CN110041850A - 纳米复合材料及其制备方法及封装结构 - Google Patents

纳米复合材料及其制备方法及封装结构 Download PDF

Info

Publication number
CN110041850A
CN110041850A CN201910289163.9A CN201910289163A CN110041850A CN 110041850 A CN110041850 A CN 110041850A CN 201910289163 A CN201910289163 A CN 201910289163A CN 110041850 A CN110041850 A CN 110041850A
Authority
CN
China
Prior art keywords
nanocomposite
titanium dioxide
fluorin doped
rod
dioxide nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910289163.9A
Other languages
English (en)
Other versions
CN110041850B (zh
Inventor
涂煜杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Interface Optoelectronics Shenzhen Co Ltd
Cheng Cheng Technology Chengdu Co Ltd
General Interface Solution Ltd
Original Assignee
Interface Optoelectronics Shenzhen Co Ltd
Cheng Cheng Technology Chengdu Co Ltd
General Interface Solution Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interface Optoelectronics Shenzhen Co Ltd, Cheng Cheng Technology Chengdu Co Ltd, General Interface Solution Ltd filed Critical Interface Optoelectronics Shenzhen Co Ltd
Priority to CN201910289163.9A priority Critical patent/CN110041850B/zh
Priority to TW108114353A priority patent/TWI715019B/zh
Priority to US16/442,961 priority patent/US11104584B2/en
Publication of CN110041850A publication Critical patent/CN110041850A/zh
Application granted granted Critical
Publication of CN110041850B publication Critical patent/CN110041850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02245Abrading, e.g. grinding, sanding, sandblasting or scraping
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0836Compounds with one or more Si-OH or Si-O-metal linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Hybrid Cells (AREA)
  • Catalysts (AREA)

Abstract

一种纳米复合材料的制备方法,其包括:制备氟掺杂的二氧化钛纳米棒;将所述氟掺杂的二氧化钛纳米棒分散于透明粘合剂中,得到纳米复合粘合剂;以及处理所述纳米复合粘合剂的表面,使其表面粗糙化并暴露出部分所述氟掺杂的二氧化钛纳米棒,得到透明的纳米复合材料。还提供一种纳米复合材料,以及应用该纳米复合材料的封装结构。

Description

纳米复合材料及其制备方法及封装结构
技术领域
本发明涉及纳米材料制备技术领域,尤其涉及一种纳米复合材料、其制备方法以及应用其的封装结构。
背景技术
透明材料可用于如电子书、柔性显示器以及柔性太阳能电池等器件的封装材料。然而,当透明材料的表面积累水和油时,会干扰材料的透明度。因此,需要开发一种用于器件封装的疏水和疏油的透明材料。
发明内容
本发明提供一种纳米复合材料的制备方法,其包括:
步骤S1:制备氟掺杂的二氧化钛纳米棒;
步骤S2:将所述氟掺杂的二氧化钛纳米棒分散于透明粘合剂中,得到纳米复合粘合剂;以及
步骤S3:处理所述纳米复合粘合剂的表面,使其表面粗糙化并暴露出部分所述氟掺杂的二氧化钛纳米棒,得到透明的纳米复合材料。
本发明还提供一种纳米复合材料,其包括:
透明粘合剂;以及
氟掺杂的二氧化钛纳米棒,分散于所述透明粘合剂中,其中,部分所述氟掺杂的二氧化钛纳米棒从所述透明粘合剂的表面暴露出。
本发明还提供一种封装结构,其包括:
基底;
器件,设置于所述基底的一表面上;以及
封装膜,其覆盖所述器件并延伸部分覆盖所述基底以将所述器件封装于所述基底上,所述封装膜采用上述的纳米复合材料形成,且所述氟掺杂的二氧化钛纳米棒从封装膜远离所述器件及所述基底的表面暴露出。
本发明提供的纳米复合材料的制备方法,通过等离子体处理使部分氟掺杂的二氧化钛纳米棒暴露出,使得该纳米复合材料具有表面改性的二氧化钛纳米纹理粗糙表面。另外,纳米复合材料的表面暴露的氟掺杂的二氧化钛纳米棒为氟基材料,使得纳米复合材料具有较低的表面能。因此,该纳米复合材料具有纳米纹理粗糙表面和较低的表面能,表现出较佳的疏水性和疏油性。
附图说明
图1为本发明实施例的纳米复合材料的制备方法的流程示意图。
图2为本发明实施例的纳米复合材料的制备方法中各步骤的结构示意图。
图3为本发明实施例的封装结构的剖面示意图。
主要元件符号说明
封装结构 100
基底 20
器件 30
电极 40
封装膜 50
纳米复合材料 10
纳米复合粘合剂 11
透明粘合剂 111
氟掺杂的二氧化钛纳米棒 112
步骤 S1、S2、S3
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
请同时参阅图1和图2,本发明一实施例提供的纳米复合材料10的制备方法,包括:
步骤S1:制备氟掺杂的二氧化钛纳米棒112。
步骤S2:将氟掺杂的二氧化钛纳米棒112分散于透明粘合剂111中,得到纳米复合粘合剂11。
步骤S3:处理纳米复合粘合剂11的表面,使其表面粗糙化并暴露出部分氟掺杂的二氧化钛纳米棒112,得到透明的纳米复合材料10。
于一实施例中,步骤S1包括采用溶胶-凝胶的方法制备氟掺杂的二氧化钛纳米棒112的步骤。
于一实施例中,步骤S1中,在采用溶胶-凝胶的方法制备氟掺杂的二氧化钛纳米棒112的步骤之前,还包括制备水解的1H,1H,2H,2H-全氟癸基三甲氧基硅烷(1H,1H,2H,2H-perfluorodecyl trimethoxysilane,PFDTMES)溶液的步骤。其中,1H,1H,2H,2H-全氟癸基三甲氧基硅烷又称十七氟癸基三甲氧基硅烷,其分子式为C13H13F17O3Si,其化学式为:
于一实施例中,制备水解的1H,1H,2H,2H-全氟癸基三甲氧基硅烷的步骤包括将蒸馏水、乙醇及乙酸混合,获得酸性乙醇溶液;然后将1H,1H,2H,2H-全氟癸基三甲氧基硅烷加入酸性乙醇溶液中,在室温条件下搅拌,得到水解的1H,1H,2H,2H-全氟癸基三甲氧基硅烷溶液。更具体地:将3ml蒸馏水加入100ml乙醇(纯度为99.5%)中制备乙醇溶液。然后,将适量的乙酸(纯度为99.5%)加入上述乙醇溶液中,将其pH值调节至2.8,得到酸性乙醇溶液。然后,将2ml的1H,1H,2H,2H-全氟癸基三甲氧基硅烷加入该酸性乙醇溶液中,在室温条件下,搅拌30分钟,进而获得水解1H,1H,2H,2H-全氟癸基三甲氧基硅烷。该过程中,化学反应方程式如下:
于一实施例中,得到水解1H,1H,2H,2H-全氟癸基三甲氧基硅烷后,采用溶胶-凝胶的方法,以异丙醇钛(Titanium isopropoxide,TTIP)为前驱体,油酸(Oleic acid,OA)为表面活性剂,三甲胺-N-氧化物脱水物(Trimethylamino-N-oxide dihydrate,TMAO)为催化剂,添加水解1H,1H,2H,2H-全氟癸基三甲氧基硅烷溶液制备氟掺杂的二氧化钛纳米棒112。
具体地,以异丙醇钛为前驱体,油酸为表面活性剂,在异丙醇钛和油酸的质量百分比为0.02至0.05的比例下,添加10g三甲胺-N-氧化物脱水物为催化剂,以及添加1ml水解的1H,1H,2H,2H-全氟癸基三甲氧基硅烷溶液,混合后,在80℃至100℃温度条件下,搅拌10小时至15小时,进而得到氟掺杂的二氧化钛纳米棒112。
于一实施例中,异丙醇钛和油酸的质量百分比例如为0.02、0.03、0.04、0.05等。
于一实施例中,将异丙醇钛、油酸、三甲胺-N-氧化物脱水物以及水解的1H,1H,2H,2H-全氟癸基三甲氧基硅烷溶液,混合后,搅拌的温度例如为,80℃、85℃、90℃、95℃以及100℃等,搅拌的时间例如为,10小时、11小时、12小时、13小时、14小时以及15小时等。
其中,氟掺杂的二氧化钛纳米棒112的长度不大于30纳米,氟掺杂的二氧化钛纳米棒112的直径不大于5纳米。该步骤中两步反应,首先异丙醇钛(TTIP)和油酸(OA)反应获得钛酸酯(Titanate eater),其反应的化学方程式如下:
然后,钛酸酯与水解的1H,1H,2H,2H-全氟癸基三甲氧基硅烷(hydrolyzedPFDTMES)发生缩合反应生成氟掺杂的二氧化钛纳米棒112(Fluoro-Doped TiO2Nanorods),其反应的化学方程式如下:
于一实施例中,步骤S2中,透明粘合剂111为本领域常规使用的各种透明粘合剂。例如,其可以为丙烯酸酯粘合剂(8106粘合剂),其组成成分(重量百分比)如下:氨基甲酸酯丙烯酸低聚物(Urethane acrylic oligomer)50%,N-乙烯基-2-吡咯烷酮(N-vinyl-2-pyrrolidone)10%,光聚合引发剂(Photoinitiator)1%,硅烷耦合剂(Silane coupleagent)9%,羟乙基甲基丙烯酸酯(Hydroxyethylmethylacrylate)15%,以及丙烯酰胺(Acrylamide)15%。
于一实施例中,步骤S2中包括将重量百分比为8.5%-12%的氟掺杂的二氧化钛纳米棒112分散至透明粘合剂111中后,在保护气气氛中例如氩气气氛中,常温搅拌20小时至30小时,从而得到纳米复合粘合剂11的步骤。
于一实施例中,氟掺杂的二氧化钛纳米棒112的重量百分比例如可以为8.5%、9%、10%、11%以及12%等。
于一实施例中,步骤S2中将氟掺杂的二氧化钛纳米棒112分散至透明粘合剂111中后,在保护气气氛中常温搅拌的时间例如可以为20小时、24小时、25小时及30小时等。
于一实施例中,步骤S3采用氧气等离子体处理纳米复合粘合剂11的表面,使纳米复合粘合剂11的表面粗糙化并暴露出部分氟掺杂的二氧化钛纳米棒112,从而获得纳米复合材料10。于其他实施例中,也可以采用例如二氧化碳、氩气、氨气、氮气等气体对纳米复合粘合剂11的表面进行等离子体处理。或者,也可以采用其他表面处理技术,使纳米复合粘合剂11的表面粗糙化并暴露出部分氟掺杂的二氧化钛纳米棒112。
本发明实施例提供的纳米复合材料10的制备方法,通过等离子体处理纳米复合粘合剂11的表面,使部分氟掺杂的二氧化钛纳米棒112暴露出,使得纳米复合材料10具有二氧化钛纳米纹理粗糙表面。另外,由于氟原子具有较小的原子半径和最大的电负性,使得氟元素为能够有效降低表面能的元素,由于纳米复合材料10其表面暴露的氟掺杂的二氧化钛纳米棒112为氟基材料,因而纳米复合材料10具有较低的表面能。因此,纳米复合材料10兼具纳米纹理粗糙表面和较低的表面能,表现出较佳的疏水性和疏油性。
本发明实施例还提供利用上述方法制备的纳米复合材料10,其包括透明粘合剂111以及分散于透明粘合剂111中的氟掺杂的二氧化钛纳米棒112。部分氟掺杂的二氧化钛纳米棒112从透明粘合剂111的表面暴露出。纳米复合材料10具有二氧化钛纳米纹理粗糙表面,且其表面暴露的氟掺杂的二氧化钛纳米棒112为氟基材料,因此,纳米复合材料10兼具纳米纹理粗糙表面和较低的表面能,表现出较佳的疏水性和疏油性。
另外,纳米复合材料10中,氟掺杂的二氧化钛纳米棒112为无机材料,透明粘合剂111为有机聚合物。因此,纳米复合材料10既具备无机材料机械性能佳的优点,又具备有机材料柔韧且重量轻的优点。
于一实施例中,透明粘合剂111为丙烯酸酯粘合剂时,丙烯酸酯粘合剂为紫外光光固化粘合剂,其加入氟掺杂的二氧化钛纳米棒112后仍为透明的紫外光光固化粘合剂。纳米复合材料10中氟掺杂的二氧化钛纳米棒112的重量百分比为8.5%-12%。氟掺杂的二氧化钛纳米棒112的长度不大于30纳米,氟掺杂的二氧化钛纳米棒的直径不大于5纳米。于一实施例中,氟掺杂的二氧化钛纳米棒112的重量百分比例如可以为8.5%、9%、10%、11%以及12%等。
本发明实施例还提供一种封装结构100,如图3所示,其包括基底20、设置于基底20的一表面上的器件30以及封装膜50。封装膜50覆盖器件30并延伸部分覆盖基底20以将器件30封装于基底20上。封装膜50采用上述纳米复合材料10形成,且氟掺杂的二氧化钛纳米棒从封装膜50远离器件30以及基底20的表面暴露出。
于一实施例中,器件30可以为电子书、柔性显示器以及柔性太阳能电池等。基底20可以为柔性基底,例如为PET。
于一实施例中,基底20可以为金属基印刷电路板(Metal Core Printed CircuitBoard,MCPCB)。封装结构100还包括电性连接基底20和器件30的电极40,封装膜50覆盖电极40以及器件30并延伸部分覆盖基底20,以将电极40以及器件30封装于基底20上。
由于纳米复合材料10表现出较佳的疏水性和疏油性,进而使得应用其的封装结构100具备较佳的疏水性和疏油性。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

1.一种纳米复合材料的制备方法,其包括:
步骤S1:制备氟掺杂的二氧化钛纳米棒;
步骤S2:将所述氟掺杂的二氧化钛纳米棒分散于透明粘合剂中,得到纳米复合粘合剂;以及
步骤S3:处理所述纳米复合粘合剂的表面,使其表面粗糙化并暴露出部分所述氟掺杂的二氧化钛纳米棒,得到透明的纳米复合材料。
2.如权利要求1所述的制备方法,其特征在于,步骤S1中包括采用溶胶-凝胶的方法制备氟掺杂的二氧化钛纳米棒。
3.如权利要求2所述的制备方法,其特征在于,采用溶胶-凝胶的方法制备氟掺杂的二氧化钛纳米棒的步骤包括:以异丙醇钛为前驱体,油酸为表面活性剂,三甲胺-N-氧化物脱水物为催化剂,添加水解的1H,1H,2H,2H-全氟癸基三甲氧基硅烷溶液,制备氟掺杂的二氧化钛纳米棒的步骤。
4.如权利要求3所述的制备方法,其特征在于,步骤S1中,在采用溶胶-凝胶的方法制备氟掺杂的二氧化钛纳米棒的步骤之前,还包括制备所述水解的1H,1H,2H,2H-全氟癸基三甲氧基硅烷溶液的步骤。
5.如权利要求4所述的制备方法,其特征在于,制备所述水解的1H,1H,2H,2H-全氟癸基三甲氧基硅烷溶液的步骤包括:将蒸馏水、乙醇及乙酸混合,得到酸性乙醇溶液;然后将1H,1H,2H,2H-全氟癸基三甲氧基硅烷加入所述酸性乙醇溶液中,在室温条件下搅拌,得到水解的1H,1H,2H,2H-全氟癸基三甲氧基硅烷溶液。
6.如权利要求1所述的制备方法,其特征在于,步骤S3中采用等离子体处理所述纳米复合粘合剂的表面。
7.一种纳米复合材料,其特征在于,包括:
透明粘合剂;以及
氟掺杂的二氧化钛纳米棒,分散于所述透明粘合剂中,其中,部分所述氟掺杂的二氧化钛纳米棒从所述透明粘合剂的表面暴露出。
8.如权利要求7所述的纳米复合材料,其特征在于,所述纳米复合材料中所述氟掺杂的二氧化钛纳米棒的重量百分比为8.5%-12%。
9.如权利要求7所述的纳米复合材料,其特征在于,所述氟掺杂的二氧化钛纳米棒的长度不大于30纳米,所述氟掺杂的二氧化钛纳米棒的直径不大于5纳米。
10.一种封装结构,其特征在于,包括:
基底;
器件,设置于所述基底的一表面上;以及
封装膜,其覆盖所述器件并延伸部分覆盖所述基底以将所述器件封装于所述基底上,所述封装膜采用如权利要求7至9中任意一项所述的纳米复合材料形成,且所述氟掺杂的二氧化钛纳米棒从所述封装膜远离所述器件及所述基底的表面暴露出。
CN201910289163.9A 2019-04-11 2019-04-11 纳米复合材料及其制备方法及封装结构 Active CN110041850B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910289163.9A CN110041850B (zh) 2019-04-11 2019-04-11 纳米复合材料及其制备方法及封装结构
TW108114353A TWI715019B (zh) 2019-04-11 2019-04-24 奈米複合材料及其製備方法及封裝結構
US16/442,961 US11104584B2 (en) 2019-04-11 2019-06-17 Hydrophobic and oleophobic nanocomposite material, method for making same, and encapsulating structure utilizing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910289163.9A CN110041850B (zh) 2019-04-11 2019-04-11 纳米复合材料及其制备方法及封装结构

Publications (2)

Publication Number Publication Date
CN110041850A true CN110041850A (zh) 2019-07-23
CN110041850B CN110041850B (zh) 2021-03-23

Family

ID=67276814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910289163.9A Active CN110041850B (zh) 2019-04-11 2019-04-11 纳米复合材料及其制备方法及封装结构

Country Status (3)

Country Link
US (1) US11104584B2 (zh)
CN (1) CN110041850B (zh)
TW (1) TWI715019B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789124A (zh) * 2014-12-30 2015-07-22 中国科学院兰州化学物理研究所 一种制备稳定超双疏表面的方法
CN105440888A (zh) * 2015-12-17 2016-03-30 中国科学院兰州化学物理研究所 一种稳定的超疏热液体涂层的制备方法
US20160259093A1 (en) * 2005-12-19 2016-09-08 Essilor International (Compagnie Generale D'optique) Method for improving the edging of an optical article by providing a temporary layer of an organic matter
CN105969174A (zh) * 2016-07-21 2016-09-28 中国民用航空总局第二研究所 一种超疏水材料及其制备方法
WO2017155340A1 (ko) * 2016-03-10 2017-09-14 광주과학기술원 미세 구조를 가지는 광학 필름 및 이의 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI261615B (en) * 2004-12-31 2006-09-11 Ind Tech Res Inst Hydrophobic structure on the surface of substrate and its manufacturing method
JP2006213871A (ja) * 2005-02-04 2006-08-17 Du Pont Mitsui Fluorochem Co Ltd フッ素樹脂複合体組成物
MX2009001983A (es) * 2006-08-25 2009-07-22 Sachtleben Chemie Gmbh Compuesto que contiene dioxido de titanio.
TW200846026A (en) * 2006-12-20 2008-12-01 Avon Prod Inc Nanocomposite pigments in a topical cosmetic application
TW200808435A (en) * 2007-10-23 2008-02-16 Bo-Ren Zhu Composition of nano composite ion-exchange membrane and method for producing such a membrane
TW200918651A (en) * 2007-10-31 2009-05-01 Univ Far East Heat resistant composite material containing nanopowders and method for preparing the same
CN105717178B (zh) * 2016-02-25 2018-02-27 济南大学 一种基于二氧化钛基二维纳米复合材料的电化学己烯雌酚传感器的制备方法及应用
CN105820605B (zh) * 2016-03-18 2017-11-14 湖北大学 一种基于花状二氧化钛纳米颗粒的普适性超双疏纳米涂层的制备方法
CN106124588B (zh) * 2016-07-05 2019-03-12 济南大学 一种基于掺杂二氧化钛/二硫化钼复合材料的电化学壬基酚传感器的制备方法
CN106124589B (zh) * 2016-07-05 2019-03-12 济南大学 一种基于铁掺杂二维纳米材料构建的电化学生物传感器的制备方法
WO2018106912A1 (en) * 2016-12-08 2018-06-14 The Board Of Regents Of The University Of Oklahoma Compositions with doped titanium dioxide nanoparticles and methods of use
CN109494357B (zh) * 2018-09-21 2020-09-29 中国矿业大学 一种氟化铁掺杂纳米二氧化钛的制备与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160259093A1 (en) * 2005-12-19 2016-09-08 Essilor International (Compagnie Generale D'optique) Method for improving the edging of an optical article by providing a temporary layer of an organic matter
CN104789124A (zh) * 2014-12-30 2015-07-22 中国科学院兰州化学物理研究所 一种制备稳定超双疏表面的方法
CN105440888A (zh) * 2015-12-17 2016-03-30 中国科学院兰州化学物理研究所 一种稳定的超疏热液体涂层的制备方法
WO2017155340A1 (ko) * 2016-03-10 2017-09-14 광주과학기술원 미세 구조를 가지는 광학 필름 및 이의 제조방법
CN105969174A (zh) * 2016-07-21 2016-09-28 中国民用航空总局第二研究所 一种超疏水材料及其制备方法

Also Published As

Publication number Publication date
US20200325033A1 (en) 2020-10-15
CN110041850B (zh) 2021-03-23
TWI715019B (zh) 2021-01-01
TW202037601A (zh) 2020-10-16
US11104584B2 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
Adnan et al. In situ synthesis of hybrid inorganic–polymer nanocomposites
US20140069488A1 (en) Conductive member, method of producing the same, touch panel, and solar cell
CN101885586B (zh) 光伏玻璃表面减反射膜的制备方法
KR101644680B1 (ko) 도전성 부재, 그 제조 방법, 터치 패널 및 태양 전지
CN104176774B (zh) 一种二氧化钛超疏水薄膜的制备方法
CN102617045B (zh) 一种SiO2减反射薄膜及其制备方法
JP4913129B2 (ja) 低屈折率膜形成用コーティング組成物及びこれから製造された膜
CN107418266A (zh) 超疏水涂层及其制备方法
JP7345722B2 (ja) 両親媒性の有機シラン化合物が結合した無機酸化物微粒子、その有機溶媒分散液及び被膜形成用組成物
CN103232170B (zh) 具有表面憎水性能空心玻璃微珠的制备方法
WO2012147815A1 (ja) 導電性部材、その製造方法、タッチパネル及び太陽電池
Zhang et al. Reinforced superhydrophobic anti-corrosion epoxy resin coating by fluorine–silicon–carbide composites
JPWO2007088815A1 (ja) 粘土膜及びその製造方法
Song et al. Preparation of ultrafine fly ash-based superhydrophobic composite coating and its application to foam concrete
JP2015187931A (ja) 誘電膜およびその製造方法、並びにそれを用いたトランスデューサ
WO2013140971A1 (ja) 導電性部材およびその製造方法
WO2017022420A1 (ja) 断熱塗料
CN107128937A (zh) 一种氧化石墨烯/硅酸铜复合粉末及其制备方法和超疏水涂层中的应用
JP5646671B2 (ja) 導電性部材、その製造方法、タッチパネル、及び太陽電池
Wang et al. Advances in sol-gel-based superhydrophobic coatings for wood: a review
CN104628265B (zh) 一种多层宽光谱疏水型太阳能电池增透膜及其制备方法
CN110041850A (zh) 纳米复合材料及其制备方法及封装结构
CN104387812A (zh) 一种氟硅烷改性金属氧化物纳米材料及其制备方法和应用
TW201044463A (en) Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same
JP6060733B2 (ja) Ito導電膜形成用塗料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant