CN110030186A - 轨道列车用空压机防润滑油乳化方法、系统及存储介质 - Google Patents

轨道列车用空压机防润滑油乳化方法、系统及存储介质 Download PDF

Info

Publication number
CN110030186A
CN110030186A CN201910469181.5A CN201910469181A CN110030186A CN 110030186 A CN110030186 A CN 110030186A CN 201910469181 A CN201910469181 A CN 201910469181A CN 110030186 A CN110030186 A CN 110030186A
Authority
CN
China
Prior art keywords
air compressor
compressor machine
vehicle
wind pressure
total wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910469181.5A
Other languages
English (en)
Other versions
CN110030186B (zh
Inventor
吴学瑞
郭宗斌
王雯
安震
秦东宾
郗开冲
刘同新
魏灿刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Qingdao Sifang Rolling Stock Research Institute Co Ltd
Original Assignee
CRRC Qingdao Sifang Rolling Stock Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Qingdao Sifang Rolling Stock Research Institute Co Ltd filed Critical CRRC Qingdao Sifang Rolling Stock Research Institute Co Ltd
Priority to CN201910469181.5A priority Critical patent/CN110030186B/zh
Publication of CN110030186A publication Critical patent/CN110030186A/zh
Priority to PCT/CN2020/092942 priority patent/WO2020239032A1/zh
Application granted granted Critical
Publication of CN110030186B publication Critical patent/CN110030186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

本发明涉及一种轨道列车用空压机防润滑油乳化方法、系统及存储介质,方法包括:将空压机控制模式设置为低工作率模式与高工作率模式;若空压机工作率处于低工作率模式,选择低工作率模式下对空压机进行防润滑油乳化控制;若空压机工作率处于高工作率模式,选择高工作率模式下对空压机进行防润滑油乳化控制。本发明通过设置高/低工作率两种模式,在不同的工作率模式系下采用不同的控制方法,控制主空压机与分空压机根据车辆总风压力的变化切换加/载工作模式,有效防止空压机润滑油乳化。同时,与传统的全程加卸载模式相比,可以降低空压机在使用期间的能源消耗,降低了空压机防乳化装置在寿命周期内的使用次数以及空压机整体的故障率。

Description

轨道列车用空压机防润滑油乳化方法、系统及存储介质
技术领域
本发明属于空压机润滑油乳化技术领域,尤其涉及一种轨道列车用空压机防润滑油乳化方法、系统及存储介质。
背景技术
轨道交通车辆普遍使用喷油螺杆式空压机、活塞式空压机和滑片式空压机作为供风单元,其产生的压缩空气作为空气制动系统的制动力来源。通常一列列车配置有两台空压机,单台空压机的排气量能满足车辆正常情况下的用风需求,配置两台空压机是为保证一台空压机损坏时或者车辆耗风量过高时,空压机的供风量仍能满足车辆用风的需求。空压机在工作率(空压机运转时间/车辆运行时间)低于30%的使用条件下极易出现润滑油乳化问题。润滑油乳化主要是由于车辆耗风少,空压机运转时间较少,空压机在每次运转过程中润滑油温度未升高到70℃以上就停机,空压机压缩空气产生的水未及时形成水蒸气排出而与润滑油混合,此种情况维持2-3天后,润滑油中混合的水越积越多,从而导致润滑油乳化变质。
为使两台空压机均衡使用,列车控制系统普遍按照单双日或车头方向将两台空压机定位主、分空压机。设定车辆总风压力在一定的范围内时,仅有主空压机启动;当总风压力低于预设阈值时,主、分空压机都启动。以上控制方式可以保证两台空压机在实际运用时都能作为主空压机使用,从而降低两台空压机润滑油乳化的机率。但在车辆调试期间或者线路运营初期,由于车辆耗风较少,主、分空压机的工作率都较低,润滑油仍存在较大几率发生乳化。
而现有轨道交通车辆主要采用全程加卸载模式控制空压机以防止润滑油乳化。全程加卸载模式控制空压机的原理:空压机电机在车辆运行过程中始终运转,在车辆总风压力低于一定值的时候,空压机进入加载模式运转,列车控制系统控制空压机的进气阀打开,外界空气经空压机压缩后输出给车辆总风缸,保证车辆用风需求;车辆总风压力升高到一定值后,空压机进入卸载模式运转,列车控制系统控制空压机进气阀关闭,外界空气无法进入空压机内部,空压机虽然仍在运转,但因无空气输入,故无压缩空气输出,保证车辆总风压力不会过高。全程加/卸载模式控制空压机虽然能有效防止润滑油乳化,但因车辆在运行过程中空压机始终运转,缩短了空压机内部磨耗部件的使用寿命,也造成了能源的浪费。
因此,有必要结合上述现有轨道列车用空压机润滑油乳化控制方法,在现有控制方法基础上进行改进,提供一种新的轨道列车用空压机防润滑油乳化控制方法。
发明内容
本发明针对上述现有轨道列车用空压机润滑油乳化控制方法存在的不足,提供了轨道列车用空压机防润滑油乳化控制方法,通过在设置高低工作率两种空压机的控制模式,有利于车辆用户在空压机工作率不同的阶段采用相应的控制模式,有效防止空压机润滑油乳化。
为了实现上述目的,本发明提供了一种轨道列车用空压机防润滑油乳化控制方法,包括:
将空压机控制模式设置为低工作率模式与高工作率模式;
系统上电,若空压机工作率处于低工作率模式,选择低工作率模式下对空压机进行防润滑油乳化控制;
若空压机工作率处于高工作率模式,选择高工作率模式下对空压机进行防润滑油乳化控制。
优选的,空压机工作率处于低工作率模式下,对空压机进行防润滑油乳化的方法为:
判断主空压机是否存在单次不间断运行时间t超过预设的时间t0,若否,则执行以下步骤:
S1:给定车辆总风压力的下限值Fmin、上限值Fmax以及中间值F0,其中Fmin<F0<Fmax
S2:若车辆初始总风压力FA≤Fmin,则主空压机与分空压机同时启动并进入加载模式运转,车辆总风压力F值增加;
当车辆总风压力F达到预设的上限值Fmax时,则主空压机与分空压机同时进入卸载模式运转,车辆总风压力F值减少;
当车辆总风压力F值达到预设的中间值F0时,则主空压机进入加载模式运转;
S3:若车辆初始总风压力FA∈(Fmin,F0],则主空压机启动并进入加载模式运转,车辆总风压力F值增加;
当车辆总风压力F值达到预设的上限值Fmax时,则主空压机进入卸载模式,车辆总风压力F值减少;
当车辆总风压力F值达到预设的中间值F0时,则主空压机进入加载模式;
S4:若车辆初始总风压力FA>F0,则主空压机与分空压机均不启动。
优选的,步骤S2与S3中当车辆总风压力F值达到预设的中间值F0时,则主空压机进入加载模式运转的方法为:
当车辆总风压力F值达到预设的中间值F0时,则主空压机进入加载模式运转;
若车辆总风压力增长速率大于车辆总风压力消耗速率,则车辆总风压力F值增加,当车辆总风压力F值达到预设的上限值Fmax时,主空压机进入卸载模式运转;
若车辆总风压力增长速率小于车辆总风压力消耗速率,则车辆总风压力F值减少;当车辆总风压力F达到预设的下限值Fmin,分空压机进入加载模式运转,车辆总风压力F值增加;当车辆总风压力F达到预设的上限值Fmax时,主空压机与分空压机均进入卸载模式运转。
优选的,若任意时间节点时,主空压机单次不间断运行时间t超过预设的时间t0,则主空压机与分空压机切换至加载模式运转;当车辆总风压力F上升至预设的阈值Fu时,则主空压机与分空压机停机,其中Fu>Fmax
优选的,若主空压机存在单次不间断运行时间t超过预设的时间t0的情况,则执行以下步骤:
若车辆初始总风压力FA≤Fmin,则主空压机与分空压机同时启动并进入加载模式运转;当车辆总风压力F上升至预设的阈值Fu时,则主空压机与分空压机停机;
若车辆初始总风压力FA∈(Fmin,F0],则主空压机启动并进入加载模式运转,当车辆总风压力F上升至预设的阈值Fu时,则主空压机停机;
若车辆初始总风压力FA>F0,则主空压机与分空压机均不启动。
优选的,在空压机工作率处于高工作率模式下,对空压机进行防润滑油乳化控制的方法为:
给定车辆总风压力的下限值Fmin、上限值Fmax、中间值F0以及边界阈值Fu,其中Fmin<F0<Fmax<Fu
若车辆初始总风压力FA<Fmin,则主空压机与分空压机同时启动并进入加载模式运转,车辆总风压力F值增加;当车辆总风压力F值达到预设的阈值Fu时,则主空压机与分空压机停机;
若车辆初始总风压力FA∈(Fmin,F0],则主空压机启动并进入加载模式运转,车辆总风压力F值增加;当车辆总风压力F值达到预设的阈值Fu时,则主空压机停机;
若车辆初始总风压力FA>F0,则主空压机与分空压机均不启动。
本发明还提供了一种车辆控制系统,包括:
模式监测模块:用于实时监测空压机工作率,判断空压机当前工作模式;
传输控制模块:用于在空压机当前工作模式下,实时采集车辆总风压力与主空压机单次不间断运行时间信息,并计算处理后,发送控制指令至主空压机与分空压机,控制主空压机与分空压机的工作模式切换;所述工作模式包括加载模式、卸载模式以及停机模式。
本发明还提供了一种计算机存储介质,包括:计算机指令,当所述计算机指令在车辆控制系统运行时,使得所述车辆控制系统执行如权利要求1-6任一项所述的轨道列车用空压机防润滑油乳化方法。
与现有技术相比,本发明的优点和积极效果在于:
本发明提供了轨道列车用空压机防润滑油乳化方法,设置了高/低工作率两种模式,根据空压机工作率选择高/低工作率工作模式,有利于车辆用户在空压机工作率不同的阶段采用相应的控制模式。在不同的工作率模式系下采用不同的控制方法,控制主空压机与分空压机根据车辆总风压力的变化切换加/载工作模式,有效防止空压机润滑油乳化。同时,本发明的控制方法与传统的全程加卸载模式相比,可以降低空压机在使用期间的能源消耗,降低了空压机防乳化装置在寿命周期内的使用次数,可以降低空压机整体的故障率。
附图说明
图1为本发明的控制流程图。
具体实施方式
以下结合附图对本发明的具体实施方式进行进一步的描述。
参考图1所示,本发明提供了一种轨道列车用空压机防润滑油乳化控制方法,包括:
(1)将空压机控制模式设置为低工作率模式与高工作率模式。
(2)系统上电,若空压机工作率处于低工作率模式,选择低工作率模式下对空压机进行防润滑油乳化控制。
具体为:
①判断主空压机是否存在单次不间断运行时间t超过预设的时间t0,若否,则执行以下步骤:
S1:给定车辆总风压力的下限值Fmin、上限值Fmax以及中间值F0,其中Fmin<F0<Fmax
S2:若车辆初始总风压力FA≤Fmin,则主空压机与分空压机同时启动并进入加载模式运转,车辆总风压力F值增加。
a.当车辆总风压力F达到预设的上限值Fmax时,则主空压机与分空压机同时进入卸载模式运转,车辆总风压力F值减少。
b.当车辆总风压力F值达到预设的中间值F0时,则主空压机进入加载模式运转。此时,若车辆总风压力增长速率大于车辆总风压力消耗速率,则车辆总风压力F值增加,当车辆总风压力F值达到预设的上限值Fmax时,主空压机进入卸载模式运转;
c.若车辆总风压力增长速率小于车辆总风压力消耗速率,则车辆总风压力F值减少;当车辆总风压力F达到预设的下限值Fmin,分空压机进入加载模式运转,车辆总风压力F值增加;当车辆总风压力F达到预设的上限值Fmax时,主空压机与分空压机均进入卸载模式运转,然后重新执行步骤b、c。
S3:若车辆初始总风压力FA∈(Fmin,F0],则主空压机启动并进入加载模式运转,车辆总风压力F值增加。
d.当车辆总风压力F值达到预设的上限值Fmax时,则主空压机进入卸载模式,车辆总风压力F值减少。
e.当车辆总风压力F值达到预设的中间值F0时,则主空压机进入加载模式;此时,若车辆总风压力增长速率大于车辆总风压力消耗速率,则车辆总风压力F值增加,当车辆总风压力F值达到预设的上限值Fmax时,主空压机进入卸载模式运转。
f.若车辆总风压力增长速率小于车辆总风压力消耗速率,则车辆总风压力F值减少;当车辆总风压力F达到预设的下限值Fmin,分空压机进入加载模式运转,车辆总风压力F值增加;当车辆总风压力F达到预设的上限值Fmax时,主空压机与分空压机均进入卸载模式运转,然后重新执行步骤e、f。
S4:若车辆初始总风压力FA>F0,则主空压机与分空压机均不启动。
此时,在上述循环过程中若任意时间节点时,主空压机单次不间断运行时间t超过预设的时间t0,则主空压机与分空压机切换至加载模式运转;当车辆总风压力F上升至预设的阈值Fu时,则主空压机与分空压机停机,其中Fu>Fmax
②若主空压机存在单次不间断运行时间t超过预设的时间t0的情况,则执行以下步骤:
ss1:若车辆初始总风压力FA≤Fmin,则主空压机与分空压机同时启动并进入加载模式运转;当车辆总风压力F上升至预设的阈值Fu时,则主空压机与分空压机停机。
ss2:若车辆初始总风压力FA∈(Fmin,F0],则主空压机启动并进入加载模式运转,当车辆总风压力F上升至预设的阈值Fu时,则主空压机停机。
ss3:若车辆初始总风压力FA>F0,则主空压机与分空压机均不启动。
(3)若空压机工作率处于高工作率模式,选择高工作率模式下对空压机进行防润滑油乳化控制。
具体的:
①给定车辆总风压力的下限值Fmin、上限值Fmax、中间值F0以及边界阈值Fu,其中Fmin<F0<Fmax<Fu
②若车辆初始总风压力FA<Fmin,则主空压机与分空压机同时启动并进入加载模式运转,车辆总风压力F值增加;当车辆总风压力F值达到预设的阈值Fu时,则主空压机与分空压机停机。
③若车辆初始总风压力FA∈(Fmin,F0],则主空压机启动并进入加载模式运转,车辆总风压力F值增加;当车辆总风压力F值达到预设的阈值Fu时,则主空压机停机。
④若车辆初始总风压力FA>F0,则主空压机与分空压机均不启动。
本发明还提供了一种车辆控制系统,包括:
模式监测模块:用于实时监测空压机工作率,判断空压机当前工作模式;
传输控制模块:用于在空压机当前工作模式下,实时采集车辆总风压力与主空压机单次不间断运行时间信息,并计算处理后,发送控制指令至主空压机与分空压机,控制主空压机与分空压机的工作模式切换;所述工作模式包括加载模式、卸载模式以及停机模式。
本发明进一步提供了一种计算机存储介质,包括:计算机指令,当所述计算机指令在车辆控制系统运行时,使得所述车辆控制系统执行所述的轨道列车用空压机防润滑油乳化方法。
以下实施例将本发明的空压机防润滑油乳化具体应用于城轨列车中,在车辆控制系统界面设置两个空压机控制模式:空压机低工作率模式和空压机高工作率模式。
(1)空压机低工作率模式
在空压机低工作率期间,空压机在工作率(空压机运转时间/车辆运行时间)低于30%,空压机润滑油有乳化的风险,选择“空压机低工作率模式”选项,车辆控制系统采用低工作率工作模式对空压机进行控制。控制方法如下:
当车辆每次通电时,车辆控制系统检测当天车辆主空压机是否已经单次不间断运行超过30分钟,即t0=30min,并检测车辆初始的总风压力。
①如果主空压机当天尚未有单次不间断运行超过30分钟,设定车辆总风压力下限值Fmin=7.0bar、上限值Fmax=8.5bar、中间值F0=7.5bar,Fu=9.0bar,则车辆控制系统按照以下模式控制主、分空压机:
A:车辆初始总风压力低于7.0bar,即车辆控制系统控制主空压机与分空压机同时启动进入加载模式运转打风,此时,列车控制系统控制空压机的进气阀打开,外界空气经空压机压缩后输出给车辆总风缸,车辆总风压力增长。
a.当车辆总风压力升至8.5bar时,车辆控制系统控制主空压机与分空压机由加载模式进入卸载模式运转不打风,列车控制系统控制空压机进气阀关闭,外界空气无法进入空压机内部,空压机虽然仍在运转,但不输出压缩空气。此时,总风压力随着车辆的消耗会持续下降。
b.当车辆总风压力降至7.5bar时,车辆控制系统控制主空压机由卸载模式进入加载模式运转打风,分空压机依然维持在卸载模式运转不打风。此时,若主空压机产生的总风的速率大于车辆消耗的总风的速率,则当车辆总风压力升至8.5bar时主空压机再次进入卸载模式运转不打风。
c.若主空压机产生的总风的速率小于车辆消耗的总风的速率,当车辆总风压力继续降至7.0bar时,车辆控制系统控制分空压机也由卸载模式进入加载模式运转打风。当车辆总风压力升至8.5bar时主空压机与分空压机再次进入卸载模式运转不打风。
当主空压机尚未单次不间断运行超过30分钟时,车辆控制系统控制主、分空压机按照a-b-c-a-b-c...模式循环。在以上循环中,当任一时间节点主空压机单次不间断运行超过30分钟时,车辆控制系统控制主空压机与分空压机进入加载模式运转打风,当车辆总风压力升至9.0bar后,控制主空压机与分空压机停机。
B:若车辆初始总风压力高于7.0bar、低于7.5bar,车辆控制系统控制主空压机启动进入加载模式运转打风,此时,车辆总风压力增加。
d.当车辆总风压力升至8.5bar时,车辆控制系统控制主空压机由加载模式进入卸载模式运转不打风,车辆总风压力随着车辆消耗会持续下降。
e.当车辆总风压力降至7.5bar时,车辆控制系统控制主空压机由卸载模式进入加载模式运转打风。若主空压机产生的总风的速率大于车辆消耗的总风的速率,当车辆总风压力升至8.5bar时,主空压机再次进入卸载模式运转不打风。
f.若主空压机产生的总风的速率小于车辆消耗的总风的速率,当车辆总风压力继续降至7.0bar时,车辆控制系统控制分空压机也由卸载模式进入加载模式运转打风。当车辆总风压力升至8.5bar时,主空压机与分空压机再次进入卸载模式运转不打风。
当主空压机尚未单次不间断运行超过30分钟时,车辆控制系统控制主空压机与分空压机按照d-e-f-d-e-f...模式循环。在以上循环中,当任一时间节点主空压机单次不间断运行超过30分钟时,车辆控制系统控制主空压机与分空压机进入加载模式运转打风,车辆总风压力升至9.0bar后,控制主分压机与分空压机停机。
C:若车辆初始总风压力高于7.5bar,则主空压机与分空压机均不启动。
②如果主空压机当天有过单次不间断运行超过30分钟,则车辆控制系统按照以下模式控制主、分空压机:
g.若车辆总风压力低于7.0bar,车辆控制系统控制主空压机与分空压机同时启动进入加载模式运转打风,当车辆总风压力升至9.0bar后,车辆控制系统控制主空压机与分空压机停机。
h.若车辆总风压力高于7.0bar、低于7.5bar,车辆控制系统控制主空压机启动运转打风,当车辆总风压力升至9.0bar后,车辆控制系统控制主空压机停机。
i.若车辆初始总风压力高于7.5bar,则主空压机与分空压机均不启动。
(2)空压机高工作率模式
在空压机高工作率期间,空压机在工作率(空压机运转时间/车辆运行时间)高于30%,空压机润滑油无乳化的风险,选择“空压机高工作率模式”选项,车辆控制系统采用低工作率工作模式对空压机进行控制。控制方法如下:
当车辆每次通电时,车辆控制系统检测车辆初始总风压力。
若车辆初始总风压力低于7.0bar,车辆控制系统控制主空压机与分空压机同时启动进入加载模式运转打风,当车辆总风压力升至9.0bar后,车辆控制系统控制主空压机与分空压机停机。
若车辆初始总风压力高于7.0bar,低于7.5bar,车辆控制系统控制主空压机启动进入加载模式运转打风。当车辆总风压力上升至9.0bar后,车辆控制系统控制主空压机停机。
若车辆初始总风压力高于7.5bar,则主空压机与分空压机均不启动。
综上可知,与现有的空压机防润滑油乳化控制方法相比,本发明设置了高/低工作率两种模式,根据空压机工作率选择高/低工作率工作模式,有利于车辆用户在空压机工作率不同的阶段采用相应的控制模式。在不同的工作率模式系下采用不同的控制方法,控制主空压机与分空压机根据车辆总风压力的变化切换加/载工作模式,有效防止空压机润滑油乳化。同时,本发明的空压机防润滑油乳化控制方法可以降低空压机在使用期间的能源消耗,降低了空压机防乳化装置在寿命周期内的使用次数,可以降低空压机整体的故障率。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (8)

1.一种轨道列车用空压机防润滑油乳化方法,其特征在于,包括:
将空压机控制模式设置为低工作率模式与高工作率模式;
系统上电,若空压机工作率处于低工作率模式,选择低工作率模式下对空压机进行防润滑油乳化控制;
若空压机工作率处于高工作率模式,选择高工作率模式下对空压机进行防润滑油乳化控制。
2.根据权利要求1所述的轨道列车用空压机防润滑油乳化方法,其特征在于,空压机工作率处于低工作率模式下,对空压机进行防润滑油乳化的方法为:
判断主空压机是否存在单次不间断运行时间t超过预设的时间t0,若否,则执行以下步骤:
S1:给定车辆总风压力的下限值Fmin、上限值Fmax以及中间值F0,其中Fmin<F0<Fmax
S2:若车辆初始总风压力FA≤Fmin,则主空压机与分空压机同时启动并进入加载模式运转,车辆总风压力F值增加;
当车辆总风压力F达到预设的上限值Fmax时,则主空压机与分空压机同时进入卸载模式运转,车辆总风压力F值减少;
当车辆总风压力F值达到预设的中间值F0时,则主空压机进入加载模式运转;
S3:若车辆初始总风压力FA∈(Fmin,F0],则主空压机启动并进入加载模式运转,车辆总风压力F值增加;
当车辆总风压力F值达到预设的上限值Fmax时,则主空压机进入卸载模式,车辆总风压力F值减少;
当车辆总风压力F值达到预设的中间值F0时,则主空压机进入加载模式;
S4:若车辆初始总风压力FA>F0,则主空压机与分空压机均不启动。
3.根据权利要求2所述的轨道列车用空压机防润滑油乳化方法,其特征在于,步骤S2与S3中当车辆总风压力F值达到预设的中间值F0时,则主空压机进入加载模式运转的方法为:
当车辆总风压力F值达到预设的中间值F0时,则主空压机进入加载模式运转;
若车辆总风压力增长速率大于车辆总风压力消耗速率,则车辆总风压力F值增加,当车辆总风压力F值达到预设的上限值Fmax时,主空压机进入卸载模式运转;
若车辆总风压力增长速率小于车辆总风压力消耗速率,则车辆总风压力F值减少;当车辆总风压力F达到预设的下限值Fmin,分空压机进入加载模式运转,车辆总风压力F值增加;当车辆总风压力F达到预设的上限值Fmax时,主空压机与分空压机均进入卸载模式运转。
4.根据权利要求3所述的轨道列车用空压机防润滑油乳化方法,其特征在于,若任意时间节点时,主空压机单次不间断运行时间t超过预设的时间t0,则主空压机与分空压机切换至加载模式运转;当车辆总风压力F上升至预设的阈值Fu时,则主空压机与分空压机停机,其中Fu>Fmax
5.根据权利要求2所述的轨道列车用空压机防润滑油乳化方法,其特征在于,若主空压机存在单次不间断运行时间t超过预设的时间t0的情况,则执行以下步骤:
若车辆初始总风压力FA≤Fmin,则主空压机与分空压机同时启动并进入加载模式运转;当车辆总风压力F上升至预设的阈值Fu时,则主空压机与分空压机停机;
若车辆初始总风压力FA∈(Fmin,F0],则主空压机启动并进入加载模式运转,当车辆总风压力F上升至预设的阈值Fu时,则主空压机停机;
若车辆初始总风压力FA>F0,则主空压机与分空压机均不启动。
6.根据权利要求1-5任一项所述的轨道列车用空压机防润滑油乳化方法,其特征在于,在空压机工作率处于高工作率模式下,对空压机进行防润滑油乳化控制的方法为:
给定车辆总风压力的下限值Fmin、上限值Fmax、中间值F0以及边界阈值Fu,其中Fmin<F0<Fmax<Fu
若车辆初始总风压力FA<Fmin,则主空压机与分空压机同时启动并进入加载模式运转,车辆总风压力F值增加;当车辆总风压力F值达到预设的阈值Fu时,则主空压机与分空压机停机;
若车辆初始总风压力FA∈(Fmin,F0],则主空压机启动并进入加载模式运转,车辆总风压力F值增加;当车辆总风压力F值达到预设的阈值Fu时,则主空压机停机;
若车辆初始总风压力FA>F0,则主空压机与分空压机均不启动。
7.一种车辆控制系统,其特征在于,包括:
模式监测模块:用于实时监测空压机工作率,判断空压机当前工作模式;
传输控制模块:用于在空压机当前工作模式下,实时采集车辆总风压力与主空压机单次不间断运行时间信息,并计算处理后,发送控制指令至主空压机与分空压机,控制主空压机与分空压机的工作模式切换;所述工作模式包括加载模式、卸载模式以及停机模式。
8.一种计算机存储介质,其特征在于,包括:计算机指令,当所述计算机指令在车辆控制系统运行时,使得所述车辆控制系统执行如权利要求1-6任一项所述的轨道列车用空压机防润滑油乳化方法。
CN201910469181.5A 2019-05-31 2019-05-31 轨道列车用空压机防润滑油乳化方法、系统及存储介质 Active CN110030186B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910469181.5A CN110030186B (zh) 2019-05-31 2019-05-31 轨道列车用空压机防润滑油乳化方法、系统及存储介质
PCT/CN2020/092942 WO2020239032A1 (zh) 2019-05-31 2020-05-28 空压机防润滑油乳化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910469181.5A CN110030186B (zh) 2019-05-31 2019-05-31 轨道列车用空压机防润滑油乳化方法、系统及存储介质

Publications (2)

Publication Number Publication Date
CN110030186A true CN110030186A (zh) 2019-07-19
CN110030186B CN110030186B (zh) 2020-07-31

Family

ID=67243795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910469181.5A Active CN110030186B (zh) 2019-05-31 2019-05-31 轨道列车用空压机防润滑油乳化方法、系统及存储介质

Country Status (2)

Country Link
CN (1) CN110030186B (zh)
WO (1) WO2020239032A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020239032A1 (zh) * 2019-05-31 2020-12-03 中车青岛四方车辆研究所有限公司 空压机防润滑油乳化的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342128A (zh) * 2013-07-16 2013-10-09 南京浦镇海泰制动设备有限公司 轨道交通风源系统运行控制方法
CN104314791A (zh) * 2013-10-28 2015-01-28 合肥国骋新能源汽车技术有限公司 一种新型电动汽车空压机防乳化系统
CN105003437A (zh) * 2015-08-17 2015-10-28 安徽安凯汽车股份有限公司 纯电动客车用防打气泵润滑油乳化的控制系统及方法
CN106351823A (zh) * 2016-11-02 2017-01-25 中车株洲电力机车有限公司 一种机车压缩机控制方法及装置
CN106438321A (zh) * 2016-07-12 2017-02-22 中车株洲电力机车有限公司 一种运行控制方法、系统和空气压缩机系统
CN109404271A (zh) * 2018-11-22 2019-03-01 中车长春轨道客车股份有限公司 一种轨道车辆主空压机工作率自动调整装置及控制方法
CN109555698A (zh) * 2017-09-26 2019-04-02 湖南中车时代电动汽车股份有限公司 一种防止打气泵机油乳化的方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133342A (ja) * 1991-11-13 1993-05-28 Tokico Ltd 空気圧縮機の運転制御方法
CN102312828A (zh) * 2011-05-25 2012-01-11 南车戚墅堰机车有限公司 一种机车双空气压缩机启停控制方法
CN106224217B (zh) * 2016-07-29 2017-05-17 厦门金龙旅行车有限公司 一种汽车用有油电动空压机防润滑油乳化的方法
CN110030186B (zh) * 2019-05-31 2020-07-31 中车青岛四方车辆研究所有限公司 轨道列车用空压机防润滑油乳化方法、系统及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342128A (zh) * 2013-07-16 2013-10-09 南京浦镇海泰制动设备有限公司 轨道交通风源系统运行控制方法
CN104314791A (zh) * 2013-10-28 2015-01-28 合肥国骋新能源汽车技术有限公司 一种新型电动汽车空压机防乳化系统
CN105003437A (zh) * 2015-08-17 2015-10-28 安徽安凯汽车股份有限公司 纯电动客车用防打气泵润滑油乳化的控制系统及方法
CN106438321A (zh) * 2016-07-12 2017-02-22 中车株洲电力机车有限公司 一种运行控制方法、系统和空气压缩机系统
CN106351823A (zh) * 2016-11-02 2017-01-25 中车株洲电力机车有限公司 一种机车压缩机控制方法及装置
CN109555698A (zh) * 2017-09-26 2019-04-02 湖南中车时代电动汽车股份有限公司 一种防止打气泵机油乳化的方法及系统
CN109404271A (zh) * 2018-11-22 2019-03-01 中车长春轨道客车股份有限公司 一种轨道车辆主空压机工作率自动调整装置及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020239032A1 (zh) * 2019-05-31 2020-12-03 中车青岛四方车辆研究所有限公司 空压机防润滑油乳化的方法

Also Published As

Publication number Publication date
WO2020239032A1 (zh) 2020-12-03
CN110030186B (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
CN102320278B (zh) 电动汽车空调系统的自适应控制方法
CN111038201B (zh) 一种供气控制方法、装置、存储介质及车辆
KR101439059B1 (ko) 저전압 배터리 충전 제어 방법 및 장치
CN102640339B (zh) 用于运行车辆中的燃料电池系统的方法
CN110649287B (zh) 一种燃料电池发动机系统及其供气系统和一种控制方法
KR101856300B1 (ko) 연료전지 차량의 시동 제어방법
US20130082517A1 (en) Operating machine
JP2003249236A (ja) 電源装置
CN110030186A (zh) 轨道列车用空压机防润滑油乳化方法、系统及存储介质
CN110293953A (zh) 车辆工作模式控制方法、装置、设备及可读存储介质
CN102220979B (zh) 压缩机
CN110356385A (zh) 辅助制动的控制方法、装置、存储介质以及车辆
CN111890939A (zh) 一种整车系统、非道路电动车辆以及整车系统的控制方法
CN111577581A (zh) 预防空压机润滑油乳化的控制装置、系统及方法
CN103332155B (zh) 压缩空气动力汽车
CN206271438U (zh) 核电厂运行冷冻水系统
CN112112790B (zh) 一种活塞式压缩机自动启停的控制系统及方法
CN208089605U (zh) 余气利用空压机
CN110435209A (zh) 连体压缩箱推头动态智能控制系统及方法
JP2003187816A (ja) 電源装置
CN205277774U (zh) 一种节能型cng加气子站压缩机控制装置
CN203476677U (zh) 带油压监控ecu的电驱动空压机供气处理系统
CN116104741B (zh) 一种液驱活塞压缩机系统及其停机方法、装置、加氢站
CN107339836A (zh) 变频机组及其回油控制方法、装置
CN118188443A (zh) 一种储气库压缩机集群控制方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant