CN110022063B - 多相转换器系统 - Google Patents
多相转换器系统 Download PDFInfo
- Publication number
- CN110022063B CN110022063B CN201910015296.7A CN201910015296A CN110022063B CN 110022063 B CN110022063 B CN 110022063B CN 201910015296 A CN201910015296 A CN 201910015296A CN 110022063 B CN110022063 B CN 110022063B
- Authority
- CN
- China
- Prior art keywords
- refrigerant
- temperature
- converter
- controller
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 75
- 230000027311 M phase Effects 0.000 abstract description 4
- 239000000446 fuel Substances 0.000 description 9
- 230000020169 heat generation Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/60—Controlling or determining the temperature of the motor or of the drive
- H02P29/68—Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/14—Boost converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
- H02M3/1586—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2201/00—Indexing scheme relating to controlling arrangements characterised by the converter used
- H02P2201/09—Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
一种多相转换器系统,具备:多个转换器并联连接而成的多相转换器;使制冷剂流动来对所述多相转换器进行冷却的冷却器;对所述制冷剂的温度进行计测的温度传感器;以及控制器。所述控制器构成为,在所述多相转换器的目标输出比预定的输出阈值低且所述制冷剂的温度处于预定的温度范围内的情况下,驱动n相的所述转换器,在所述目标输出比所述预定的输出阈值低且所述制冷剂的温度比所述预定的温度范围低的情况下,驱动比n多的m相的所述转换器。
Description
技术领域
本发明涉及具备多个转换器并联连接而成的多相转换器和冷却器的多相转换器系统。
背景技术
已知有如下多相转换器:使用开关元件来变换电力的多个转换器并联连接,根据目标输出使驱动的相数(即,驱动的转换器的相数)变化。在日本特开2011-19338中公开了一种多个升压转换器并联连接而成的多相转换器。日本特开2011-19338的多相转换器与燃料电池连接,对燃料电池的输出电压进行升压。日本特开2011-19338的多相转换器,为了抑制驱动中的升压转换器的开关元件的热负荷,而在开关元件的温度超过了预定的温度阈值时增加驱动相数,使负荷分散。
发明内容
由于开关元件在大电流下连续地驱动时会发热,因此多相转换器经常伴随有冷却器。另一方面,开关元件在温度低时具有耐压下降的倾向。因此,存在当制冷剂的温度低时必须对转换器的输出上限设置限制的情况。期望在制冷剂的温度低的情况下,使制冷剂的温度迅速地提高而能够确保开关元件能够在原本的耐压特性下工作的状况。
本发明的一技术方案的多相转换器系统具备:多个转换器并联连接而成的多相转换器、冷却器、温度传感器、以及控制器。各转换器使用开关元件来变换电力。转换器既可以是改变电压的转换器,也可以是将直流变换成交流的逆变器。冷却器使制冷剂流动来对多相转换器进行冷却。温度传感器对制冷剂的温度进行计测。控制器构成为,在多相转换器的目标输出比预定的输出阈值低且制冷剂的温度处于预定的温度范围的情况下,驱动n相的电压转换器。控制器构成为,在多相转换器的目标输出比预定的输出阈值低且制冷剂的温度比温度范围低的情况下,驱动比n多的m相的电压转换器。即,尽管在制冷剂的温度属于通常的温度范围的情况下是由n相的驱动提供的目标输出,但在制冷剂的温度低的情况下驱动更多的转换器,增加发热量,由此使制冷剂迅速地升温。该多相转换器系统能够在制冷剂的温度低的情况下迅速地提高制冷剂的温度,能够迅速地确保开关元件能够在原本的耐压特性下工作的状况。典型的是,控制器也可以构成为,在制冷剂的温度比预定的温度范围低且多相转换器的目标输出比预定的输出阈值低的情况下,驱动全相的转换器。
转换器的一例为升压转换器。如之前所述,存在当制冷剂温度低且开关元件的耐压低时必须限制多相转换器的输出的情况。控制器也可以构成为,在制冷剂的温度处于预定的温度范围的情况下,将多相转换器的输出电压的上限设定为第1电压上限值。该第1电压上限值是与开关元件的原本的耐压特性对应的上限值。并且,控制器也可以构成为,在制冷剂的温度比温度范围低的情况下,将多相转换器的输出电压的上限设定为比第1电压上限值低的第2电压上限值。即,该多相转换器系统也可以在制冷剂温度低的情况下将输出电压的上限设定为比通常(第1电压上限值)低的第2电压上限值。但是,如之前所述,上述技术方案的多相转换器系统能够迅速地提高制冷剂温度,因此能够使输出电压的上限值从第2电压上限值迅速地回到第1电压上限值。
附图说明
以下将参考附图说明本发明的示例性实施方式的特征、优点以及技术和产业意义,在附图中相同的附图标记表示相同的要素,并且其中:
图1是包括实施例的多相转换器系统的燃料电池车的框图。
图2是决定转换器的驱动数的映射(通常温度范围时)。
图3是决定转换器的驱动数的映射(制冷剂温度低时)。
图4是决定转换器的驱动数的映射(变形例)。
具体实施方式
参照附图对实施例的多相转换器系统进行说明。实施例的多相转换器系统2搭载于电动车100。图1示出电动车100的电力系统的框图。电动车100具备多相转换器系统2、燃料电池21、逆变器27、以及行驶用的马达28。电动车100利用燃料电池21的电力驱动马达28来进行行驶。此外,电动车100还具备储存马达28所生成的再生电力的蓄电池,但省略蓄电池的图示和说明。
多相转换器系统2对燃料电池21输出的电力的电压进行升压并向逆变器27供给。逆变器27将升压后的直流电力变换成适合于马达28的驱动的频率的交流电力,并向马达28供给。
多相转换器系统2具备多相转换器10、冷却器30、以及控制器17。多相转换器10对燃料电池21的电力的电压进行升压并向逆变器27供给。在多相转换器10与逆变器27之间具备继电器26。继电器26是将多相转换器10(燃料电池21)与逆变器27(马达28)连接或断开的开关。继电器26由控制器17控制。
多相转换器10具备四个转换器12a-12d、电容器22、24、以及电压传感器25。
四个转换器12a-12d在公共的输入端11a、11b与公共的输出端13a、13b之间并联连接。四个转换器12a-12d全都是对输入的电力的电压进行升压并输出的升压转换器。转换器12a-12d全都是斩波类型的升压转换器,为相同构造。
此外,在公共的输入端11a、11b之间连接有电容器22,在公共的输出端13a、13b之间连接有电容器24。电容器22使向转换器12a-12d输入的电流平滑化,电容器24使从转换器12a-12d输出的电流平滑化。
对转换器12a进行说明。转换器12a具备开关元件3a、二极管4a、6a、以及电抗器5a。电抗器5a的一端连接于输入端正极11a,另一端连接于二极管6a的阳极。二极管6a的阴极连接于输出端正极13a。
转换器12a的输入端负极11b与输出端负极13b直接连接。在电抗器5a与二极管6a的中间点、与输入端负极11b(输出端负极13b)之间连接有开关元件3a。二极管4a相对于开关元件3a反并联连接。
转换器12b-12d具有与转换器12a相同的构造。转换器12b具备开关元件3b、二极管4b、6b、以及电抗器5b。转换器12c具备开关元件3c、二极管4c、6c、以及电抗器5c。转换器12d具备开关元件3d、二极管4d、6d、以及电抗器5d。
开关元件3a-3d由控制器17控制。当开关元件3a-3d按预定的占空比接通/断开时,对向输入端11a、11b施加的燃料电池21的输出电力的电压进行升压,并从输出端13a、13b输出。图1的转换器12a-12d的电路和工作是众所周知的,省略详细的说明。开关元件3a-3d例如是IGBT(Insulated Gate Bipolar Transistor:绝缘栅双极晶体管)。
图1中的带箭头的虚线表示控制器17与其他部件之间的通信线。此外,图1中的“ToCntller”的字符串意味着向控制器17发送数据的通信线,从控制器17延伸的带箭头的虚线意味着从控制器17发送指令的通信线。
控制器17向开关元件3a-3d供给相同的驱动信号。具有相同的构造的转换器12a-12d按相同的驱动信号工作,因此,四个转换器12a-12d就像一个转换器一样工作。在输出端13a、13b之间具备电压传感器25,控制器17对各开关元件3a-3d进行反馈控制以使得由电压传感器25计测的输出电压追随目标输出电压。
开关元件3a-3d和/或电抗器5a-5d在大的电流长时间流动时会发热。因此,多相转换器系统2具备对开关元件3a-3d和/或电抗器5a-5d、以及逆变器27进行冷却的冷却器30。冷却器30具备:供制冷剂流动循环路径31;对循环路径31内的制冷剂进行压送的泵32、暂时储存制冷剂的储存箱33、将制冷剂的热向外气释放的散热器35、以及温度传感器34。制冷剂是液体,典型的是水或者LLC(Long Life Coolant:长效冷却液)。
循环路径31使制冷剂在多相转换器10、逆变器27、散热器35、储存箱33之间循环。泵32将储存箱33的制冷剂向多相转换器10压送。制冷剂在通过多相转换器10和逆变器27时,吸收多相转换器10和逆变器27的热。吸收了热而温度变高了的制冷剂在散热器35中将所吸收的热向外气释放,而温度下降。温度下降后的制冷剂返回储存箱33。温度传感器34对制冷剂的温度进行计测。温度传感器34的计测值被发送到控制器17。泵32也由控制器17控制。控制器17根据由温度传感器34计测的制冷剂的温度、以及多相转换器10和逆变器27的工作状况,决定泵32的输出(制冷剂的排出量),对泵32进行控制。概略而言,制冷剂的温度越高,则控制器17越提高泵32的输出。
控制器17从未图示的上位控制器接收指令,对多相转换器10进行控制。上位控制器根据加速器开度、车速、燃料电池21的输出等来决定行驶用的马达28应该输出的转矩(目标转矩)。上位控制器根据燃料电池21的输出电压和目标转矩,来决定多相转换器10应该输出的电压(目标输出电压)和电流(目标输出电流),并对控制器17进行指令。控制器根据目标输出电流的大小来决定工作的转换器的数量,并向所选择的转换器的开关元件供给预定的占空比的驱动信号。
多相转换器系统2的控制器17根据从未图示的上位控制器发送来的目标输出电压,来决定转换器12a-12d的升压比。另外,控制器17根据从上位控制器发送来的目标输出电流的大小,从转换器12a-12d中选择工作的转换器。随着目标输出电流变大,控制器17使工作的转换器数量从1相逐渐增加至4相。
图2示出目标输出电流与驱动的(转换器的)相数的关系。图2是决定转换器的驱动数的映射。图2的纵轴为目标输出电压,横轴为目标输出电流。在目标输出电流为第1电流值Ia1以前,控制器17驱动1相的转换器(例如转换器12a)。在目标输出电流比第1电流值Ia1大且为第2电流值Ia2以下时,控制器17驱动2相的转换器(例如,转换器12a、12b)。在目标输出电流比第2电流值Ia2大且为第3电流值Ia3以下时,控制器17驱动3相的转换器(例如,转换器12a、12b、12c)。在目标输出电流比第3电流值Ia3大的情况下,控制器17驱动所有的转换器12a-12d。
关于多相转换器10,目标输出电流变得越大,则越增加驱动的转换器12a-12d的数量(相数)。通过根据目标输出电流来改变转换器的驱动数,从而能够将单个的转换器的工作范围(输出电流的范围)抑制在小的范围并且增大多相转换器10的整体的工作范围(输出电流的范围)。通过缩小各转换器的工作范围,从而能够仅使用变换效率良好的范围,能够提高多相转换器10的整体的效率。
此外,图2的映射是制冷剂温度Tc为第1温度阈值T1以上且比第2温度阈值T2小的情况下的映射。当制冷剂温度Tc处于温度范围(T1≤Tc<T2)之间时,控制器17将多相转换器10的输出电压的上限值设定为第1电压上限值Vmax1。第1电压上限值Vmax1是转换器12a-12d的通常的上限值。在实施例的多相转换器10中,驱动的转换器的相数不根据目标输出电压的大小而变化。
在转换器12a-12d中使用的开关元件3a-3d具有当工作温度过低时耐压降低的倾向。因此,控制器17在制冷剂温度Tc低的情况下,降低转换器12a-12d的输出电压的上限值。具体而言,控制器17在制冷剂温度Tc比第1温度阈值T1低的情况下,将转换器12a-12d的输出电压的上限值从第1电压上限值Vmax1限制为第2电压上限值Vmax2(Vmax1>Vmax2)。图3示出制冷剂温度Tc比第1温度阈值T1低的情况下的转换器驱动数的决定映射。纵轴和横轴与图2的图表相同。在图3中,目标输出电压的上限值从第1电压上限值Vmax1降低为第2电压上限值Vmax2。
对多相转换器10(转换器12a-12d)设定低的电压上限值的情况与行驶用的马达28的输出上限值降低的情况等同。当马达28的输出上限值变低时,马达28的原本的性能显现不出来,车辆的驾驶性能下降。因此,在制冷剂温度Tc低的情况下,与通常温度范围(T1≤Tc<T2)的情况相比,控制器17增加转换器的驱动数。各转换器具有电抗器,发热的主要原因是电抗器的固定损失(铁损和磁滞损失)。因此,即使多相转换器10的输出相同,电流流过的电抗器的数量越多,则多相转换器10的总发热量也增加。另外,当增加驱动的相数时,驱动各相的开关元件的驱动电路的驱动数也增加。驱动的驱动电路的数量增加也使发热量增加。提高多相转换器10的发热量而使制冷剂温度上升,以使得多相转换器10的输出电压的上限值迅速地回到之前的电压上限值(第1电压上限值Vmax1)。
对图2和图3进行比较可知,当目标输出电流为第1电流值Ia1以下的范围时,控制器17在制冷剂温度Tc处于通常温度范围(T1≤Tc<T2)时驱动1相的转换器,在制冷剂温度Tc低时(Tc<T1),驱动2相的转换器。
在目标输出电流比第1电流值Ia1大且为第2电流值Ia2以下的情况下,控制器17在制冷剂温度Tc处于通常温度范围(T1≤Tc<T2)时驱动2相的转换器,在制冷剂温度Tc低时(Tc<T1)驱动3相的转换器。在目标输出电流比第2电流值Ia2大且为第3电流值Ia3以下的情况下,控制器17在制冷剂温度Tc处于通常温度范围(T1≤Tc<T2)时驱动3相的转换器,在制冷剂温度Tc低时(Tc<T1)驱动4相的转换器。在目标输出电流比第3电流值Ia3大的情况下,在制冷剂温度Tc处于通常温度范围(T1≤Tc<T2)时驱动全相(4相)的转换器,因此,在制冷剂温度Tc低时(Tc<T1)也同样驱动全相(4相)的转换器。
如上述所,在目标电流输出处于比第3电流值Ia3低的范围中,控制器17在制冷剂温度Tc处于预定的温度范围(T1≤Tc<T2)内的情况下驱动n相的转换器。控制器17在制冷剂温度Tc比上述温度范围低的情况下(Tc<T1),驱动比n多的m相的转换器。在此,n=1~3。
当制冷剂温度Tc低时(Tc<T1),通过比通常温度范围(T1≤Tc<T2)时增加转换器的驱动数,从而多相转换器10的发热量变大。当多相转换器10的发热量变大时,制冷剂温度Tc容易上升。当制冷剂温度Tc超过第1温度阈值T1时,将决定转换器的驱动数的映射从图3的映射切换为图2的映射,多相转换器10的电压上限值从低的第2电压上限值Vmax2回到通常的第1电压上限值Vmax1。由于多相转换器10的电压上限值复原,因此电动车100能够发挥原本的驾驶性能。
在制冷剂温度Tc比预定的温度阈值(第1温度阈值T1)低的情况下,控制器17也可以采用图4的映射来代替图3的映射。图4是驱动数的决定映射的变形例。在图4的映射中,在制冷剂温度Tc低的情况下,遍及目标输出电流的整个区域地设定为进行4相驱动。在采用图4的映射的情况下,控制器17在制冷剂温度Tc比预定的温度阈值(第1温度阈值T1)低的情况下总是驱动全相(4相)的转换器12a-12d。通过驱动全相,从而多相转换器10的发热量变大,制冷剂温度Tc容易上升。
对在实施例中说明的多相转换器系统2的特征进行总结。多相转换器系统2具备并联连接的多个转换器12a-12d、冷却器30、温度传感器34、以及控制器17。各转换器12a-12d是使用开关元件来变换电力的装置。多个转换器12a-12d为相同类型(相同种类),具有相同构造、相同特性。冷却器30使制冷剂流动来对转换器12a-12d进行冷却。温度传感器34对制冷剂的温度进行计测。控制器在多相转换器10的目标输出电流比预定的输出阈值(第3电流值Ia3)低且制冷剂温度Tc处于预定的温度范围(T1≤Tc<T2)的范围内的情况下驱动n相的转换器。控制器17在目标输出电流比输出阈值(第3电流值Ia3)低且制冷剂温度Tc比温度范围低的情况下(Tc<T1),驱动比n多的m相的转换器。在此,n、m是比1大的整数,且m>n。
转换器12a-12d分别包括电抗器5a-5d,电抗器5a-5d是发热的主要原因之一。
控制器17也可以在目标输出电流比输出阈值(第3电流值Ia3)低且制冷剂的温度Tc比上述的温度范围低的情况下(Tc<T1),驱动全相的转换器。
转换器12a-12d可以是升压转换器。控制器17在制冷剂温度Tc处于上述的温度范围(T1≤Tc<T2)的范围内的情况下,将转换器12a-12d的输出电压的上限设定为第1电压上限值Vmax1。控制器17在制冷剂温度Tc比上述的温度范围低的情况下(Tc<T1),将多相转换器10的输出电压的上限设定为比第1电压上限值Vmax1低的第2电压上限值Vmax2。
对与在实施例中说明的技术相关的注意点进行叙述。实施例的多相转换器系统2将多个转换器12a-12d并联连接。本说明书公开的技术能够适用于将多个降压转换器并联连接的多相转换器和/或将多个双向DC-DC转换器并联连接的多相转换器。或者,也能够适用于多个逆变器并联连接的多相转换器。并联连接的转换器的数量没有限制。
决定转换器的驱动数的目标输出在实施例的情况下为目标输出电流。也存在目标输出以电压的维度被提供的情况和/或以电力的维度被提供的情况。
以上,虽然详细说明了本发明的具体例,但这些只不过是例示,并不限定发明的范围。发明的范围包括对以上例示的具体例进行各种变形、变更而得到的技术。本公开所说明的技术要素以单独或各种组合的方式发挥技术有用性,不限定于本公开的组合。另外,本公开所例示的技术能够同时达成多个目的,达成其中一个目的本身就具有技术有用性。
Claims (3)
1.一种多相转换器系统,其特征在于,具备:
多个转换器并联连接而成的多相转换器;
使制冷剂流动来对所述多相转换器进行冷却的冷却器;
对所述制冷剂的温度进行计测的温度传感器;以及
控制器,其中,
所述控制器构成为,
在所述多相转换器的目标输出比预定的输出阈值低且所述制冷剂的温度处于预定的温度范围内的情况下,驱动n相的所述转换器,
在所述目标输出比所述预定的输出阈值低且所述制冷剂的温度比所述预定的温度范围低的情况下,驱动比n多的m相的所述转换器。
2.根据权利要求1所述的多相转换器系统,其特征在于,
所述控制器构成为,在所述目标输出比所述预定的输出阈值低且所述制冷剂的温度比所述预定的温度范围低的情况下,驱动全相的所述转换器。
3.根据权利要求1或2所述的多相转换器系统,其特征在于,
所述转换器为升压转换器,
所述控制器构成为,
在所述制冷剂的温度处于所述预定的温度范围内的情况下,将所述多相转换器的输出电压的上限设定为第1电压上限值,
在所述制冷剂的温度比所述预定的温度范围低的情况下,将所述多相转换器的输出电压的上限设定为比所述第1电压上限值低的第2电压上限值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-002194 | 2018-01-10 | ||
JP2018002194A JP6900909B2 (ja) | 2018-01-10 | 2018-01-10 | 多相コンバータシステム |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110022063A CN110022063A (zh) | 2019-07-16 |
CN110022063B true CN110022063B (zh) | 2021-04-13 |
Family
ID=67159864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910015296.7A Active CN110022063B (zh) | 2018-01-10 | 2019-01-08 | 多相转换器系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10630182B2 (zh) |
JP (1) | JP6900909B2 (zh) |
CN (1) | CN110022063B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018204845A1 (de) * | 2018-03-29 | 2019-10-02 | Audi Ag | Multiphasenwandler |
JP7044055B2 (ja) * | 2018-12-26 | 2022-03-30 | トヨタ自動車株式会社 | 車両の暖機制御装置 |
DE102019213073A1 (de) * | 2019-08-30 | 2021-03-04 | Robert Bosch Gmbh | Verfahren zum Betrieb parallel geschalteter Spannungswandler |
US11038426B2 (en) * | 2019-09-19 | 2021-06-15 | National Instruments Corporation | Multi-phase noise cancelled adjustable switched mode programmable load |
US11569747B2 (en) * | 2021-03-05 | 2023-01-31 | Apple Inc. | Adaptive phase add/shed for a power converter |
JP7548202B2 (ja) * | 2021-12-15 | 2024-09-10 | トヨタ自動車株式会社 | 電力制御装置とそれを用いた電力供給システム |
DE102022209345A1 (de) * | 2022-09-08 | 2024-03-14 | Robert Bosch Gesellschaft mit beschränkter Haftung | Brennstoffzellensystem sowie Verfahren zum Kontrollieren eines Heizstromes für ein Temperieren eines Brennstoffzellenstapels eines Brennstoffzellensystems |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4274271B2 (ja) * | 2007-07-26 | 2009-06-03 | トヨタ自動車株式会社 | 電圧変換装置 |
JP5092810B2 (ja) * | 2008-03-07 | 2012-12-05 | パナソニック株式会社 | 蓄電装置 |
JP5435028B2 (ja) * | 2009-06-03 | 2014-03-05 | トヨタ自動車株式会社 | コンバータ制御装置 |
JP2011019338A (ja) * | 2009-07-08 | 2011-01-27 | Toyota Motor Corp | コンバータ制御装置 |
WO2013005295A1 (ja) * | 2011-07-05 | 2013-01-10 | トヨタ自動車株式会社 | 燃料電池システム |
CN103650311B (zh) * | 2011-07-19 | 2016-05-25 | 丰田自动车株式会社 | 电源系统 |
US8878501B2 (en) * | 2011-09-01 | 2014-11-04 | Micrel, Inc. | Multi-phase power block for a switching regulator for use with a single-phase PWM controller |
JP5880519B2 (ja) * | 2013-10-21 | 2016-03-09 | トヨタ自動車株式会社 | 車載電子装置 |
JP6172114B2 (ja) * | 2014-10-28 | 2017-08-02 | トヨタ自動車株式会社 | ハイブリッド自動車 |
JP6191586B2 (ja) * | 2014-12-02 | 2017-09-06 | トヨタ自動車株式会社 | モータコントローラ、電動車両、及び、スイッチング素子の熱ストレス推定方法 |
JP6292154B2 (ja) * | 2015-03-19 | 2018-03-14 | トヨタ自動車株式会社 | 電源システム |
JP6575815B2 (ja) * | 2015-12-01 | 2019-09-18 | 株式会社デンソー | 電源システム |
JP2017103990A (ja) * | 2015-12-04 | 2017-06-08 | トヨタ自動車株式会社 | 走行用のモータを備える自動車 |
-
2018
- 2018-01-10 JP JP2018002194A patent/JP6900909B2/ja active Active
- 2018-12-26 US US16/232,866 patent/US10630182B2/en active Active
-
2019
- 2019-01-08 CN CN201910015296.7A patent/CN110022063B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019122198A (ja) | 2019-07-22 |
CN110022063A (zh) | 2019-07-16 |
US10630182B2 (en) | 2020-04-21 |
JP6900909B2 (ja) | 2021-07-07 |
US20190214913A1 (en) | 2019-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110022063B (zh) | 多相转换器系统 | |
US20230097060A1 (en) | Energy conversion device and vehicle | |
CN111347900B (zh) | 一种车辆、电机控制电路、动力电池充电与加热方法 | |
US8765312B2 (en) | Converter controlling apparatus | |
CN212587580U (zh) | 电池能量处理装置和车辆 | |
US10411588B2 (en) | Power converter with trench and planar transistors to improve efficiency | |
US20120069604A1 (en) | Compact power converter with high efficiency in operation | |
US8896282B2 (en) | Converter controller | |
JP5862918B2 (ja) | 多相コンバータおよび多相コンバータの設計方法 | |
JP2018050382A (ja) | 電力変換装置 | |
CN118753056A (zh) | 一种车辆、充电装置、电机控制电路 | |
EP2509207A2 (en) | Power conversion system | |
JP2011019338A (ja) | コンバータ制御装置 | |
US20210265648A1 (en) | Fuel cell system and method of controlling fuel cell system | |
CN115513488A (zh) | 燃料电池系统 | |
JP5333007B2 (ja) | 燃料電池システム | |
US20240136967A1 (en) | Power conversion device | |
JP2019149869A (ja) | 昇圧コンバータ | |
JP7312088B2 (ja) | 電力変換装置、及び電力変換制御装置 | |
JP2021090317A (ja) | 電力変換システム | |
JP2022140260A (ja) | 燃料電池システム | |
KR20240038830A (ko) | 배터리 가열용 장치 및 방법 | |
CN117656951A (zh) | 电池自加热系统及车辆 | |
CN115084590A (zh) | 燃料电池系统 | |
KR20230016976A (ko) | 컨버터 제어장치 및 제어방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |