CN110029326A - 成膜方法和半导体装置的制造方法以及成膜装置 - Google Patents

成膜方法和半导体装置的制造方法以及成膜装置 Download PDF

Info

Publication number
CN110029326A
CN110029326A CN201811579350.2A CN201811579350A CN110029326A CN 110029326 A CN110029326 A CN 110029326A CN 201811579350 A CN201811579350 A CN 201811579350A CN 110029326 A CN110029326 A CN 110029326A
Authority
CN
China
Prior art keywords
substrate
film
mist
furnace
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811579350.2A
Other languages
English (en)
Inventor
永冈达司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66995584&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN110029326(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN110029326A publication Critical patent/CN110029326A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1258Spray pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及成膜方法和半导体装置的制造方法以及成膜装置。在基板上形成膜的成膜方法,其中,对基板进行退火,在退火后一边将基板加热到比退火时的基板的温度低的温度,一边将膜的原料溶液的雾供给至基板的表面。

Description

成膜方法和半导体装置的制造方法以及成膜装置
技术领域
本说明书中公开的技术涉及成膜方法、半导体装置的制造方法和成膜装置。
背景技术
日本特开2017-133077中公开了一种在基板上形成膜的技术。在上述技术中,一边将基板加热一边将膜的原料溶液的雾供给至基板的表面。在基板的表面附着的雾在基板上发生化学反应。其结果在基板上形成膜。以下将这种成膜技术称为雾CVD(Chemical VaporDeposition)。
发明内容
一般的CVD(雾CVD以外的CVD)在减压气氛(例如真空)下实施。因此,即使在CVD前杂质附着于基板的表面,在减压气氛下杂质也气化,基板的表面净化。而对于雾CVD而言,由于需要将原料溶液的雾(即,液滴)供给至基板的表面,因此雾CVD在比较高的气压(例如大气压左右)下实施。因此,对于雾CVD而言,即使杂质附着于基板的表面,杂质也不会气化。在杂质附着的基板上形成膜时,杂质进入膜中。其结果,膜的品质降低。因此,在本说明书中,提供在雾CVD中抑制附着于基板表面的杂质进入膜中的技术。
本发明的第一方案涉及在基板上形成膜的成膜方法,其中,对上述基板进行退火;在上述退火后,一边将上述基板加热到比上述退火时的上述基板的温度低的温度,一边将上述膜的原料溶液的雾供给至上述基板的表面。
在本发明的第一方案涉及的成膜方法中,上述基板可由氧化物材料构成,可在将上述基板配置在含氧气体中的状态下实施上述退火。
在本发明的第一方案涉及的成膜方法中,上述气体可与大气相比,氧分压高。
在本发明的第一方案涉及的成膜方法中,上述基板可由氧化物材料构成,可在将上述基板配置在包含水雾和水蒸气中的至少一者的气体中的状态下实施上述退火。
在本发明的第一方案涉及的成膜方法中,可在将上述基板配置在流动的气体中的状态下实施上述退火。
在本发明的第一方案涉及的成膜方法中,可在共用的炉内实施上述退火和上述原料溶液的上述雾向上述基板的上述表面的供给。
在本发明的第一方案涉及的成膜方法中,在上述退火中,可将上述基板加热到500℃以上的温度。
在本发明的第一方案涉及的成膜方法中,上述膜可以为半导体的结晶膜。
本发明的第二方案涉及半导体装置的制造方法,其采用本发明的第一方案涉及的成膜方法形成上述膜。
本发明的第三方案涉及在基板上形成膜的成膜装置,其包括:配置上述基板的炉;在上述炉内加热上述基板的加热器;将上述膜的原料溶液的雾供给至上述炉内的雾供给装置;和控制上述加热器和上述雾供给装置的控制装置。上述控制装置以如下方式构成:利用上述加热器对上述基板进行退火,在上述退火后,一边利用上述加热器将上述基板加热到比上述退火时的上述基板的温度低的温度,一边利用上述雾供给装置将上述雾供给至上述基板的表面。
在上述成膜方法中,在成膜工序之前实施退火工序。通过对基板进行退火,附着于基板的表面的杂质气化,杂质从基板的表面除去。由此基板的表面净化。在退火后,将原料溶液的雾供给至基板的表面,从而在基板上形成膜。在上述工序中,将基板的温度控制为比退火时的基板的温度低的温度。因此,能够将原料溶液在雾(即,液滴)的状态下供给至基板的表面。由于基板的表面已被净化,因此抑制杂质进入在基板上形成的膜。因此能够形成高品质的膜。
附图说明
以下参照附图对本发明的例示实施方式的特征、优点以及技术和工业重要性进行说明,其中相同的附图标记表示相同的要素,并且其中:
图1为成膜装置10的构成图(示出实施例1的退火工序的图)。
图2为成膜装置10的构成图(示出实施例1的成膜工序的图)。
图3为成膜装置10的构成图(示出实施例2的退火工序的图)。
图4为成膜装置10的构成图(示出实施例2的成膜工序的图)。
图5为成膜装置110的构成图(示出实施例3的退火工序的图)。
图6为成膜装置110的构成图(示出实施例3的成膜工序的图)。
具体实施方式
以下对于在基板上形成膜的成膜装置和成膜方法的实施例进行说明。予以说明,在基板上形成的膜可以是氧化硅(SiO2)、氧化铝(Al2O3)、氧化镓(Ga2O3)这样的氧化膜,也可以是其他的膜。另外,上述膜可以是半导体膜,也可以是绝缘膜。如上所述,对在基板上形成的膜并无特别限定。另外,基板可以是蓝宝石等绝缘基板,也可以是氧化镓基板等半导体基板。对基板的材料并无特别限定。
图1中所示的成膜装置10为在基板70上形成膜的装置。成膜装置10具备:配置基板70的炉12、加热炉12的加热器14、与炉12连接的雾供给装置20、与炉12连接的排出管80和控制装置90。
对炉12的具体构成并无特别限定。作为一例,图1中所示的炉12为从上游端12a延伸到下游端12b的管状炉。炉12的与纵向垂直的截面为圆形。不过,炉12的截面并不限定于圆形。在炉12的上游端12a连接有雾供给装置20。在炉12的下游端12b连接有排出管80。
在炉12内设置有用于支承基板70的基板台13。基板台13以如下方式构成:相对于炉12的纵向,基板70倾斜。被基板台13支承的基板70在如下方向上被支撑:从上游端12a向下游端12b在炉12内流动的气体碰上基板70的表面。
如上所述,加热器14加热炉12。对加热器14的具体构成并无特别限定。作为一例,图1中所示的加热器14为电加热器,沿着炉12的外周壁配置。由此,加热器14将炉12的外周壁加热,由此将炉12内的基板70加热。
雾供给装置20向炉12内供给膜的原料溶液的雾。另外,雾供给装置20也能够向炉12内供给气体(例如氮(N2)气、氧(O2)气等)。对雾供给装置20的具体构成并无特别限定。作为一例,图1中所示的雾供给装置20具备:容纳原料溶液60的容器22、设置于容器22的超声波振子24、将容器22与炉12之间连接的雾供给路26、与容器22连接的运载气体导入路28、和与雾供给路26连接的稀释气体导入路30。运载气体导入路28向容器22供给运载气体。稀释气体导入路30向雾供给路26供给稀释气体。超声波振子24对容器22内的原料溶液60施加超声波振动,生成原料溶液60的雾。
排出管80连接至炉12的下游端12b。由雾供给装置20向炉12内供给的雾和气体在炉12内流动到下游端12b后,经由排出管80排出到炉12的外部。
控制装置90控制成膜装置10的各部。例如,控制装置90控制加热器14、超声波振子24、运载气体导入路28(更详细地说,将气体供给至运载气体导入路28的气体供给装置(省略图示))、稀释气体导入路30(更详细地说,将气体供给至稀释气体导入路30的气体供给装置(省略图示))等。
对使用成膜装置10的成膜方法进行说明。应予说明,在实施例1中,对于使用蓝宝石基板作为基板70、在基板70上形成α型氧化镓的膜的方法进行说明。在实施例1中,作为原料溶液60,使用乙酰丙酮镓水溶液。另外,在实施例1中,使用氮气作为运载气体,使用氮气作为稀释气体。在实施例1的成膜方法中,实施将基板70加热的退火工序,然后,实施在基板70上形成膜的成膜工序。
图1示出实施例1的退火工序。如图1中所示那样,在退火工序中,在炉12内的基板台13上设置基板70。在退火工序中,没有从雾供给装置20向炉12供给雾和气体。在退火工序中,将炉12经由未图示的通风口向大气开放。因此,在炉12内存在着大气。在退火工序中,控制装置90利用加热器14将基板70加热。将基板70加热到500℃以上的温度(例如1100℃(在本说明书中,“1100℃”是包含“约1100℃”的含义。))。
在基板70的表面附着有微量的杂质。如果在退火工序中对基板70进行退火,则在基板70的表面附着的杂质气化,杂质从基板70的表面除去。
控制装置90使加热器14的输出降低,使基板70的温度降低。基板70的温度稳定后,一边利用加热器14将基板70维持在该温度,一边实施成膜工序。例如,一边将基板70维持在450℃(本说明书中,“450℃”为包含“约450℃”的含义。)一边实施成膜工序。
图2示出实施例1的成膜工序。在成膜工序中,控制装置90使超声波振子24工作。由此,在容器22内生成原料溶液60的雾62。另外,控制装置90将运载气体64(氮气)从运载气体导入路28导入容器22内。运载气体64通过容器22,如箭头44所示那样流入雾供给路26内。此时,容器22内的雾62与运载气体64一起流入雾供给路26内。另外,控制装置90将稀释气体66(氮气)从稀释气体导入路30导入雾供给路26。稀释气体66在雾供给路26内与雾62混合。由此雾62稀释。雾62与氮气(即,运载气体64和稀释气体66)一起在雾供给路26内向下游侧流动,如箭头48所示那样从雾供给路26流入炉12内。在炉12内,雾62与氮气一起向下游端12b侧流动,排出到排出管80。应予说明,在成膜工序中,炉12内的气压与大气压相等(在本说明书中,“相等”是包含“大致相等”的含义。)。
在炉12内流动的雾62的一部分附着于经加热的基板70的表面。如上所述,雾62(即,原料溶液60)在基板70上发生化学反应。其结果,在基板70上生成α型氧化镓。由于持续地将雾62供给到基板70的表面,因此在基板70的表面,α型氧化镓膜生长。
如上所述,在退火工序中,杂质从基板70的表面除去。另外,在退火工序的实施后,没有将基板70从炉12中取出,连续地实施成膜工序。因此,在成膜工序的开始时,在基板70的表面几乎没有附着杂质。因此,在成膜工序中,能够在几乎不存在杂质的清洁的基板70的表面使α型氧化镓膜生长。因此,抑制杂质进入α型氧化镓膜中。因此,能够抑制α型氧化镓膜的特性(电特性等)因杂质的影响而变化。因此,能够将α型氧化镓膜的特性准确地控制为所期望的特性,能够抑制上述特性的波动。
如上所述,采用实施例1的成膜方法,能够形成高品质的α型氧化镓膜。
对实施例2的成膜方法进行说明。在实施例2中,与实施例1同样地使用成膜装置10形成膜。在实施例2中,对使用β型氧化镓基板作为基板70、在基板70上形成β型氧化镓的同质外延膜的方法进行说明。在实施例2中,作为原料溶液60,使用氯化镓水溶液。另外,在实施例2中,使用氧气作为运载气体64,使用氧气作为稀释气体66。在实施例2的成膜方法中,也是实施将基板70加热的退火工序,然后,实施在基板70上形成膜的成膜工序。
图3示出实施例2的退火工序。如图3中所示那样,在退火工序中,在炉12内的基板台13上设置基板70。在退火工序中,控制装置90将氧气66从稀释气体导入路30导入雾供给路26。氧气66如图3中的箭头所示那样,在炉12内流动,排出到排出管80。在退火工序中,炉12内的气压与大气压相等。另外,由于炉12内被氧气66充满,因此炉12内的氧分压比大气中的氧分压高。在退火工序中,控制装置90利用加热器14将基板70加热。将基板70加热到900℃(在本说明书中,“900℃”是包含“约900℃”的含义。)的温度。在氧气66如图3中的箭头那样流动的状态下实施退火工序。
在实施例2的退火工序中,与实施例1的退火工序同样地,附着于基板70的表面的杂质气化,杂质从基板70的表面除去。另外,在实施例2中,由于在氧气66中实施退火工序,因此附着于基板70的表面的有机系杂质氧化而成为气体。因此,能够将有机系杂质从基板70的表面除去。另外,在实施例2中,由于在氧气66在炉12内流动的状态下进行退火工序,因此从基板70的表面气化的杂质从炉12迅速地流到排出管80。因此,能够更适宜地将杂质除去。
另外,在实施例2中,对基板70进行退火时,在基板70(即,β型氧化镓基板)的表面发生原子的迁移,在基板70的表面,原子整齐排列。
另外,在基板70(即,β型氧化镓基板)的内部存在着氧缺陷。应予说明,氧缺陷是在氧位点(原子按照晶格排列时应配置氧原子的位置)产生的缺陷。在实施例2的退火工序中,由于在氧分压高的气氛中对基板70进行退火,因此气体中的氧原子填充于氧缺陷。由此,基板70中的氧缺陷减少。因此,基板70的结晶性提高。氧缺陷供给作为载流子的电子。通过使氧缺陷减少,能够抑制非期待的载流子的产生,能够准确地控制基板70中的载流子密度。
控制装置90使加热器14的输出降低,使基板70的温度降低。基板70的温度稳定后,一边利用加热器14将基板70维持在该温度,一边实施成膜工序。例如,一边将基板70维持在750℃(本说明书中,“750℃”为包含“约750℃”的含义。)一边实施成膜工序。
图4示出实施例2的成膜工序。在成膜工序中,控制装置90使超声波振子24工作。由此,在容器22内生成原料溶液60的雾62。另外,控制装置90将运载气体64(氧气)从运载气体导入路28导入容器22内。运载气体64通过容器22,如箭头144所示那样流入雾供给路26内。此时,容器22内的雾62与运载气体64一起流入雾供给路26内。另外,控制装置90将稀释气体66(氧气)从稀释气体导入路30导入雾供给路26。稀释气体66在雾供给路26内与雾62混合。由此将雾62稀释。雾62与气体(即,运载气体64和稀释气体66)一起在雾供给路26内向下游侧流动,如箭头148所示那样从雾供给路26流入炉12内。在炉12内,雾62与氧气一起向下游端12b侧流动,排出到排出管80。应予说明,在成膜工序中,炉12内的气压与大气压相等。
在炉12内流动的雾62的一部分附着于经加热的基板70的表面。如上所述,雾62(即,原料溶液60)在基板70上发生化学反应。其结果,在基板70上生成β型氧化镓。由于持续地将雾62供给到基板70的表面,因此在基板70的表面,β型氧化镓的同质外延膜生长。
如上所述,在退火工序中,杂质从基板70的表面除去。另外,在退火工序的实施后,没有将基板70从炉12中取出,连续地实施成膜工序。因此,在成膜工序中,抑制杂质进入同质外延膜中。因此,采用实施例2的成膜方法,能够将同质外延膜的特性准确地控制为所期望的特性,能够抑制上述特性的波动。
另外,如上所述,在退火工序中,在基板70的表面,原子整齐排列。因此,在成膜工序中,能够在原子整齐排列的基板70的表面使同质外延膜生长。因此,能够形成结晶缺陷少的致密的同质外延膜。
如上所述,采用实施例2的成膜方法,能够形成高品质的β型氧化镓的同质外延膜。
对于实施例3的成膜方法进行说明。实施例3中,使用图5、图6中所示的成膜装置110形成膜。成膜装置110对实施例1、2中使用的成膜装置10中进一步附加了雾供给装置220。
雾供给装置220连接至炉12的上游端12a。雾供给装置220向炉12内供给水(H2O)的雾。对雾供给装置220的具体构成并无特别限定。作为一例,本实施例中的雾供给装置220具备:容纳液体的水260(H2O)的容器222、设置于容器222的超声波振子224、将容器222与炉12之间连接的雾供给路226、与容器222连接的运载气体导入路228、和与雾供给路226连接的稀释气体导入路230。运载气体导入路228向容器222供给运载气体264(本实施例中,为氧气)。稀释气体导入路230向雾供给路226供给稀释气体266(在本实施例中,为氧气)。超声波振子224对容器222内的水260施加超声波振动,生成水雾262。
另外,在实施例3中,使用β型氧化镓基板作为基板70,在基板70上形成β型氧化镓的同质外延膜。在实施例3中,作为原料溶液60,使用氯化镓水溶液。另外,在实施例3中,使用氮气作为运载气体64,使用氮气作为稀释气体66。在实施例3的成膜方法中,也是实施将基板70加热的退火工序,然后,实施在基板70上形成膜的成膜工序。
图5示出实施例3的退火工序。如图5中所示那样,在退火工序中,在炉12内的基板台13上设置基板70。在实施例3的退火工序中,没有从雾供给装置20向炉12供给雾和气体,而是从雾供给装置220向炉12供给雾和气体。在退火工序中,控制装置90使雾供给装置220工作。即,控制装置90使超声波振子224工作。由此,在容器222内生成水260的雾262。另外,控制装置90将运载气体264(氧气)从运载气体导入路228导入容器222内。运载气体264通过容器222,如箭头244所示那样流入雾供给路226内。此时,容器222内的雾262与运载气体264一起流入雾供给路226内。另外,控制装置90将稀释气体266(氧气)从稀释气体导入路230导入雾供给路226。稀释气体266在雾供给路226内与雾262混合。由此,雾262稀释。雾262与氧气(即,运载气体264和稀释气体266)一起在雾供给路226内向下游侧流动,如箭头248所示那样,从雾供给路226流入炉12内。在炉12内,雾262与氧气一起向下游端12b侧流动,排出至排出管80。另外,在退火工序中,控制装置90利用加热器14将基板70加热。将基板70加热至900℃。在雾262在炉12内流动的状态下实施退火工序。
在实施例3的退火工序中,与实施例1的退火工序同样地,附着于基板70的表面的杂质气化,杂质从基板70的表面除去。另外,在实施例3中,在退火工序中将水雾262供给至基板70的表面。通过水的氧化作用,附着于基板70的表面的有机系杂质氧化而成为气体。因此,能够将有机系杂质从基板70的表面除去。另外,在实施例3中,由于在雾262和氧气(运载气体264和稀释气体266)在炉12内流动的状态下进行退火工序,因此从基板70的表面气化的杂质从炉12迅速地流到排出管80。因此,能够更适宜地将杂质除去。
另外,在实施例3中,对基板70进行退火时,在基板70(即,β型氧化镓基板)的表面发生原子的迁移,在基板70的表面,原子整齐排列。
另外,在实施例3中,通过供给至基板70的表面的雾262(即,水)的氧化作用,氧原子(水分解而生成的氧原子)填充于基板70的氧缺陷。由此,基板70中的氧缺陷减少。因此,基板70的结晶性提高。
控制装置90使加热器14的输出降低,使基板70的温度降低。基板70的温度稳定后,一边利用加热器14将基板70维持在该温度,一边实施成膜工序。例如,一边将基板70维持在800℃(本说明书中,“800℃”为包含“约800℃”的含义。)一边实施成膜工序。
图6示出实施例3的成膜工序。在实施例3的成膜工序中,没有从雾供给装置220向炉12供给雾和气体,而是从雾供给装置20向炉12供给雾和气体。与实施例2的成膜工序(图4)同样地实施实施例3的成膜工序。因此,在基板70的表面,β型氧化镓的同质外延膜生长。
如上所述,在退火工序中,杂质从基板70的表面除去。另外,在退火工序的实施后,没有将基板70从炉12中取出,连续地实施成膜工序。因此,在成膜工序中,抑制杂质进入同质外延膜中。因此,采用实施例3的成膜方法,能够将同质外延膜的特性准确地控制为所期望的特性,能够抑制上述特性的波动。
另外,如上所述,在成膜工序之前所实施的退火工序中,在基板70的表面,原子整齐排列。因此,在成膜工序中,能够在原子整齐排列的基板70的表面使同质外延膜生长。因此,能够形成结晶缺陷少的致密的同质外延膜。
另外,在实施例3中,在退火工序和成膜工序这两者中,雾62、262供给至炉12内,因此能够在炉12内存在雾的状态下从退火工序过渡到成膜工序。因此,在从退火工序向成膜工序切换时,能够缓和基板70的温度的变动。由此能够缓和对基板70的应力。
再有,在实施例3中,在退火工序中向炉12内供给了水雾262。但是,也可代替雾262而向炉12内供给水蒸气。即使在供给水蒸气的情况下,也与实施例3同样地(本说明书中,“同样地”为包含“大致同样地”的含义。),能够通过水的氧化作用将有机系杂质除去,能够消除氧缺陷。
以上对于实施例1~3的成膜方法进行了说明。使用采用实施例1~3的成膜方法形成的膜,能够制造半导体装置。即,能够使采用实施例1~3的成膜方法形成的膜成为半导体装置的一部分。例如,如果杂质进入半导体装置的结晶膜中,则有可能成为漏电流产生的主要因素。通过使用实施例1~3的成膜方法制造半导体装置,能够抑制杂质向结晶膜中的混入,能够抑制漏电流。
应予说明,在实施例1~3中,在共用的炉中实施了退火工序和成膜工序。但是,也可在分开的炉中实施退火工序和成膜工序。即,在退火工序的实施后,可使基板70从退火工序用的炉移动至成膜工序用的炉,用成膜工序用的炉进行成膜工序。这样的构成也能够形成高品质的膜。不过,在基板70的移动过程中杂质有可能附着于基板70的表面,因此更优选用共用的炉实施退火工序和成膜工序。
另外,在实施例1~3中,形成了单晶的膜,但也可形成多晶或无定形的膜。
以下列出本说明书公开的技术要素。再有,以下的各技术要素是各自独立地有用的。
在本说明书公开的一例的成膜方法中,基板可由氧化物材料构成。这种情况下,可在将基板配置在含氧气体中的状态下实施退火。
在由氧化物材料构成的基板中存在氧缺陷。应予说明,氧缺陷是在氧位点(原子按照晶格排列时应配置氧原子的位置)产生的缺陷。如上所述,通过在将基板配置在含氧气体中的状态下实施退火,氧原子填充于氧缺陷,能够消除氧缺陷。由此能够提高基板的结晶性。
在本说明书公开的一例的成膜方法中,可在将基板配置在氧分压比大气高的气体中的状态下实施退火。
根据上述构成,能够更有效地消除氧缺陷。
在本说明书公开的一例的成膜方法中,基板可由氧化物材料构成。这种情况下,可在将基板配置在包含水雾和水蒸气中的至少一者的气体中的状态下实施退火。
根据上述构成,水分子具有的氧原子填充于氧缺陷,因此能够消除氧缺陷。由此能够提高基板的结晶性。
在本说明书公开的一例的成膜方法中,可在将基板配置在流动的气体中的状态下实施退火。
根据上述构成,从基板表面气化的杂质随着流动的气体而流动,因此能够更有效地将基板表面净化。
在本说明书公开的一例的成膜方法中,可在共用的炉内实施退火和原料溶液的雾向基板的表面的供给。
根据上述构成,能够在基板的表面净化的状态下开始雾的供给。因此,能够形成更高品质的膜。
在本说明书公开的一例的成膜方法中,在退火中,可将基板加热到500℃以上的温度。
根据上述构成,能够适宜地使基板的表面的杂质气化。
在本说明书公开的一例的成膜方法中,膜可以为半导体的结晶膜。
以上对于实施方式详细地进行了说明,但这些只不过是例示,并不限定专利权利要求。专利权利要求书所记载的技术中包含对以上例示的具体例进行各种变形、改变而成的方案。本说明书或附图中说明的技术要素通过单独或各种的组合来发挥技术实用性,并不限定于申请时权利要求所记载的组合。另外,本说明书或附图中例示的技术同时实现多个目的,实现其中的一个目的就具有技术实用性。

Claims (10)

1.在基板上形成膜的成膜方法,其特征在于,包括:
对所述基板进行退火;
在所述退火后,一边将所述基板加热到比所述退火时的所述基板的温度低的温度,一边将所述膜的原料溶液的雾供给至所述基板的表面。
2.根据权利要求1所述的成膜方法,其特征在于,所述基板由氧化物材料构成,在将所述基板配置在含氧气体中的状态下实施所述退火。
3.根据权利要求2所述的成膜方法,其特征在于,所述气体与大气相比,氧分压高。
4.根据权利要求1所述的成膜方法,其特征在于,所述基板由氧化物材料构成,在将所述基板配置在包含水雾和水蒸气中的至少一者的气体中的状态下实施所述退火。
5.根据权利要求1所述的成膜方法,其特征在于,在将所述基板配置在流动的气体中的状态下实施所述退火。
6.根据权利要求1~5中任一项所述的成膜方法,其特征在于,在共用的炉内实施所述退火和所述原料溶液的所述雾向所述基板的所述表面的供给。
7.根据权利要求1~6中任一项所述的成膜方法,其特征在于,在所述退火中,将所述基板加热到500℃以上的温度。
8.根据权利要求1~7中任一项所述的成膜方法,其特征在于,所述膜为半导体的结晶膜。
9.半导体装置的制造方法,其特征在于,包括:
采用权利要求1~8中任一项所述的成膜方法形成所述膜。
10.在基板上形成膜的成膜装置,其特征在于,包括:
配置所述基板的炉;
在所述炉内加热所述基板的加热器;
将所述膜的原料溶液的雾供给至所述炉内的雾供给装置;和
控制所述加热器和所述雾供给装置的控制装置,
其中,所述控制装置以如下方式构成:利用所述加热器对所述基板进行退火,在所述退火后,一边利用所述加热器将所述基板加热到比所述退火时的所述基板的温度低的温度,一边利用所述雾供给装置将所述雾供给至所述基板的表面。
CN201811579350.2A 2018-01-11 2018-12-24 成膜方法和半导体装置的制造方法以及成膜装置 Pending CN110029326A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-002839 2018-01-11
JP2018002839A JP7130962B2 (ja) 2018-01-11 2018-01-11 成膜方法及び成膜装置

Publications (1)

Publication Number Publication Date
CN110029326A true CN110029326A (zh) 2019-07-19

Family

ID=66995584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811579350.2A Pending CN110029326A (zh) 2018-01-11 2018-12-24 成膜方法和半导体装置的制造方法以及成膜装置

Country Status (4)

Country Link
US (1) US10854447B2 (zh)
JP (1) JP7130962B2 (zh)
CN (1) CN110029326A (zh)
DE (1) DE102019200128A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128970B2 (ja) * 2019-08-27 2022-08-31 信越化学工業株式会社 積層構造体及び積層構造体の製造方法
WO2021210350A1 (ja) * 2020-04-13 2021-10-21 信越化学工業株式会社 成膜装置及び成膜方法
JP7514478B2 (ja) * 2020-12-04 2024-07-11 株式会社デンソー ウエハ処理装置及びウエハ処理方法
CN113233431A (zh) * 2021-04-30 2021-08-10 桂林电子科技大学 一种二维材料成膜方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1263569A (zh) * 1997-07-14 2000-08-16 塞姆特里克斯公司 用化学汽相沉积制作薄膜的方法和装置
US20130119376A1 (en) * 2011-11-11 2013-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209717A (ja) * 1990-01-11 1991-09-12 Fujitsu Ltd 化合物半導体の成長方法
JP3068277B2 (ja) * 1991-10-02 2000-07-24 株式会社東芝 半導体膜の形成方法
JP5987229B2 (ja) * 2015-03-09 2016-09-07 高知県公立大学法人 ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP6586768B2 (ja) * 2015-04-27 2019-10-09 株式会社Flosfia 成膜方法
JP2017133077A (ja) 2016-01-29 2017-08-03 独立行政法人国立高等専門学校機構 ペロブスカイト膜の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1263569A (zh) * 1997-07-14 2000-08-16 塞姆特里克斯公司 用化学汽相沉积制作薄膜的方法和装置
US20130119376A1 (en) * 2011-11-11 2013-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
DE102019200128A1 (de) 2019-07-11
JP2019119925A (ja) 2019-07-22
US10854447B2 (en) 2020-12-01
JP7130962B2 (ja) 2022-09-06
US20190214248A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
CN110029326A (zh) 成膜方法和半导体装置的制造方法以及成膜装置
CN106757324B (zh) 一种硅外延片的制造方法
JP5125095B2 (ja) SiCエピタキシャル膜付き基板の製造方法及びSiCエピタキシャル膜付き基板の製造装置
CN111326417B (zh) 氧化镓膜的成膜方法
US20200388491A1 (en) Method of forming oxide film, method of manufacturing semiconductor device, and apparatus configured to form oxide film
JP7289357B2 (ja) 半導体膜
US11371161B2 (en) Method of forming oxide film, method of manufacturing semiconductor device, and film forming apparatus configured to form oxide film
TW202033848A (zh) 成膜裝置
US20030038302A1 (en) Nitride semiconductor growing process
EP2065489A1 (en) PROCESS FOR PRODUCING GaN SINGLE-CRYSTAL, GaN THIN-FILM TEMPLATE SUBSTRATE AND GaN SINGLE-CRYSTAL GROWING APPARATUS
JP2012031027A (ja) 単結晶窒化アルミニウムの製造方法
JP2003332234A (ja) 窒化層を有するサファイア基板およびその製造方法
CN103572248A (zh) 金刚石制造方法和dc等离子体增强cvd装置
CN110724939A (zh) 成膜方法和半导体装置的制造方法
JP4782670B2 (ja) エピタキシャルGe含有膜の成長方法及びエピタキシャル半導体成膜システム
JP6927429B2 (ja) SiCエピタキシャル基板の製造方法
JPH08264455A (ja) 半導体装置及びその製造方法
CN110724935A (zh) 成膜方法和半导体装置的制造方法
JP2631286B2 (ja) 窒化ガリウム系化合物半導体の気相成長方法
JP2006036613A (ja) ケイ素基板上に立方晶炭化ケイ素結晶膜を形成する方法
JPWO2019225112A1 (ja) Iii族窒化物半導体基板及びその製造方法
JP4963353B2 (ja) 炭化珪素系混晶の製造方法
JP3574494B2 (ja) 窒素化合物半導体結晶成長方法および成長装置
JP7108783B2 (ja) 半導体膜
JP4682001B2 (ja) 水晶薄膜の製造装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200410

Address after: Aichi Prefecture, Japan

Applicant after: DENSO Corp.

Address before: Aichi Prefecture, Japan

Applicant before: Toyota Motor Corp.

TA01 Transfer of patent application right