CN110034190B - 负电容场效应晶体管及其制备方法 - Google Patents

负电容场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN110034190B
CN110034190B CN201910289946.7A CN201910289946A CN110034190B CN 110034190 B CN110034190 B CN 110034190B CN 201910289946 A CN201910289946 A CN 201910289946A CN 110034190 B CN110034190 B CN 110034190B
Authority
CN
China
Prior art keywords
layer
ferroelectric material
material layer
forming
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910289946.7A
Other languages
English (en)
Other versions
CN110034190A (zh
Inventor
殷华湘
姚佳欣
张青竹
李超雷
张兆浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201910289946.7A priority Critical patent/CN110034190B/zh
Publication of CN110034190A publication Critical patent/CN110034190A/zh
Application granted granted Critical
Publication of CN110034190B publication Critical patent/CN110034190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供了一种负电容场效应晶体管及其制备方法。该负电容场效应晶体管包括:衬底结构,衬底结构包括MOS区域;栅绝缘介质层结构,覆盖于MOS区域上,包括沿远离衬底结构的方向顺序层叠的界面氧化层、HfO2层、第一铁电材料层和第二铁电材料层,其中,形成第二铁电材料层的材料为HfxA1‑xO2,0<x<1,形成第一铁电材料层的材料为HfyB1‑yO2或HfByO2‑y,A和B为不同的掺杂元素,0<y<1;金属栅叠层,覆盖于栅绝缘介质层结构上。通过氧空位浓度变化、晶格应变或者金属元素诱导改变HfxA1‑xO2的晶格、成分变化与晶粒大小以及晶格走向,从而提升铁电材料的电畴极性和NCFET的铁电特性。

Description

负电容场效应晶体管及其制备方法
技术领域
本发明涉及半导体集成技术领域,具体而言,涉及一种负电容场效应晶体管及其制备方法。
背景技术
未来集成电路将持续发展,除了集成密度继续提升,电路的功耗越来越重要。持续降低工作电压VDD,并降低器件漏电成为技术关键。采用GAA等新结构可以部分实现上述目标,但需要VDD持续缩减到0.5V以下时,晶体管亚阈值摆幅的玻尔兹曼限制(SS≥60mV/dec)成为关键技术挑战。发展突破SS限制的新技术成为未来新技术关键方向。
除了基于量子隧穿的TFET,在栅极结构中集成基于铁电材料的铁电电容,使之与栅电容串联,在铁电电畴翻转时形成负电容,并在合适工作条件下,可形成内部电势放大,从而改变晶体管开关时的表面电势,从而突破SS的玻尔兹曼限制,获得较大的电流收益,实现VDD降低。该器件成为负电容场效应晶体管(NCFET)。
NCFET中铁电电容CFE和其关键材料具有重要作用,该材料需要实现良好的铁电效应,并保持良好稳定性、可靠性,并且需要工艺简单,和传统工艺兼容。现有技术中的铁电材料包括锆钛酸铅(PZT)、钛酸铅(PbTiO3)、钽钪酸铅(PST)、钛酸锶钡(BST)、聚氟乙烯(PVF)以及聚偏二氟乙烯(PVDF)等。上述材料需要特殊工艺,并要一定厚度产生铁电性,导致在CMOS极度微缩过程中应用受限。
除上述铁电材料之外,正交相HfO2晶体也能够产生铁电性,其简单结构,与传统HkMG工艺兼容,从而工艺简单,比PZT等材料相比可靠更高,在相同的铁电性条件下所需要的膜层厚度更小。并且,通过Si、Y、Zr、Al等元素掺杂,能够极大提升HfO2的铁电极性,形成HfZrOx(HZO)、HfSiOx和HfAlOx等更强极性材料。
以PMOS为例,将铁电HZO材料集成于晶体管结构中的工艺通常是:在后栅工艺中在形成传统界面氧化层/HfO2层(IL/HK)之上再生长一层HZO材料,其余与传统工艺相同,在之后的工艺中通过退火形成多晶晶粒,晶粒中形成正交相,然后产生强铁电极性。
然而,随着半导体器件的持续发展,上述铁电材料极性已逐渐无法得到满足,因此,现有技术中亟需提供一种在有限的栅极空间内继续提升铁电材料极性的方法。
发明内容
本发明的主要目的在于提供一种负电容场效应晶体管及其制备方法,以在有限的栅极空间内继续提升铁电材料的极性。
为了实现上述目的,根据本发明的一个方面,提供了一种负电容场效应晶体管,包括:衬底结构,衬底结构包括MOS区域;栅绝缘介质层结构,覆盖于MOS区域上,包括沿远离衬底结构的方向顺序层叠的界面氧化层、HfO2层、第一铁电材料层和第二铁电材料层,其中,形成第二铁电材料层的材料为HfxA1-xO2,0<x<1,形成第一铁电材料层的材料为HfyB1-yO2或HfByO2-y,A和B为不同的掺杂元素,0<y<1;金属栅叠层,覆盖于栅绝缘介质层结构上。
进一步地,A选自Si、Zr、Al、La和Y中的任一种。
进一步地,B选自N、O、H、Si和C中的任一种。
进一步地,第一铁电材料层与第二铁电材料层具有不同的多晶比率和晶格常数。
进一步地,第一铁电材料层的厚度为0.1~10nm,优选第二铁电材料层的厚度为0.1~10nm。
进一步地,衬底结构为平面结构、鳍结构和环栅纳米线结构中的任一种。
根据本发明的另一方面,提供了一种负电容场效应晶体管的制备方法,包括以下步骤:S1,提供衬底结构,衬底结构包括MOS区域;S2,在衬底结构上顺序形成界面氧化层、HfO2层、第一铁电材料层和第二铁电材料层,得到覆盖在MOS区域上的栅绝缘介质层结构,其中,形成第二铁电材料层的材料为HfxA1-xO2,0<x<1,形成第一铁电材料层的材料为HfyB1-yO2或HfByO2-y,A和B均为掺杂元素,0<y<1;S3,在衬底结构上形成覆盖在栅绝缘介质层结构上的金属栅叠层。
进一步地,A选自Si、Zr、Al、La和Y中的任一种。
进一步地,B选自N、O、H、Si和C中的任一种。
进一步地,在步骤S2中,通过对HfO2层进行等离子体表面处理或掺杂处理,以形成第一铁电材料层。
进一步地,MOS区域包括NMOS区域和PMOS区域,步骤S3包括:在栅绝缘介质层结构上顺序沉积形成第一阻挡层和第一功函数层;去除第一功函数层中位于NMOS区域上的部分,减薄第一阻挡层中位于NMOS区域上的部分,并减薄第一功函数层中位于PMOS区域上的部分;在剩余的第一阻挡层和第一功函数层上顺序沉积形成第二功函数层、第二阻挡层和导电填充层,以形成金属栅叠层。
应用本发明的技术方案,提供了一种负电容场效应晶体管,NCFET中的栅绝缘介质层结构包括HfO2/HfyB1-yO2(或HfByO2-y)/HfxA1-xO2叠层,由于HfO2层上表面通过等离子体表面处理或掺杂等工艺形成一层不同成分的电极材料薄层HfyB1-yO2(或HfByO2-y),能够通过氧空位浓度变化、晶格应变或者金属元素诱导改变其上HfxA1-xO2的晶格、成分变化与晶粒大小以及晶格走向,从而提升铁电材料的电畴极性,提高了NCFET的铁电特性、材料稳定性和可靠性。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明实施方式所提供的一种负电容场效应晶体管的结构示意图;
图2示出了在本申请实施方式所提供的负电容场效应晶体管的制备方法中,提供衬底结构后的基体剖面结构示意图;
图3示出了在图2所示的衬底结构上顺序形成界面氧化层、HfO2层、第一铁电材料层和第二铁电材料层后的基体剖面结构示意图;
图4示出了在图3所示的栅绝缘介质层结构上顺序沉积形成第一阻挡层和第一功函数层后的基体剖面结构示意图;
图5示出了去除图4所示的第一功函数层中位于NMOS区域上的部分,减薄第一阻挡层中位于NMOS区域上的部分,并减薄第一功函数层中位于PMOS区域上的部分后的基体剖面结构示意图;
图6示出了在图5所示的剩余的第一阻挡层和第一功函数层上顺序沉积形成第二功函数层、第二阻挡层和导电填充层后的基体剖面结构示意图。
其中,上述附图包括以下附图标记:
100、衬底结构;101、第一鳍片;102、第二鳍片;103、第三鳍片;104、第四鳍片;10、界面氧化层;20、HfO2层;30、第一铁电材料层;40、第二铁电材料层;50、第一阻挡层;60、第一功函数层;70、第二功函数层;80、第二阻挡层;90、导电填充层。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
正如背景技术中所介绍的,现有技术中亟需提供一种在有限的栅极空间内继续提升铁电材料极性的方法。本申请的发明人针对上述问题进行研究,提出了一种负电容场效应晶体管,如图1所示,包括衬底结构100、栅绝缘介质层结构和金属栅叠层,衬底结构100包括MOS区域;栅绝缘介质层结构覆盖于MOS区域上,包括沿远离衬底结构100的方向顺序层叠的界面氧化层10、HfO2层20、第一铁电材料层30和第二铁电材料层40,其中,形成第二铁电材料层40的材料为HfxA1-xO2,0<x<1,形成第一铁电材料层30的材料为HfyB1-yO2或HfByO2-y,A和B为不同的掺杂元素,0<y<1;金属栅叠层,覆盖于栅绝缘介质层结构上。
上述负电容场效应晶体管(NCFET)中的栅绝缘介质层结构包括HfO2/HfyB1-yO2(或HfByO2-y)/HfxA1-xO2叠层,由于HfO2层上表面通过等离子体表面处理或掺杂等工艺形成一层不同成分的电极材料薄层HfyB1-yO2(或HfByO2-y),能够通过氧空位浓度变化、晶格应变或者金属元素诱导改变其上HfxA1-xO2的晶格、成分变化与晶粒大小以及晶格走向,从而提升铁电材料的电畴极性,提高了NCFET的铁电特性、材料稳定性和可靠性。
在本发明的上述负电容场效应晶体管中,形成第二铁电材料层40的材料为HfxA1- xO2,0<x<1,优选地,A选自Si、Zr、Al、La和Y中的任一种;形成第一铁电材料层30的材料为HfyB1-yO2(或HfByO2-y),A和B为不同的掺杂元素,0<y<1,优选地,B选自N、O、H、Si和C中的任一种。如上述第二铁电材料层40为HfZrO4(HZO)层时,形成上述第一铁电材料层30的材料可以为HfSiO4;或者,当上述第二铁电材料层40为HfSiO4层时,形成上述第一铁电材料层30的材料可以为HfNy1O2-y1,0<y1<1。
在本发明的上述负电容场效应晶体管中,优选地,上述第一铁电材料层30的厚度为0.1~10nm,更为优选地,上述第二铁电材料层40的厚度为0.1~10nm。具有上述优选范围的第一铁电材料层30与第二铁电材料层40不仅能够具有较薄的厚度,还能够通过HfyB1-yO2(或HfByO2-y)的氧空位浓度变化、晶格应变或者金属元素诱导有效地改变其上HfxA1-xO2的晶格、成分变化与晶粒大小以及晶格走向,从而提升铁电材料的电畴极性。因此,第一铁电材料层30和第二铁电材料层40具有不同的多晶比率与晶格常数。
在本发明的上述负电容场效应晶体管中,上述衬底结构100可以为平面结构、鳍结构和环栅纳米线结构中的任一种;衬底结构100中的衬底可以为现有技术中常规的半导体衬底,如Si衬底、Ge衬底、SiGe衬底、SOI(绝缘体上硅)或GOI(绝缘体上锗)等;衬底结构100中的MOS区域可以包括NMOS区域和PMOS区域。
以上述衬底结构100为鳍结构为例,如图1所示,NMOS区域可以至少具有第一鳍片101和第二鳍片102,PMOS区域可以至少具有第三鳍片103和第四鳍片104。此时,在一种优选的实施方式中,第一阻挡层50位于NMOS区域和PMOS区域上,第一功函数层60位于与PMOS区域对应的部分第一阻挡层50上,第二功函数层70位于第一功函数层60上以及与NMOS区域对应的部分第一阻挡层50上,第二阻挡层80位于第二功函数层70上。
根据本发明的另一方面,还提供了一种负电容场效应晶体管的制备方法,包括以下步骤:S1,提供衬底结构,衬底结构包括MOS区域;S2,在衬底结构上顺序形成界面氧化层、HfO2层、第一铁电材料层和第二铁电材料层,得到覆盖在MOS区域上的栅绝缘介质层结构,其中,形成第二铁电材料层的材料为HfxA1-xO2,0<x<1,形成第一铁电材料层的材料为HfyB1-yO2或HfByO2-y,A和B均为掺杂元素,0<y<1;S3,在衬底结构上形成覆盖在栅绝缘介质层结构上的金属栅叠层。
上述负电容场效应晶体管(NCFET)的制备方法中,形成的栅绝缘介质层结构包括HfO2/HfyB1-yO2(或HfByO2-y)/HfxA1-xO2叠层,由于HfO2层上表面通过等离子体表面处理或掺杂等工艺形成一层不同成分的电极材料薄层HfyB1-yO2(或HfByO2-y),能够通过氧空位浓度变化、晶格应变或者金属元素诱导改变其上HfxA1-xO2的晶格、成分变化与晶粒大小以及晶格走向,从而提升铁电材料的电畴极性,提高了NCFET的铁电特性、材料稳定性和可靠性。
下面将更详细地描述根据本发明提供的负电容场效应晶体管的制备方法的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员。
首先,执行步骤S1:提供衬底结构,衬底结构包括MOS区域,如图2所示。上述衬底结构100中的衬底可以为现有技术中常规的半导体衬底,如Si衬底、Ge衬底、SiGe衬底、SOI(绝缘体上硅)或GOI(绝缘体上锗)等。
上述MOS区域可以包括NMOS区域和PMOS区域,上述NMOS区域和PMOS区域可以为多个,具有上述NMOS区域和上述PMOS区域的衬底结构100可以为鳍片结构,此时,衬底上具有与NMOS区域和PMOS区域一一对应的多个鳍片。形成上述衬底结构100的工艺可以包括以下步骤:首先,在衬底上形成鳍片(FET),并形成器件隔离区(Fin STI);然后,通过掺杂形成NMOS和PMOS的阱区和沟道区,形成跨各鳍片的假栅堆叠,在假栅堆叠的两侧形成跨鳍片的间隔物(Spacer);进行NMOS和PMOS的LDD掺杂,并在分别外延Si和SiGe后进行源/漏区的掺杂并退火;再形成第一层间介质层(ILD 0),并将第一层间介质层叠封装(POP);去除假栅堆叠,以在第一层间介质层中形成多个NMOS栅极沟槽和多个PMOS栅极沟槽,以得到分别含有鳍片的NMOS区域和PMOS区域。
在上述步骤S1之后,执行步骤S2:在衬底结构上顺序形成界面氧化层、HfO2层、第一铁电材料层和第二铁电材料层,得到覆盖在MOS区域上的栅绝缘介质层结构,其中,形成第二铁电材料层的材料为HfxA1-xO2,0<x<1,形成第一铁电材料层的材料为HfyB1-yO2或HfByO2-y,A和B均为掺杂元素,0<y<1。
在上述步骤S2中,界面氧化层10可以为SiO2层,此时,可以通过臭氧处理工艺在衬底结构100中MOS区域的表面形成上述界面氧化层10;形成上述HfO2层20的沉积工艺可以为原子层沉积工艺(ALD)、化学气相沉积(CVD)、真空物理溅射沉积(PVD)或回流焊工艺(Reflow)。本领域技术人员可以根据现有技术对形成上述HfO2层20的工艺条件进行合理选取。
在形成上述界面氧化层10之后,顺序形成两层具有不同掺杂元素的铁电材料层(第一铁电材料层30和第二铁电材料层40),优选地,上述第一铁电材料层30的厚度为0.1~10nm,更为优选地,上述第二铁电材料层40的厚度为0.1~10nm。具有上述优选范围的第一铁电材料层30与第二铁电材料层40不仅能够具有较薄的厚度,还能够通过HfyB1-yO2(或HfByO2-y)的氧空位浓度变化、晶格应变或者金属元素诱导有效地改变其上HfxA1-xO2的晶格、成分变化与晶粒大小以及晶格走向,从而提升铁电材料的电畴极性。
采用掺杂的铁电材料HfyB1-yO2(或HfByO2-y,0<y<1)形成上述第一铁电材料层30,优选地,A选自Si、Zr、Al、La和Y中的任一种;并且,优选地,通过对HfO2层进行等离子体表面处理或掺杂处理,以形成上述第一铁电材料层30。
在形成上述第一铁电材料层30之后,沉积掺杂的铁电材料HfxA1-xO2(0<x<1),以形成上述第二铁电材料层40,A和B为不同的掺杂元素,优选地,B选自N、O、H、Si和C中的任一种;形成上述第二铁电材料层40的沉积工艺可以为原子层沉积工艺(ALD)、化学气相沉积(CVD)、真空物理溅射沉积(PVD)或回流焊工艺(Reflow)。本领域技术人员可以根据现有技术对形成上述第二铁电材料层40的工艺条件进行合理选取。
当形成上述第一铁电材料层30的材料为HfSiO4时,形成的上述第二铁电材料层40可以为HfZrO4(HZO)层;当形成上述第一铁电材料层30的材料为HfNy1O2-y1(0<y1<1)时,上述第二铁电材料层40可以为HfSiO4层。
在完成上述步骤S2之后,执行步骤S3:在衬底结构100上形成覆盖在栅绝缘介质层结构上的金属栅叠层,如图4至图6所示。
上述衬底结构100中的MOS区域可以包括NMOS区域和PMOS区域,在一种优选的实施方式中,上述步骤S3包括以下步骤:S31,在栅绝缘介质层结构上顺序沉积形成第一阻挡层50和第一功函数层60,如图4所示;S32,去除第一功函数层60中位于NMOS区域上的部分,减薄第一阻挡层50中位于NMOS区域上的部分,并减薄第一功函数层60中位于PMOS区域上的部分,如图5所示;S33,在剩余的第一阻挡层50和第一功函数层60上顺序沉积形成第二功函数层70、第二阻挡层80和导电填充层90,以形成金属栅叠层,如图6所示。
在上述优选的实施方式中,形成上述第一阻挡层50和第二阻挡层80的材料可以独立地选自TiN、TaN、TiNx、TaNx和TiNSi中的任一种或多种,0.1≤x≤0.9;形成上述第一功函数层60的材料选自Al、TiAl、TiAlx、TiAlCx、TiCx和TaCx中的任一种或多种,0.1≤x≤0.9;形成上述第二功函数层70的材料选自TiN、TaN、TiNx、TaNx和TiNSi中的任一种或多种,0.1≤x≤0.9。本领域技术人员可以根据现有技术对形成上述各层的沉积工艺及其工艺条件进行合理选取,在此不再赘述。
在上述优选的实施方式中,形成上述导电填充层90的材料可以选自W、Ni、Ti和Co中的任一种或多种;并且,形成上述导电填充层90的沉积工艺可以选自原子层沉积、化学气相沉积和物理气相沉积中的任一种。
在上述优选的实施方式中,去除第一阻挡层50、第一功函数层60以及第二功函数层70的工艺可以独立地选自干法腐蚀、湿法腐蚀、灰化和剥离中的任一种。本领域技术人员可以根据现有技术对去除工艺及其工艺条件进行合理选取,在此不再赘述。
在上述步骤S33之后,还可以通过对上述金属栅叠层进行化学机械抛光(CMP),以使金属栅极结构的顶部齐平。
在步骤S3之后,本发明的上述制备方法还可以包括实现器件互连的步骤。上述实现器件互连的具体步骤可以包括:沉积形成第二层间介质层(ILD 1),形成金属层(CT)和硅化物层,并形成钨塞(W Plug),并进行化学机械抛光,然后多层互连,并形成钝化层管脚(Pad)。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
上述负电容场效应晶体管(NCFET)中的栅绝缘介质层结构包括HfO2/HfyB1-yO2(或HfByO2-y)/HfxA1-xO2叠层,由于HfO2层上表面通过等离子体表面处理或掺杂等工艺形成一层不同成分的电极材料薄层HfyB1-yO2(或HfByO2-y),能够通过氧空位浓度变化、晶格应变或者金属元素诱导改变其上HfxA1-xO2的晶格、成分变化与晶粒大小以及晶格走向,从而提升铁电材料的电畴极性,提高了NCFET的铁电特性、材料稳定性和可靠性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种负电容场效应晶体管,其特征在于,包括:
衬底结构,所述衬底结构包括MOS区域;
栅绝缘介质层结构,覆盖于所述MOS区域上,包括沿远离所述衬底结构的方向顺序层叠的界面氧化层、HfO2层、第一铁电材料层和第二铁电材料层,其中,形成所述第二铁电材料层的材料为HfxA1-xO2,0<x<1,形成所述第一铁电材料层的材料为HfyB1-yO2或HfByO2-y,A和B为不同的掺杂元素,0<y<1;
金属栅叠层,覆盖于所述栅绝缘介质层结构上,
A选自Si、Zr、Al、La和Y中的任一种,
B选自N、O、H和C中的任一种。
2.根据权利要求1所述的负电容场效应晶体管,其特征在于,所述第一铁电材料层与所述第二铁电材料层具有不同的多晶比率和晶格常数。
3.根据权利要求1所述的负电容场效应晶体管,其特征在于,所述第一铁电材料层的厚度为0.1~10nm。
4.根据权利要求1所述的负电容场效应晶体管,其特征在于,所述第二铁电材料层的厚度为0.1~10nm。
5.根据权利要求1至4中任一项所述的负电容场效应晶体管,其特征在于,所述衬底结构为平面结构、鳍结构和环栅纳米线结构中的任一种。
6.一种负电容场效应晶体管的制备方法,其特征在于,包括以下步骤:
S1,提供衬底结构,所述衬底结构包括MOS区域;
S2,在所述衬底结构上顺序形成界面氧化层、HfO2层、第一铁电材料层和第二铁电材料层,得到覆盖在所述MOS区域上的栅绝缘介质层结构,其中,形成所述第二铁电材料层的材料为HfxA1-xO2,0<x<1,形成所述第一铁电材料层的材料为HfyB1-yO2或HfByO2-y,A和B均为掺杂元素,0<y<1;
S3,在所述衬底结构上形成覆盖在所述栅绝缘介质层结构上的金属栅叠层,
A选自Si、Zr、Al、La和Y中的任一种,
B选自N、O、H、Si和C中的任一种。
7.根据权利要求6所述的制备方法,其特征在于,在所述步骤S2中,通过对所述HfO2层进行等离子体表面处理或掺杂处理,以形成所述第一铁电材料层。
8.根据权利要求6至7中任一项所述的制备方法,其特征在于,所述MOS区域包括NMOS区域和PMOS区域,所述步骤S3包括:
在所述栅绝缘介质层结构上顺序沉积形成第一阻挡层和第一功函数层;
去除所述第一功函数层中位于所述NMOS区域上的部分,减薄所述第一阻挡层中位于所述NMOS区域上的部分,并减薄所述第一功函数层中位于所述PMOS区域上的部分;
在剩余的所述第一阻挡层和所述第一功函数层上顺序沉积形成第二功函数层、第二阻挡层和导电填充层,以形成所述金属栅叠层。
CN201910289946.7A 2019-04-11 2019-04-11 负电容场效应晶体管及其制备方法 Active CN110034190B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910289946.7A CN110034190B (zh) 2019-04-11 2019-04-11 负电容场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910289946.7A CN110034190B (zh) 2019-04-11 2019-04-11 负电容场效应晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN110034190A CN110034190A (zh) 2019-07-19
CN110034190B true CN110034190B (zh) 2023-02-28

Family

ID=67238059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910289946.7A Active CN110034190B (zh) 2019-04-11 2019-04-11 负电容场效应晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN110034190B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231901A (zh) * 2018-01-04 2018-06-29 中国科学院上海微系统与信息技术研究所 基于负电容的场效应晶体管、生物传感器及其制备方法
CN108428667A (zh) * 2018-01-31 2018-08-21 中国科学院微电子研究所 Cmos器件及其制备方法
CN109148454A (zh) * 2017-06-27 2019-01-04 爱思开海力士有限公司 铁电存储器件
KR20190008047A (ko) * 2017-07-14 2019-01-23 에스케이하이닉스 주식회사 강유전성 메모리 소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2053653A1 (en) * 2007-10-24 2009-04-29 Interuniversitair Microelektronica Centrum Vzw Dual work function semiconductor device and method for manufacturing the same
KR20180111303A (ko) * 2017-03-31 2018-10-11 에스케이하이닉스 주식회사 강유전성 메모리 장치 및 그 제조 방법
CN108091693B (zh) * 2017-11-03 2020-10-27 中国科学院微电子研究所 铁电场效应晶体管及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148454A (zh) * 2017-06-27 2019-01-04 爱思开海力士有限公司 铁电存储器件
KR20190008047A (ko) * 2017-07-14 2019-01-23 에스케이하이닉스 주식회사 강유전성 메모리 소자
CN108231901A (zh) * 2018-01-04 2018-06-29 中国科学院上海微系统与信息技术研究所 基于负电容的场效应晶体管、生物传感器及其制备方法
CN108428667A (zh) * 2018-01-31 2018-08-21 中国科学院微电子研究所 Cmos器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《隧穿场效应晶体管的研究进展》;陶桂龙等;《微纳电子技术》;20180531;707-715 *

Also Published As

Publication number Publication date
CN110034190A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
US10381439B2 (en) Nanowire transistor having two spacers between gate structure and source/drain structure
US9368499B2 (en) Method of forming different voltage devices with high-k metal gate
US9768029B2 (en) Method of forming a semiconductor structure
TWI726128B (zh) 半導體元件及其製作方法
US7229893B2 (en) Method and apparatus for a semiconductor device with a high-k gate dielectric
TWI624863B (zh) 半導體元件及其製作方法
US8569816B2 (en) Isolated capacitors within shallow trench isolation
CN106711224A (zh) 半导体装置
US9685383B2 (en) Method of forming semiconductor device
CN108122909A (zh) 半导体器件及其制造方法
US8318576B2 (en) Decoupling capacitors recessed in shallow trench isolation
US20070187725A1 (en) Method and apparatus for a semiconductor device with a high-k gate dielectric
US9673040B2 (en) Semiconductor device and method for fabricating the same
US10256321B2 (en) Semiconductor device including enhanced low-k spacer
US20150079780A1 (en) Method of forming semiconductor structure
TW202201823A (zh) 半導體元件
JP2009534833A (ja) 単位領域あたりのキャパシタンスが高い半導体コンポーネントの製造法
CN110010691B (zh) 负电容场效应晶体管及其制备方法
CN110034190B (zh) 负电容场效应晶体管及其制备方法
US11705498B2 (en) Nanowire transistor and method for fabricating the same
TWI509667B (zh) 金屬閘極之結構及其製作方法
TWI821535B (zh) 一種製作半導體元件的方法
US20230301068A1 (en) Semiconductor memory device and method of manufacturing the same
TWI569333B (zh) 一種製作半導體元件的方法
CN109980016A (zh) 负电容场效应晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant