标值,δg为弹道上任意一点的扰动引力矢量,δgk为有限元网格八个节点的扰动引力矢量:
弹道上任意点P与轨道坐标系
Figure BDA00020357495900000614
之间的几何关系图中,诸元二体弹道是基于标准关机点Kf确定的二体弹道,用于在导弹发射前进行扰动引力重构模型的构建;制导二体弹道是由导弹实际关机点K确定的二体弹道;实际弹道为导弹在地球非球型引力等摄动力作用下的真实飞行弹道;ψ0和φ0为地心角;P′为制导二体弹道上与P点对应的点,设P′在
Figure BDA00020357495900000611
系中的位置矢量为
Figure BDA00020357495900000612
则有表达式3-2-2):
Figure BDA0002035749590000063
式中:
Figure BDA0002035749590000064
为坐标系
Figure BDA00020357495900000613
原点对应的地心距;Μz(·)和Μy(·)分别表示绕z轴和y轴变换的方向余弦矩阵,且有
Figure BDA0002035749590000065
Figure BDA0002035749590000066
表示真近点角为f时对应的标准二体弹道地心距,即
Figure BDA0002035749590000067
△β、ψ0和φ0均为矢量夹角,△fi表示当前有限元网格截得的诸元标准二体弹道地心角;ψ0和φ0由Kf和K之间的几何关系精确计算出来,具体计算过程如下:
设Kf点处的位置矢量和速度矢量分别为rk和vk,则诸元二体轨道平面的动量矩矢量hk为hk=rk×vk;再设K点处的位置矢量为r0,则有
Figure BDA0002035749590000071
令矢量rk和r0之间的夹角为θ0,可得
Figure BDA0002035749590000072
根据ψ0、θ0和φ0之间的几何关系,可得
Figure BDA0002035749590000073
△β满足△β=f-fK,其中f和fK分别为点P′和K在制导二体弹道上对应的真近点角;
将表达式3-2-2)展开有表达式3-2-3):
Figure BDA0002035749590000074
式中:r为地球半径,p1-p6如下:
Figure BDA0002035749590000075
将表达式3-2-3)带入表达式3-2-1)得到P点处扰动引力矢量δg关于真近点角的函数表达式如表达式3-2-4):
Figure BDA0002035749590000076
其中,αi均为常矢量系数,i=0,1,…,9。
以上技术方案中优选的,增益速度修正量δ△v采用表达式7)进行计算:
δ△v=[δ△vr0,δ△vβ0,δ△vz0]T 7);
其中:δ△vr0、δ△vβ0和δ△vz0分别表示沿二体轨道径向、切向和侧向的初始速度增量,则有
Figure BDA0002035749590000081
式中:
Figure BDA0002035749590000082
Figure BDA0002035749590000083
Figure BDA0002035749590000084
Figure BDA0002035749590000085
Figure BDA0002035749590000086
Figure BDA0002035749590000087
Figure BDA0002035749590000088
以上技术方案中优选的,考虑地球非球型引力摄动的控制量U具体是根据修正后的增益速度△v′R=△vR+δ△v计算得到,具体是:
根据发射惯性系与轨道柱坐标系的关系得到表达式8):
Figure BDA0002035749590000089
式中:δ△v′为在发射惯性系中表示的增益速度修正量,
Figure BDA00020357495900000810
为轨道柱坐标系到地心惯性系的方向余弦阵,
Figure BDA00020357495900000811
地心惯性系到发射惯性系的方向余弦阵,具体是:
Figure BDA00020357495900000812
Figure BDA00020357495900000813
设修正后的增益速度矢量为△v′R=[△vx △vy △vz]T,则得控制量
Figure BDA00020357495900000814
为表达式9):
Figure BDA00020357495900000815
式中:
Figure BDA0002035749590000091
和ψc分别为当前导弹实际俯仰角和偏航角。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照附图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是实施例中考虑地球非球型引摄动在线补偿的闭路制导系统的结构示意图;
图2是实施例Lambert问题的求解流程示意图;
图3是实施例中地球J2项引力引起的弹道偏差获得时的球面角关系图;
图4是实施例中地球J2项引力引起的弹道偏差获得时的轨道柱坐标系示意图;
图5是实施例中由扰动引力引起的弹道偏差获得时弹道任意点位置坐标转换图;
图6是实施例中俯仰角随制导过程的变化曲线图;
图7是实施例中偏航角随制导过程的变化曲线图;
图8是实施例中X方向增益速度随制导过程的变化曲线图;
图9是实施例中Y方向增益速度随制导过程的变化曲线图;
图10是实施例中标称条件下补偿J2项和扰动引力条件下的射程偏差补偿效果图;
图11是实施例中标称条件下补偿J2项和扰动引力条件下的横向偏差补偿效果图;
图12是实施例中标称条件下仅补偿J2项引力条件下的射程偏差补偿效果图;
图13是实施例中标称条件下仅补偿J2项引力条件下的横向偏差补偿效果图;
图14是实施例中大偏差条件下两种方法射程补偿残差图;
图15是实施例中大偏差条件下两种方法横向补偿残差图。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。
实施例:
一种考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,详见图1,包括以下步骤:
第一步、沿弹道扰动引力重构模型离线构建,具体是:根据导弹飞行任务设计一条标准弹道,以标准弹道关机点参数为基准,在导弹发射前构建扰动引力重构模型(可参照专利“沿飞行弹道的扰动引力重构模型”中描述的方法),并将每个网格节点的位置坐标矢量及扰动引力矢量信息存储在弹上。
第二步、在弹上每一个制导周期内,基于二体动力学模型计算需要速度vR,具体是:基于弹上导航系统解算出的导弹当前位置矢量r、目标点位置矢量rc、导弹总飞行时间ttotal及当前时刻t,采用Lambert算法计算当前点处的需要速度vR,其中导弹总飞行时间为提前设计的固定值,Lambert问题求解时输入的时间项为导弹总飞行时间减去当前时刻,即ttotal-t。
图2所示为导弹飞行时间固定条件下的Lambert问题求解流程。针对弹道导弹的运动特性,速度倾角γ存在上界和下界,且其值满足如下表达式:
Figure BDA0002035749590000101
通过在区间(γminmax)内迭代速度倾角,便可实现Lambert问题的快速求解。迭代初值γ0一般取为γ0=(γminmax)/2。每一次迭代中,需要速度
Figure BDA0002035749590000102
和飞行时间
Figure BDA0002035749590000103
采用表达式1)和表达式2)进行计算:
Figure BDA0002035749590000104
Figure BDA0002035749590000105
第三步、以弹上实时预测的关机点状态为输入条件,采用考虑地球非球型引力摄动的弹道偏差解析预报模型快速计算弹道终端状态偏差△Xc,具体是:
地球非球型引力引起的弹道终端偏差△Xc采用表达式3)进行计算:
Figure BDA0002035749590000106
地球J2项引力引起的弹道偏差△XJ2的计算方法包括J2项引力矢量的分解以及自由段弹道偏差解析预报模型推导;
J2项引力矢量的分解具体如下:
令U2表示地球J2项引力势,在地球惯性系中J2项引力势为表达式3-1-1):
Figure BDA0002035749590000111
根据球面三角学将表达式1)的自变量由地心纬度转换为真近点角f;如图3,取N为天球坐标系的北天极,大圆弧
Figure BDA0002035749590000112
为由导弹关机点参数确定的标准二体弹道在球面上的投影,曲线AB表示导弹受摄运动轨迹在球面上的投影,直线OP垂直于平面OAB*,αA、△f分别为平面POC与POA的二面角和平面POA与POB*的二面角,
Figure BDA0002035749590000113
分别为A点的纬度和P点的纬度,λA和λP分别为A点和P点的经度,则有:
在球面三角形ANP中,得表达式3-1-2)至3-1-4):
Figure BDA0002035749590000114
Figure BDA0002035749590000115
Figure BDA0002035749590000116
在球面三角形BPN中,得表达式3-1-5):
Figure BDA0002035749590000117
将表达式3-1-5)带入表达式3-1-1),即得到J2项引力势关于真近点角的函数为表达式3-1-6):
Figure BDA0002035749590000118
分别求U2(f)关于r、f、σ的偏导数,即得到J2项引力矢量在轨道柱坐标系(轨道柱坐标系的定义如图4所示)中的表达式为表达式3-1-7):
Figure BDA0002035749590000119
基于状态空间摄动法的弹道误差传播解析解推导过程中,摄动力并非基于当前导弹真实位置进行计算,而是基于二体标准弹道进行计算,此时σ=0,表达式3-1-7)中的如下系数退化为零,即
Figure BDA0002035749590000121
将不同坐标轴方向上的摄动力统一用表达式3-1-8)表示:
Figure BDA0002035749590000122
自由段弹道偏差解析预报模型推导具体是:
根据状态空间摄动理论,导弹自由飞行段弹道偏差的积分求解表示式如下:
Figure BDA0002035749590000123
式中:h为二体弹道平面对应的动量矩矢量的模;
Figure BDA0002035749590000124
表示真近点角为ξ时对应的标准二体弹道地心距,即
Figure BDA0002035749590000125
p表示二体弹道的半通径,e表示二体弹道的偏心率;
Figure BDA0002035749590000126
Figure BDA0002035749590000127
Figure BDA0002035749590000128
Figure BDA0002035749590000129
Figure BDA00020357495900001210
Figure BDA0002035749590000131
Figure BDA0002035749590000132
Figure BDA0002035749590000133
μ为地球引力常数;
将表达式3-1-8)代入导弹自由飞行段弹道偏差的积分求解表示式,并积分即得每一项偏差的完整解析表达式3-1-9)至表达式3-1-14):
Figure BDA0002035749590000134
Figure BDA0002035749590000135
Figure BDA0002035749590000136
Figure BDA0002035749590000137
Figure BDA0002035749590000138
Figure BDA0002035749590000139
则有表达式3-1-15):
△XJ2=[△vr(f),△r(f),△vβ(f),△t(f),△vz(f),△z(f)]T 3-1-15)。
由扰动引力引起的弹道偏差△Xδg的计算方法包括高阶扰动引力矢量分解和状态偏差解析预报模型推导;
任意阶扰动引力矢量的分解包括以下过程:
先得到P点处扰动引力矢量δg关于真近点角的函数表达式,具体过程如下:
根据沿飞行弹道的扰动引力重构模型,弹道上任意一点的扰动引力矢量表示为八面体网格八个节点扰动引力矢量的加权和,即为表达式3-2-1):
Figure BDA0002035749590000141
其中:插值核函数
Figure BDA0002035749590000147
满足
Figure BDA0002035749590000142
式中,ξk
Figure BDA0002035749590000148
和ηk为第k个节点的位置坐标,而ξ′k
Figure BDA0002035749590000149
和η′k分别为与该节点相邻的三个节点对应坐标轴方向上的坐标值,δg为弹道上任意一点的扰动引力矢量,δgk为有限元网格八个节点的扰动引力矢量:
图5所示为弹道上任意点P与轨道坐标系
Figure BDA00020357495900001410
之间的几何关系图中,其中诸元二体弹道是基于标准关机点Kf确定的二体弹道,用于在导弹发射前进行扰动引力重构模型的构建;制导二体弹道是由导弹实际关机点K确定的二体弹道;实际弹道为导弹在地球非球型引力等摄动力作用下的真实飞行弹道;ψ0和φ0为地心角;P′为制导二体弹道上与P点对应的点,设P′在
Figure BDA00020357495900001411
系中的位置矢量为
Figure BDA00020357495900001412
则根据图5所示的几何关系有表达式3-2-2):
Figure BDA0002035749590000143
表达式中ψ0和φ0由Kf和K之间的几何关系精确计算出来,具体计算过程如下:
设Kf点处的位置矢量和速度矢量分别为rk和vk,则诸元二体轨道平面的动量矩矢量hk为hk=rk×vk;再设K点处的位置矢量为r0,则有
Figure BDA0002035749590000144
令矢量rk和r0之间的夹角为θ0,可得
Figure BDA0002035749590000145
根据ψ0、θ0和φ0之间的几何关系,可得
Figure BDA0002035749590000146
△β满足△β=f-fK,其中f和fK分别为点P′和K在制导二体弹道上对应的真近点角;
将表达式3-2-2)展开有表达式3-2-3):
Figure BDA0002035749590000151
将表达式3-2-3)带入表达式3-2-1)得到P点处扰动引力矢量δg关于真近点角的函数表达式如表达式3-2-4):
Figure BDA0002035749590000152
扰动引力影响下自由段弹道偏差解析解的推导需要扰动引力三分量的表达式,令uφ(φ=r,β,z)表示标准二体弹道上任意点处扰动引力的三分量,
Figure BDA0002035749590000153
表示每个八面体网格节点上扰动引力的三分量,则有表达式3-2-5):
Figure BDA0002035749590000154
最后得到表达式3-2-6):
Figure BDA0002035749590000155
状态偏差解析预报模型推导具体包括以下步骤:
根据状态空间摄动理论,获得导弹自由飞行段弹道偏差的积分求解表示式如下:
Figure BDA0002035749590000156
将λj,s(f,ξ),j=1,2,…,6,s=1,3,5以及表达式3-2-6)代入导弹自由飞行段弹道偏差的积分求解表示式中积分得到考虑高阶扰动引力影响的自由段弹道偏差解析解如表达式3-2-7)至3-2-12):
Figure BDA0002035749590000161
Figure BDA0002035749590000162
Figure BDA0002035749590000163
Figure BDA0002035749590000164
Figure BDA0002035749590000165
Figure BDA0002035749590000166
则有表达式3-2-13):
△Xδg=[△v′r(f),△r′(f),△v′β(f),△t′(f),△v′z(f),△z′(f)]T 3-2-13)。
第四步、根据弹道终端状态偏差△Xc解析计算需要速度修正量△vR,具体是:修正增益速度的目的是消除由地球非球型引力摄动引起的弹道终端位置偏差,但由于地球存在自转,因此时间项偏差也会导致落点偏差。
假设
Figure BDA0002035749590000167
则根据状态空间摄动法,受摄情况下导弹状态偏差的计算公式为表达式4):
Figure BDA0002035749590000168
式中:Φ(f,f0)为线性微分方程的状态转移矩阵,f和f0分别为初始时刻和终端时刻对应的二体轨道真近点角;U(ξ)表示摄动力,此处表示地球非球型引力。
显然,由第二步计算出的导弹终端状态偏差△Xc满足表达式5):
Figure BDA0002035749590000171
由表达式5)可知,要使△Xf≡0,需要Φ(f,f0)△Xf0=-△Xc,表明可以通过施加一个初始状态偏差量来抵消由地球非球型引力引起的终端状态偏差。设沿二体轨道径向、切向和侧向的初始速度增量分别为δ△vr0、δ△vβ0和δ△vz0,则根据表达式6)可知:
Figure BDA0002035749590000172
式中,△v′rc、△v′βc、△v′zc分别为由δ△v引起的弹道终端速度偏差,λi,j,i,j=1,2,…,6为状态转移矩阵的成员变量。
求解表达式6)即可得增益速度修正量δ△v采用表达式7)进行计算:
δ△v=[δ△vr0,δ△vβ0,δ△vz0]T 7);
其中:δ△vr0、δ△vβ0和δ△vz0分别表示沿二体轨道径向、切向和侧向的初始速度增量,则有
Figure BDA0002035749590000173
第五步、求解考虑地球非球型引力摄动的控制量U,具体是根据修正后的增益速度△v′R=△vR+δ△v计算得到,详情如下:
易知δ△v是在轨道柱坐标系中描述的,控制量计算时需要将其转换至发射惯性系。根据发射惯性系与轨道柱坐标系的关系得到表达式8):
Figure BDA0002035749590000174
式中:δ△v′为在发射惯性系中表示的增益速度修正量,
Figure BDA0002035749590000175
为轨道柱坐标系到地心惯性系的方向余弦阵,
Figure BDA0002035749590000176
地心惯性系到发射惯性系的方向余弦阵,具体是:
Figure BDA0002035749590000181
Figure BDA0002035749590000182
设修正后的增益速度矢量为△v′R=[△vx △vy △vz]T,则得控制量
Figure BDA0002035749590000183
为表达式9):
Figure BDA0002035749590000184
式中
Figure BDA0002035749590000185
和ψc分别为当前导弹实际俯仰角和偏航角。
采用本实施例方法进行仿真中假定的战略导弹发射点大地经度为λ0=90°,大地纬度为
Figure BDA0002035749590000186
大地高度为100m,发射方位角由-180°遍历至180°。弹道导弹本体质量及发动机参数采用美国民兵-III洲际弹道导弹的模型参数,如表2所示。射程设置为12000km,飞行时间固定为2900秒。假设弹道导弹在第三级开始进行闭路制导。为了分析J2项引力和扰动引力的影响量级,根据所考虑的自由段非球型引力模型将仿真分为三组:第一组仅考虑J2项引力,第二组考虑72×72阶非球型引力,第三组考虑72×72阶扰动引力。
表2民兵3导弹发动机参数
级数 点火前质量(吨) 弹体直径(m) 发动机推力(kN) 发动机工作时间(s)
第一级 34.5 1.67 912 61.6
第二级 11.82 1.32 270 65.2
第三级 4.77 1.32 155 59.6
弹道导弹导弹从第三级开始闭路制导,开始时间为128秒。图6和图7所示分别为发射方位角为45度时,弹道导弹闭路制导过程中俯仰角和偏航角的变化曲线,其中实线为不考虑地球非球型引力影响补偿时的俯仰角和偏航角变化情况,虚线为考虑地球非球型引力影响在线补偿时俯仰角和偏航角变化情况。
图8和图9分别为发射方位角为45度时,弹道导弹闭路制导过程中x方向增益速度和y方向增益速度的变化曲线,其中实线为不考虑地球非球型引力影响补偿时的增益速度变化情况,虚线为考虑地球非球型引力影响在线补偿时的增益速度变化情况。
图10-图13分别为本发明所述方法与闭路制导地面诸元补偿方法在不同条件下的射程补偿残差和横向补偿残差随发射方位角的变化曲线,表3为两种方法在不同条件下的补偿残差统计结果,统计样本均为残差的绝对值。
表3标称条件下不同方法的射程补偿残差统计分析结果
Figure BDA0002035749590000191
图14-图15分别为本发明所述方法与闭路制导地面诸元补偿方法在考虑发动机推力偏差条件下的射程补偿残差和横向补偿残差随发射方位角的变化曲线,表4为两种方法在不同条件下的补偿残差统计结果,统计样本均为残差的绝对值。
表4大偏差条件下不同补偿方法计算精度统计分析结果
Figure BDA0002035749590000192
从仿真结果可以看出:
①在同时补偿J2项引力和扰动引力的条件下,在线补偿方法的射程补偿残差最大值为25.0252米,补偿残差均值为10.9294米;横向补偿残差最大值为39.2784米,补偿残差均值为14.6647米。
②在仅补偿J2项引力的条件下,在线补偿方法的射程补偿残差最大值为376.429米,补偿残差均值为342.623米;横向补偿残差最大值为291.382米,补偿残差均值为131.975米。显然,在闭路制导中忽略自由段扰动引力对需要速度的影响是导致该补偿残差的最主要原因;
③标称条件下,闭路制导地面诸元补偿精度比在线补偿方法稍差,但补偿残差也均在50米以内,精度较高。
④在大偏差条件下,地面诸元补偿方法的射程补偿残差最大值达到257.8639米,均值为224.8207米;横向补偿残差最大值为94.6340米,均值为36.0602米,精度较无偏差条件的情况低了一个量级。这主要是由于弹道变形会使得地球非球型引力对战略导弹自由飞段弹道的影响与标称条件下的影响产生偏差,因此地面计算的虚拟目标点并不能精确补偿实际地球非球型引力的影响,这使得地面诸元补偿方法对助推段弹道变形的适应能力较弱。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,包括沿弹道扰动引力重构模型离线构建,其特征在于:还包括以下步骤:
在弹上每一个制导周期内,基于二体动力学模型计算需要速度vR
以弹上实时预测的关机点状态为输入条件,采用考虑地球非球型引力摄动的弹道偏差解析预报模型快速计算弹道终端状态偏差ΔXc
根据弹道终端状态偏差ΔXc解析计算需要速度修正量ΔvR
求解考虑地球非球型引力摄动的控制量U。
2.根据权利要求1所述的考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,其特征在于:沿弹道扰动引力重构模型离线构建具体是:根据导弹飞行任务设计一条标准弹道,以标准弹道关机点参数为基准,在导弹发射前构建扰动引力重构模型,并将每个网格节点的位置坐标矢量及扰动引力矢量信息存储在弹上。
3.根据权利要求1所述的考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,其特征在于:基于弹上导航系统解算出的导弹当前位置矢量r0、目标点位置矢量rF、导弹总飞行时间ttotal及当前时刻t,采用Lambert算法计算当前点处的需要速度vR,其中导弹总飞行时间为提前设计的固定值,Lambert问题求解时输入的时间项为导弹总飞行时间减去当前时刻,即ttotal-t;Lambert问题求解时,需要速度
Figure FDA0002415848560000014
和飞行时间
Figure FDA0002415848560000015
采用表达式1)和表达式2)进行计算:
Figure FDA0002415848560000011
Figure FDA0002415848560000012
其中:速度倾角γ存在上界和下界,且其值满足如下表达式:
Figure FDA0002415848560000013
φ采用表达式
Figure FDA0002415848560000021
进行计算,r0为导弹当前位置对应的地心距,μ为地球引力常数,rF为导弹目标位置对应的地心距,λ取值为
Figure FDA0002415848560000022
γn采用公式
Figure FDA0002415848560000023
4.根据权利要求1所述的考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,其特征在于:地球非球型引力引起的弹道终端偏差ΔXc采用表达式3)进行计算:
Figure FDA0002415848560000024
其中:ΔXJ2为地球J2项引力引起的弹道偏差,ΔXδg为高阶扰动引力引起的弹道偏差,Δvr(f)、Δvβ(f)和Δvz(f)分别为考虑J2项影响的弹道状态偏差速度矢量在轨道柱坐标系中沿r轴、β轴和z轴方向的分量;Δr(f)和Δz(f)分别为考虑J2项影响的弹道状态偏差位置矢量在轨道柱坐标系中沿r轴和z轴方向的分量;Δt(f)为考虑J2项影响的实际飞行时间与标准二体弹道飞行时间之差,Δv′r(f)、Δv′β(f)和Δv′z(f)分别为考虑高阶扰动引力影响的弹道状态偏差速度矢量在轨道柱坐标系中沿r轴、β轴和z轴方向的分量;Δr′(f)和Δz′(f)分别为考虑高阶扰动引力影响的弹道状态偏差位置矢量在轨道柱坐标系中沿r轴和z轴方向的分量;Δt′(f)为考虑高阶扰动引力影响的实际飞行时间与标准二体弹道飞行时间之差。
5.根据权利要求4所述的考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,其特征在于:地球J2项引力引起的弹道偏差ΔXJ2的计算方法包括J2项引力矢量的分解以及自由段弹道偏差解析预报模型推导;
J2项引力矢量的分解得到不同坐标轴方向上的摄动力如表达式3-1-8):
Figure FDA0002415848560000025
式中:δar、δaβ和δaz分别表示J2项引力矢量在轨道柱坐标系中r轴、β轴和z轴方向上的分量;r为地球半径;
sr=-3K,sβ=K,sz=K;
Figure FDA0002415848560000031
Figure FDA0002415848560000032
Figure FDA0002415848560000033
Figure FDA0002415848560000034
μ为地球引力常数,ae为地球赤道平均半径;pi为常系数,i取0,1,2,3,4,具体如下:
Figure FDA0002415848560000035
Figure FDA0002415848560000036
为P点的纬度,σ为侧向角,αA为A点在极点坐标系中的经度,f0表示A点处的真近点角,即初始真近点角;
q1和q2如下:
Figure FDA0002415848560000037
Figure FDA0002415848560000038
自由段弹道偏差解析预报模型推导具体是:
根据状态空间摄动理论,得到考虑J2项影响的自由段弹道偏差解析解如表达式3-1-9)-3-1-14):
Figure FDA0002415848560000039
Figure FDA00024158485600000310
Figure FDA0002415848560000041
Figure FDA0002415848560000042
Figure FDA0002415848560000043
Figure FDA0002415848560000044
式中:
Figure FDA0002415848560000045
Figure FDA0002415848560000046
Figure FDA0002415848560000047
Figure FDA0002415848560000048
Figure FDA0002415848560000049
Figure FDA00024158485600000410
Figure FDA00024158485600000411
Figure FDA00024158485600000412
Figure FDA00024158485600000413
Figure FDA00024158485600000414
Figure FDA00024158485600000415
Λi,j如表1所示:
表1函数Λi,j的表达式统计表
Figure FDA0002415848560000051
Figure FDA0002415848560000052
Figure FDA0002415848560000053
Figure FDA0002415848560000054
Figure FDA0002415848560000055
Figure FDA0002415848560000056
Figure FDA0002415848560000057
Figure FDA0002415848560000058
Figure FDA0002415848560000059
Figure FDA00024158485600000510
Figure FDA00024158485600000511
则有表达式3-1-15):
ΔXJ2=[Δvr(f),Δr(f),Δvβ(f),Δt(f),Δvz(f),Δz(f)]T 3-1-15)。
6.根据权利要求5所述的考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,其特征在于:J2项引力矢量的分解,具体是:
令U2表示地球J2项引力势,在地球惯性系中J2项引力势为表达式3-1-1):
Figure FDA0002415848560000061
其中:μ为地球引力常数,ae为地球赤道平均半径,J为常数且
Figure FDA0002415848560000062
r为地球半径,
Figure FDA0002415848560000063
为地球纬度;
根据球面三角学将表达式1)的自变量由地心纬度转换为真近点角f;取N为天球坐标系的北天极,大圆弧AB*为由导弹关机点参数确定的标准二体弹道在球面上的投影,曲线AB表示导弹受摄运动轨迹在球面上的投影,直线OP垂直于平面OAB*,αA、Δf分别为平面POC与POA的二面角和平面POA与POB*的二面角,
Figure FDA0002415848560000064
分别为A点的纬度和P点的纬度,λA和λP分别为A点和P点的经度,则有:
在球面三角形ANP中,得表达式3-1-2)至3-1-4):
Figure FDA0002415848560000065
Figure FDA0002415848560000066
Figure FDA0002415848560000067
其中:γ为关机点A对应的方位角,αA为A点在新极点坐标系中的经度;
在球面三角形BPN中,得表达式3-1-5):
Figure FDA0002415848560000068
式中:σ为侧向角;f0表示A点处的真近点角,即初始真近点角;f表示弹上任意时刻对应的真近点角,这里P即表示任意点;
将表达式3-1-5)带入表达式3-1-1),即得到J2项引力势关于真近点角的函数为表达式3-1-6):
Figure FDA0002415848560000071
分别求U2(f)关于r、f、σ的偏导数,即得到J2项引力矢量在轨道柱坐标系中的表达式为表达式3-1-7):
Figure FDA0002415848560000072
Figure FDA0002415848560000073
Figure FDA0002415848560000074
基于二体标准弹道进行计算,此时σ=0,表达式3-1-7)中的如下系数退化为零,即
Figure FDA0002415848560000075
将不同坐标轴方向上的摄动力统一用表达式3-1-8)表示:
Figure FDA0002415848560000076
7.根据权利要求4所述的考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,其特征在于:由扰动引力引起的弹道偏差ΔXδg的计算方法包括高阶扰动引力矢量分解和状态偏差解析预报模型推导;
任意阶扰动引力矢量的分解包括以下过程:
先得到P点处扰动引力矢量δg关于真近点角的函数表达式如表达式3-2-4):
Figure FDA0002415848560000077
其中,αi均为常矢量系数,i=0,1,…,9;
Figure FDA0002415848560000078
表示真近点角为f时对应的标准二体弹道地心距,即
Figure FDA0002415848560000079
且p表示二体弹道的半通径,e表示二体轨道偏心率;f为点P′在制导二体弹道上对应的真近点角,P′为制导二体弹道上与P点对应的点;
再获得扰动引力三分量的表达式为表达式3-2-5):
Figure FDA0002415848560000081
其中:uφ(φ=r,β,z)表示标准二体弹道上任意点处扰动引力的三分量;取变量n1-n8和αi,k(i和k分别取0,1,2,3,4,5,6,7,8,9)如下:
Figure FDA0002415848560000082
Figure FDA0002415848560000083
Figure FDA0002415848560000084
Figure FDA0002415848560000085
Figure FDA0002415848560000086
Figure FDA0002415848560000087
Figure FDA0002415848560000088
Figure FDA0002415848560000089
Figure FDA00024158485600000810
Figure FDA00024158485600000811
Figure FDA00024158485600000812
Figure FDA00024158485600000813
Figure FDA00024158485600000814
Figure FDA00024158485600000815
Figure FDA00024158485600000816
Figure FDA00024158485600000817
Figure FDA00024158485600000818
Figure FDA00024158485600000819
Figure FDA00024158485600000820
Figure FDA00024158485600000821
Figure FDA00024158485600000822
Figure FDA00024158485600000823
Figure FDA00024158485600000824
Figure FDA0002415848560000091
Figure FDA0002415848560000092
Figure FDA0002415848560000093
Figure FDA0002415848560000094
Figure FDA0002415848560000095
Figure FDA0002415848560000096
Figure FDA0002415848560000097
Figure FDA0002415848560000098
Figure FDA0002415848560000099
Figure FDA00024158485600000910
Figure FDA00024158485600000911
Figure FDA00024158485600000912
Figure FDA00024158485600000913
Figure FDA00024158485600000914
Figure FDA00024158485600000915
Figure FDA00024158485600000916
Figure FDA00024158485600000917
Figure FDA00024158485600000918
Figure FDA00024158485600000919
Figure FDA00024158485600000920
Figure FDA00024158485600000921
Figure FDA00024158485600000922
Figure FDA00024158485600000923
Figure FDA00024158485600000924
α6,i=p1p4p6+p2p3p6+p2p4p5;α7,i=p1p3p6+p1p4p5+p2p3p5
α8,i=p2p4p6;α9,i=p1p3p5
ξ18
Figure FDA00024158485600000925
以及η18为八面体网格八个节点在局部坐标系中的坐标位置;
最后得到表达式3-2-6):
Figure FDA00024158485600000926
状态偏差解析预报模型推导具体包括以下步骤:
根据状态空间摄动理论,获得考虑高阶扰动引力影响的自由段弹道偏差解析解如表达式3-2-7)至3-2-12):
Figure FDA0002415848560000101
Figure FDA0002415848560000102
Figure FDA0002415848560000103
Figure FDA0002415848560000104
Figure FDA0002415848560000105
Figure FDA0002415848560000106
式中:ε14
Figure FDA0002415848560000107
P10-P19和Q10-Q19
Figure FDA0002415848560000108
P20-P29和Q20-Q29
Figure FDA0002415848560000111
P30-P39和Q30-Q39
Figure FDA0002415848560000112
P40-P49和Q40-Q49
Figure FDA0002415848560000113
P50-P59和Q50-Q59
Figure FDA0002415848560000114
P60-P69和Q60-Q69
Figure FDA0002415848560000115
所涉及的ln,p,q(E)函数和κn,p,q(E)函数的解析表示式如下:
Figure FDA0002415848560000116
Figure FDA0002415848560000117
Figure FDA0002415848560000121
Figure FDA0002415848560000122
Figure FDA0002415848560000123
Figure FDA0002415848560000124
Figure FDA0002415848560000125
Figure FDA0002415848560000126
Figure FDA0002415848560000131
Figure FDA0002415848560000132
Figure FDA0002415848560000133
Figure FDA0002415848560000134
Figure FDA0002415848560000135
Figure FDA0002415848560000136
Figure FDA0002415848560000137
Figure FDA0002415848560000138
Figure FDA0002415848560000139
Figure FDA0002415848560000141
Figure FDA0002415848560000142
Figure FDA0002415848560000143
Figure FDA0002415848560000144
Figure FDA0002415848560000145
Figure FDA0002415848560000146
Figure FDA0002415848560000147
Figure FDA0002415848560000148
Figure FDA0002415848560000149
Figure FDA00024158485600001410
Figure FDA00024158485600001411
Figure FDA00024158485600001412
Figure FDA00024158485600001413
Figure FDA00024158485600001414
Figure FDA0002415848560000151
Figure FDA0002415848560000152
Figure FDA0002415848560000153
Figure FDA0002415848560000154
Figure FDA0002415848560000155
Figure FDA0002415848560000156
Figure FDA0002415848560000157
Figure FDA0002415848560000158
Figure FDA0002415848560000159
Figure FDA00024158485600001510
Figure FDA00024158485600001511
Figure FDA00024158485600001512
Figure FDA00024158485600001513
Figure FDA00024158485600001514
Figure FDA00024158485600001515
Figure FDA0002415848560000161
Figure FDA0002415848560000162
Figure FDA0002415848560000163
Figure FDA0002415848560000164
Figure FDA0002415848560000165
Figure FDA0002415848560000166
Figure FDA0002415848560000167
Figure FDA0002415848560000168
Figure FDA0002415848560000169
Figure FDA00024158485600001610
Figure FDA00024158485600001611
κ2,0,1(E)=a2(1-e2)(sinE-EcosE);
Figure FDA00024158485600001612
a表示二体轨道半长轴,E表示偏近点角;
则有表达式3-2-13):
ΔXδg=[Δv′r(f),Δr′(f),Δv′β(f),Δt′(f),Δv′z(f),Δz′(f)]T 3-2-13)。
8.根据权利要求7所述的考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,其特征在于:P点处扰动引力矢量δg关于真近点角的函数表达式3-2-4)获得的具体过程如下:
根据沿飞行弹道的扰动引力重构模型,弹道上任意一点的扰动引力矢量表示为八面体网格八个节点扰动引力矢量的加权和,即为表达式3-2-1):
Figure FDA0002415848560000171
其中:插值核函数
Figure FDA00024158485600001713
满足
Figure FDA0002415848560000172
式中,ξk
Figure FDA0002415848560000173
和ηk为第k个节点的位置坐标,而ξ′k
Figure FDA0002415848560000174
和η′k分别为与该节点相邻的三个节点对应坐标轴方向上的坐标值,δg为弹道上任意一点的扰动引力矢量,δgk为有限元网格八个节点的扰动引力矢量:
弹道上任意点P与轨道坐标系
Figure FDA00024158485600001714
之间的几何关系图中,诸元二体弹道是基于标准关机点Kf确定的二体弹道,用于在导弹发射前进行扰动引力重构模型的构建;制导二体弹道是由导弹实际关机点K确定的二体弹道;实际弹道为导弹在地球非球型引力等摄动力作用下的真实飞行弹道;ψ0和φ0为地心角;P′为制导二体弹道上与P点对应的点,设P′在
Figure FDA0002415848560000175
系中的位置矢量为
Figure FDA0002415848560000176
则有表达式3-2-2):
Figure FDA0002415848560000177
式中:
Figure FDA0002415848560000178
为坐标系
Figure FDA0002415848560000179
原点对应的地心距;Μz(·)和Μy(·)分别表示绕z轴和y轴变换的方向余弦矩阵,且有
Figure FDA00024158485600001710
Figure FDA00024158485600001711
表示真近点角为f时对应的标准二体弹道地心距,即
Figure FDA00024158485600001712
Δβ、ψ0和φ0均为矢量夹角,Δfi表示当前有限元网格截得的诸元标准二体弹道地心角;ψ0和φ0由Kf和K之间的几何关系精确计算出来,具体计算过程如下:
设Kf点处的位置矢量和速度矢量分别为rk和vk,则诸元二体轨道平面的动量矩矢量hk为hk=rk×vk;再设K点处的位置矢量为r0,则有
Figure FDA0002415848560000181
令矢量rk和r0之间的夹角为θ0,可得
Figure FDA0002415848560000182
根据ψ0、θ0和φ0之间的几何关系,可得
Figure FDA0002415848560000183
Δβ满足Δβ=f-fK,其中f和fK分别为点P′和K在制导二体弹道上对应的真近点角;
将表达式3-2-2)展开有表达式3-2-3):
Figure FDA0002415848560000184
式中:r为地球半径,p1-p6如下:
Figure FDA0002415848560000185
将表达式3-2-3)带入表达式3-2-1)得到P点处扰动引力矢量δg关于真近点角的函数表达式如表达式3-2-4):
Figure FDA0002415848560000186
其中,αi均为常矢量系数,i=0,1,…,9。
9.根据权利要求5所述的考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,其特征在于:增益速度修正量δΔv采用表达式7)进行计算:
δΔv=[δΔvr0,δΔvβ0,δΔvz0]T 7);
其中:δΔvr0、δΔvβ0和δΔvz0分别表示沿二体轨道径向、切向和侧向的初始速度增量,则有
Figure FDA0002415848560000191
式中:
Figure FDA0002415848560000192
Figure FDA0002415848560000193
Figure FDA0002415848560000194
Figure FDA0002415848560000195
Figure FDA0002415848560000196
Figure FDA0002415848560000197
Figure FDA0002415848560000198
10.根据权利要求9所述的考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法,其特征在于:考虑地球非球型引力摄动的控制量U具体是根据修正后的增益速度Δv′R=ΔvR+δΔv计算得到,具体是:
根据发射惯性系与轨道柱坐标系的关系得到表达式8):
Figure FDA0002415848560000199
式中:δΔv′为在发射惯性系中表示的增益速度修正量,
Figure FDA00024158485600001910
为轨道柱坐标系到地心惯性系的方向余弦阵,
Figure FDA00024158485600001911
地心惯性系到发射惯性系的方向余弦阵,具体是:
Figure FDA00024158485600001912
Figure FDA00024158485600001913
设修正后的增益速度矢量为Δv′R=[Δvx Δvy Δvz]T,则得控制量
Figure FDA00024158485600001914
为表达式9):
Figure FDA0002415848560000201
式中:
Figure FDA0002415848560000202
和ψc分别为当前导弹实际俯仰角和偏航角;Δvx、Δvy和Δvz为在发射惯性系中增益速度矢量在x轴、y轴和z轴方向上的分量。
CN201910324167.6A 2019-04-22 2019-04-22 考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法 Active CN110044210B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910324167.6A CN110044210B (zh) 2019-04-22 2019-04-22 考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910324167.6A CN110044210B (zh) 2019-04-22 2019-04-22 考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法

Publications (2)

Publication Number Publication Date
CN110044210A CN110044210A (zh) 2019-07-23
CN110044210B true CN110044210B (zh) 2020-05-15

Family

ID=67278466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910324167.6A Active CN110044210B (zh) 2019-04-22 2019-04-22 考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法

Country Status (1)

Country Link
CN (1) CN110044210B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110609972B (zh) * 2019-09-30 2020-12-04 中国科学院紫金山天文台 一种指定发射仰角的自由弹道构造方法
CN111272012A (zh) * 2020-02-13 2020-06-12 哈尔滨工业大学 一种基于Lambert变轨的空间电磁炮制导子弹导预瞄准方法
CN113282097B (zh) * 2021-06-04 2022-07-29 中国人民解放军战略支援部队航天工程大学 一种geo博弈航天器相对位置非球形摄动误差的控制方法
CN116363206B (zh) * 2023-05-30 2023-09-26 南京航空航天大学 一种基于直线重构法的单星多级弹道导弹轨迹重构方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105701283B (zh) * 2016-01-08 2018-10-23 中国人民解放军国防科学技术大学 地球非球形摄动作用下自由段弹道误差传播的分析方法
CN105740506B (zh) * 2016-01-21 2018-12-11 中国工程物理研究院总体工程研究所 沿临近空间大范围机动弹道空间包络的扰动引力逼近方法
JP7159294B2 (ja) * 2017-08-17 2022-10-24 ビーエイイー・システムズ・インフォメーション・アンド・エレクトロニック・システムズ・インテグレイション・インコーポレーテッド レートベースのオートパイロットのためのgバイアス
CN107609267B (zh) * 2017-09-12 2019-07-16 北京理工大学 一种月球有限推力多次捕获轨道实现方法

Also Published As

Publication number Publication date
CN110044210A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN110044210B (zh) 考虑任意阶地球非球型引力摄动的闭路制导在线补偿方法
CN107966156B (zh) 一种适用于运载火箭垂直回收段的制导律设计方法
CN109911249B (zh) 低推重比飞行器的星际转移有限推力入轨迭代制导方法
CN109489690B (zh) 一种适用于高动态翻滚再入的助推器导航定位解算方法
CN108549785B (zh) 一种基于三维飞行剖面的高超声速飞行器精准弹道快速预测方法
CN109080854B (zh) 航天器返回预定落点的大椭圆轨道变轨规划方法
CN111444603B (zh) 一种返回式航天器时间最短离轨轨迹快速规划方法
CN113602532A (zh) 一种固体运载火箭入轨修正方法
CN111351481A (zh) 一种基于发射惯性坐标系的传递对准方法
CN111301715A (zh) 基于霍曼变轨的同轨道特定相位分布的星座布局与轨道调整方法、装置及计算机存储介质
CN104309822A (zh) 一种基于参数优化的航天器单脉冲水滴形绕飞轨迹悬停控制方法
CN108646554B (zh) 一种基于指定性能的飞行器快速抗干扰纵向制导方法
Li et al. Finite-time distributed hierarchical control for satellite cluster with collision avoidance
CN110059285B (zh) 考虑j2项影响的导弹自由段弹道偏差解析预报方法
CN107506505B (zh) 高精度地月自由返回轨道设计方法
CN113343442B (zh) 一种求解固定时间有限燃料多脉冲转移轨道的方法及系统
CN109190155B (zh) 一种采用电推进/太阳帆推进的混合连续小推力轨道设计方法
CN108082538B (zh) 一种考虑始末约束的多体系统低能量捕获轨道方法
Kang et al. Nanosat formation flying design for SNIPE mission
CN109305394B (zh) 航天器近距离交会试验简化方法
CN114935277B (zh) 一种滑翔增程制导炮弹理想弹道的在线规划方法
CN115892519A (zh) 一种用于近距离航天器轨道脉冲博弈的航天器控制方法
CN115993777A (zh) 基于轨道摄动模型反演的径切联控解耦迭代标定方法
Ortega Fuzzy logic techniques for rendezvous and docking of two geostationary satellites
Eun et al. Design and development of ground-based 5-dof spacecraft formation flying testbed

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant