CN110020464B - 一种减弱铁路桥梁轨道上拱的方法 - Google Patents

一种减弱铁路桥梁轨道上拱的方法 Download PDF

Info

Publication number
CN110020464B
CN110020464B CN201910189583.XA CN201910189583A CN110020464B CN 110020464 B CN110020464 B CN 110020464B CN 201910189583 A CN201910189583 A CN 201910189583A CN 110020464 B CN110020464 B CN 110020464B
Authority
CN
China
Prior art keywords
track
data
bridge
inspection
static
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910189583.XA
Other languages
English (en)
Other versions
CN110020464A (zh
Inventor
岑敏仪
江来伟
梁敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Ruiwei Track Surveying And Mapping Technology Co ltd
Southwest Jiaotong University
Original Assignee
Chengdu Ruiwei Track Surveying And Mapping Technology Co ltd
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Ruiwei Track Surveying And Mapping Technology Co ltd, Southwest Jiaotong University filed Critical Chengdu Ruiwei Track Surveying And Mapping Technology Co ltd
Priority to CN201910189583.XA priority Critical patent/CN110020464B/zh
Publication of CN110020464A publication Critical patent/CN110020464A/zh
Application granted granted Critical
Publication of CN110020464B publication Critical patent/CN110020464B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads

Abstract

本发明公开了一种减弱铁路桥梁轨道上拱的方法,方法包括以下步骤:S1.数据获取;S2.数据预处理;S3.动静检互差计算;S4.数据分段;S5.上拱模型计算;S6.预拱模型计算;S7.静检垂向偏差修正;本发明依据动检和静检来检测桥梁段所得轨道高低和垂向偏差,经里程修正、高通滤波及曲线拟合等处理过程,获得桥梁段轨道上拱和预拱模型,用以修正轨道起道精调数据;本发明可解决长期困扰铁路建设和运营维护中的桥梁轨道系统性上拱问题,并进一步提高轨道的动态平顺性。

Description

一种减弱铁路桥梁轨道上拱的方法
技术领域
本发明属于铁路有砟轨道精测精捣和无砟轨道精测精调技术领域,具体涉及一种既可减弱铁路桥梁轨道系统性上拱误差,又可平衡列车动荷载引起的桥梁下弯变形,以提高列车运行轨道的动态平顺性的方法。
背景技术
轨道平顺性质量包括轨距、水平、高低、轨向、扭曲及轨距变化率等指标,指标又可分为静态和动态两方面。静态指标可由轨道几何状态测量仪或GPS+轨道检查仪或GPS+INS组合导航轨道检测设备检测(简称静态检测或静检)获得,动态指标只能通过轨检车或动检车检测(简称动态检测或动检)获得。动态指标是保障行车安全、平稳、舒适的重要参数,也是评价工务部门轨道几何状态养护维修质量的依据。要获得高质量的动态指标,首先要获得轨道的横垂向偏差,根据横垂向偏差制定有砟轨道的精捣方案或无砟轨道的精调方案,才能实现轨道的高平顺性质量要求。
随着高速铁路桥梁占比越来越重,桥梁上轨道在垂向上表现出了不同于普通路基和隧道的独有特性。新建或运营铁路精捣后的有砟轨道,精调后的无砟轨道在桥梁区段均普遍存在轨道周期性上拱,且不同时段的温度使桥梁伸缩也会产生上拱,尤其是钢梁桥,造成轨道高低中长波不平顺(多波高低不平顺)。中长波不平顺不仅造成晃车、车体平稳性恶化,加速轨道形位劣化和列车部件损伤,在高速条件下还可能产生共振,影响行车安全。对于有砟线路而言,轨道上拱与捣固车的作业方法密切相关,无砟线路轨道上拱是受梁体徐变影响所致,而钢梁桥则受温度变化影响也会产生上拱。提高轨道的动态平顺性,精捣或精调时既要消除桥梁轨道系统性上拱,又需保留必要的预拱,才能使轨道动态平顺性提高。为确保列车行驶的安全平稳舒适,急迫需要解决桥梁区段轨道周期性上拱的问题。
为了解决以上问题我方研发出了一种减弱铁路桥梁轨道上拱的方法。
发明内容
本发明的目的就在于为了解决上述问题而提供一种减弱铁路桥梁轨道上拱的方法。
本发明通过以下技术方案来实现上述目的:
一种减弱铁路桥梁轨道上拱的方法,包括以下步骤:
S1、数据获取;通过动检和静检检测轨道,动检为通过轨检车或动检车检测,静检为通过轨道几何状态测量仪或GPS+轨道检查仪或GPS+INS组合导航轨道检测设备检测轨道,动检和静检分别获得桥梁上轨道动检高低数据A=[ki,li]和静检垂向偏差数据B=[ki,vi];其中ki为里程,li、vi分别为轨道动检高低和静检垂向偏差;
S2、数据预处理;对步骤S1中得到的动检高低数据A进行里程修正,然后与静检垂向偏差数据B分别进行高通滤波处理,得处理后的动检高低数据A’和静检垂向偏差数据B’;
S3、动静互差计算;根据步骤S2中所得动检高低数据A'和静检垂向偏差数据B’,计算静检与动检互差数据C;
S4、数据分段;对步骤S2中所得静检垂向偏差数据B’和S3中得到的互差数据C,按照相邻桥墩中心距离L进行分段;
S5、上拱模型计算;对S4中分段后的静检垂向偏差数据分别进行曲线拟合,以拟合残差的均方差最小为准则,获取最优桥梁轨道上拱模型:
Figure GDA0003856016970000031
式中x表示测点沿轨道方向至梁体头端相邻桥墩中心处的长度,取值范围[0,L],R1、w1、φ1、e1和f1、g1、h1、p1为待定参数;
S6、预拱模型计算;对S4中分段后的互差数据分别进行曲线拟合,以拟合残差的均方差最小为准则,获取最优桥梁轨道预拱模型:
Figure GDA0003856016970000032
式中x与式(1)相同,R2、w2、φ2、e2和f2、g2、h2、p2为待定参数;
S7、静检垂向偏差修正;对步骤S1中得到的静检垂向偏差数据B进行上拱修正:
vi′(ki)=vi(ki)+ε(x)=vi(ki)+ε(ki-k0),ki-k0∈[0,L] (3)
式中vi’(ki)表示里程ki处上拱修正后的静检垂向偏差值,k0为每跨梁的头端相邻桥墩中心里程;
进行动检预拱修正:
vi″(ki)=vi′(ki)-η(x)=vi′(ki)-η(ki-k0),ki-k0∈[0,L] (4)
式中vi”(ki)表示里程ki处动检预拱修正后的静检垂向偏差值,k0与式(3)相同,将上拱修正和预拱修正后的垂向偏差和里程信息输入大机指导有砟轨道精捣或作为无砟轨道垂向调整依据指导精调作业。
具体地,所述步骤S1包括步骤:
S11、通过轨检车或动检车获得桥梁区段轨道高低数据A=[ki,li],数据为离散采样点,里程与高低一一对应;
S12、通过轨道几何状态测量仪或GPS+轨道检查仪或GPS+INS组合导航轨道检测设备测量获得相同桥梁区段轨道垂向偏差数据B=[ki,vi],数据为离散采样点,里程与垂向偏差一一对应。
步骤S1包括S11、S12中的全部或者部分步骤;
具体地,所述步骤S2包括:
S21、根据步骤S1中所得动检高低数据A、静检垂向偏差数据B,进行样条曲线绘制,得动静检波形图;
S22、根据波形图的波谷点,分别得到由动静检所确定的相邻桥墩中心位置;
S23、把静检所确定的相邻桥墩中心位置作为校正点,采用局部波形匹配来修正动检数据A的里程;
S24、相邻桥墩中心距离L作为高通滤波截止波长;
S25、对静检垂向偏差数据B和S23中得到的动检高低数据进行高通滤波处理。
步骤S2包括S21、S22、S23、S24、S25中的全部或者部分步骤;
具体地,步骤S4中各分段数据起终点里程与梁体两端相邻桥墩中心位置相对应。
具体地,所述步骤S5包括:
S51、将步骤S4中所得静检数据的桥梁分段数据里程统一转化至[0,L];
S52、对S51中得到的相同桥梁类型和梁长段静检数据统一进行最优化曲线拟合,获得最优拟合函数,作为同类型铁路桥梁的轨道上拱模型。
步骤S5包括S51、S52中的全部或者部分步骤;
具体地,铁路桥梁的轨道上拱模型为正弦函数或三次多项式函数。
铁路桥梁的轨道上拱模型还可为其它类型的曲线函数。
具体地,所述步骤S6包括以下全部或部分步骤:
S61、将步骤S4中所得互差数据C的分段数据里程统一转化至[0,L];
S62、对S61中得到的相同桥梁类型和梁长段互差数据统一进行最优化曲线拟合,获得最优拟合函数,作为同类型铁路桥梁的轨道预拱模型。
步骤S6包括S61、S62中的全部或者部分步骤;
进一步地,铁路桥梁的轨道预拱模型为正弦函数或三次多项式函数。
铁路桥梁的轨道预拱模型还可为其它类型的曲线函数。
具体地,对于钢梁桥因温度变化造成轨道上拱,在不同温度条件下测定轨道上拱的温度修正模型,即不同温度条件下静态上拱模型和动态预拱模型。
具体地,根据步骤S7中得到的垂向偏差指导有砟轨道精捣或无砟轨道精调作业,钢梁桥轨道精捣或精调依据作业温度选取相应温度修正模型指导作业,消除铁路桥梁轨道系统性上拱误差,并保留列车动荷载所需的轨道预拱量,以提高列车在桥梁上行驶时的轨道高低中长波平顺性。
本发明的有益效果在于:
本发明的一种减弱铁路桥梁轨道上拱的方法:
1、本发明提供的一种减弱铁路桥梁轨道上拱的方法,除适用于有砟轨道捣固车机械化精捣或人工精调的作业模式外,同样适用于无砟轨道人工精调的作业模式。
2、本发明既能很好地解决桥梁轨道系统性上拱的问题,同时又能保留列车在桥梁上行驶时轨道必要的预拱,将有效地提高桥梁区段轨道的动态平顺性。
3、本发明对铁路有砟轨道精测精捣或无砟轨道精测精调以及相关技术标准的制定也具有一定的参考价值。
附图说明
图1为本发明一种减弱铁路桥梁轨道上拱的方法的流程图。
图2为本发明中铁路桥梁轨道上拱示意图。
图3为本发明中动检里程修正示意图。
图4为本发明中高通滤波处理示意图。
图5为本发明中轨道上拱模型示意图。
图6为本发明中轨道预拱模型示意图。
具体实施方式
下面结合附图对本发明作进一步说明:
请参阅图1和图2,本发明提供了一种减弱铁路桥梁轨道上拱的方法,主要包括以下全部或部分步骤:
S1、数据获取。
通过轨检车或动检车、轨道几何状态测量仪或GPS+轨道检查仪或GPS+INS组合导航轨道检测设备检测轨道,分别获得桥梁上轨道动检高低数据A=[ki,li]和静检垂向偏差数据B=[ki,vi]。其中ki为里程,li、vi分别为轨道高低和垂向偏差,i为采样点序号(i=1,2,…)。
Figure GDA0003856016970000061
检测数据为离散采样点,采样间隔为0.125m-0.650m。
S2、数据预处理。
对步骤S1中得到的动检高低数据A进行里程修正,然后与静检垂向偏差数据B分别进行高通滤波处理,得处理后的动检高低数据A’和静检垂向偏差数据B’。
通过步骤S2实现动静检测数据在里程和波长的统一。具体过程:
S21、根据步骤S1中所得动检高低数据A、静检垂向偏差数据B,进行样条曲线绘制,得动静检波形图,参见图3。
S22、根据波形图的波谷点,分别得到由动静检所确定的相邻桥墩中心距离位置。参见图3,空心三角为动检高低确定的相邻桥墩中心距离位置,实心三角为静检垂向偏差确定的相邻桥墩中心距离位置。
S23、把静检所确定的相邻桥墩中心距离位置作为校正点,采用局部波形匹配来修正动检数据A的里程。
局部波形匹配采用线型修正法和样条插值。首先通过线型修正法消除动检里程偏差,再通过样条插值对动检数据进行重采样,完成动静检数据里程上的统一。
S24、相邻桥墩中心距离L作为高通滤波截止波长。如32m简支梁,L取32.75m。
S25、对静检垂向偏差数据B和S23中得到的动检高低数据进行高通滤波处理。
优选地,高通滤波通过离散傅里叶变换(DFT)实现。
里程修正和高通滤波处理后的动检高低数据A’和静检垂向偏差数据B’记为:
Figure GDA0003856016970000071
S3、动静互差计算。
根据步骤S2中所得动检高低数据A’和静检垂向偏差数据B’,计算静检与动检互差数据C。
C=B′-A′ (3)
S4、数据分段。
对步骤S2中所得静检数据B’和S3中得到的互差数据C,按照相邻桥墩中心距离L进行分段。
以采样间隔0.25m,L取32.75m为例,数据分段如下:
Figure GDA0003856016970000081
Figure GDA0003856016970000082
上式中,k1和kn为桥梁头尾两端相邻桥墩中心距离里程,且梁体均为32m梁。需要指出的是,实际中通常含其他桥梁类型和梁长,分段时需做相应调整,以保证分段后的检测数据b1、b2、…、br和c1、c2、…、cr分别与每个单元梁体相互对应。
S5、上拱模型计算。
对S4中分段后的静检垂向偏差数据b1、b2、…、br分别进行曲线拟合,以拟合残差的均方差最小为准则,获取最优桥梁轨道上拱模型:
Figure GDA0003856016970000083
式中x表示测点沿轨道方向至梁体头端相邻桥墩中心距离处的长度,取值范围[0,L],R1、w1、φ1、e1和f1、g1、h1、p1为待定参数。
实现S5的具体过程:
S51、将步骤S4中所得静检数据的桥梁分段数据里程统一转化至[0,L]。如将b1,b2,…,br中里程统一转换为[0,0.25,…,32.75],用变量x表示。
S52、对S51中得到的相同桥梁类型和梁长段静检数据统一进行最优化曲线拟合,获得最优拟合函数,作为同类型铁路桥梁的轨道上拱模型。
S6、预拱模型计算。
对S4中分段后的互差数据C分别进行曲线拟合,以拟合残差的均方差最小为准则,获取最优桥梁轨道预拱模型:
Figure GDA0003856016970000091
式中x与式(1)相同,取值范围[0,L],R2、w2、φ2、e2和f2、g2、h2、p2为待定参数。
实现S6具体过程:
S61、将步骤S4中互差数据C的分段数据里程统一转化至[0,L]。如将c1,c2,…,cr中里程统一转换为[0,0.25,…,32.75],用变量x表示。
S62、对S61中得到的相同桥梁类型和梁长段互差数据统一进行最优化曲线拟合,获得最优拟合函数,作为同类型铁路桥梁的轨道预拱模型。
S7、静检垂向偏差修正。
对步骤S1中得到的静检垂向偏差数据B进行上拱修正:
vi′(ki)=vi(ki)+ε(x)=vi(ki)+ε(ki-k0),ki-k0∈[0,L] (8)
式中vi’(ki)表示里程ki处上拱修正后的静检垂向偏差值,k0为每跨梁的头端相邻桥墩中心距离里程。
进行动检预拱修正
vi″=vi′-η(x)=vi′-η(ki-k0),ki-k0∈[0,L]
vi″(ki)=vi′(ki)-η(x)=vi′(ki)-η(ki-k0),ki-k0∈[0,L] (9)
式中vi”(ki)表示里程ki处动检预拱修正后的静检垂向偏差值,k0与式(12)相同,将经上拱修正和预拱修正后的垂向偏差和里程信息输入大机指导有砟轨道精捣或作为无砟轨道垂向调整依据指导精调作业。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其效物界定。

Claims (7)

1.一种减弱铁路桥梁轨道上拱的方法,其特征在于,包括以下步骤:
S1、数据获取;通过动检和静检检测轨道,动检为通过轨检车或动检车检测,静检为通过轨道几何状态测量仪或GPS+轨道检查仪或GPS+INS组合导航轨道检测设备检测轨道,动检和静检分别获得桥梁上轨道动检高低数据A=[ki,li]和静检垂向偏差数据B=[ki,vi];其中ki为里程,li、vi分别为轨道动检高低和静检垂向偏差;
S2、数据预处理;对步骤S1中得到的动检高低数据A进行里程修正,然后与静检垂向偏差数据B分别进行高通滤波处理,得处理后的动检高低数据A’和静检垂向偏差数据B’;包括:S21、根据步骤S1中所得动检高低数据A、静检垂向偏差数据B,进行样条曲线绘制,得动静检波形图;
S22、根据波形图的波谷点,分别得到由动静检所确定的相邻桥墩中心位置;
S23、把静检所确定的相邻桥墩中心位置作为校正点,采用局部波形匹配来修正动检数据A的里程;
S24、相邻桥墩中心距离L作为高通滤波截止波长;
S25、对静检垂向偏差数据B和S23中得到的动检高低数据进行高通滤波处理;
S3、动静互差计算;根据步骤S2中所得动检高低数据A'和静检垂向偏差数据B’,计算静检与动检互差数据C;
S4、数据分段;对步骤S2中所得静检垂向偏差数据B’和S3中得到的互差数据C,按照相邻桥墩中心距离L进行分段;
S5、上拱模型计算;对S4中分段后的静检垂向偏差数据分别进行曲线拟合,以拟合残差的均方差最小为准则,获取最优桥梁轨道上拱模型:
Figure FDA0003886842480000011
式中x表示测点沿轨道方向至梁体头端相邻桥墩中心处的长度,取值范围[0,L],R1、w1、φ1、e1和f1、g1、h1、p1为待定参数;
S6、预拱模型计算;对S4中分段后的互差数据分别进行曲线拟合,以拟合残差的均方差最小为准则,获取最优桥梁轨道预拱模型:
Figure FDA0003886842480000021
式中x与式(1)相同,R2、w2、φ2、e2和f2、g2、h2、p2为待定参数;
S7、静检垂向偏差修正;对步骤S1中得到的静检垂向偏差数据B进行上拱修正:
vi′(ki)=vi(ki)+ε(x)=vi(ki)+ε(ki-k0),ki-k0∈[0,L] (3)
式中vi’(ki)表示里程ki处上拱修正后的静检垂向偏差值,k0为每跨梁的头端相邻桥墩中心里程;
进行动检预拱修正:
vi″(ki)=vi′(ki)-η(x)=vi′(ki)-η(ki-k0),ki-k0∈[0,L] (4)
式中vi”(ki)表示里程ki处动检预拱修正后的静检垂向偏差值,k0与式(3)相同,将上拱修正和预拱修正后的垂向偏差和里程信息输入大机指导有砟轨道精捣或作为无砟轨道垂向调整依据指导精调作业。
2.如权利要求1所述的一种减弱铁路桥梁轨道上拱的方法,其特征在于,步骤S1包括步骤:
S11、通过轨检车或动检车获得桥梁区段轨道高低数据A=[ki,li],数据为离散采样点,里程与高低一一对应;
S12、通过轨道几何状态测量仪或GPS+轨道检查仪或GPS+INS组合导航轨道检测设备测量获得相同桥梁区段轨道垂向偏差数据B=[ki,vi],数据为离散采样点,里程与垂向偏差一一对应。
3.如权利要求1所述的一种减弱铁路桥梁轨道上拱的方法,其特征在于,步骤S4中各分段数据起终点里程与梁体两端相邻桥墩中心位置相对应。
4.如权利要求1所述的一种减弱铁路桥梁轨道上拱的方法,其特征在于,步骤S5包括:
S51、将步骤S4中所得静检数据的桥梁分段数据里程统一转化至[0,L];
S52、对S51中得到的相同桥梁类型和梁长段静检数据统一进行曲线拟合,以拟合残差的均方差最小为准则,获取最优桥梁轨道上拱模型。
5.如权利要求1所述的一种减弱铁路桥梁轨道上拱的方法,其特征在于,步骤S6包括以下全部或部分步骤:
S61、将步骤S4中所得互差数据C的分段数据里程统一转化至[0,L];
S62、对S61中得到的相同桥梁类型和梁长段互差数据统一进行曲线拟合,以拟合残差的均方差最小为准则,获取最优桥梁轨道预拱模型。
6.如权利要求1所述的一种减弱铁路桥梁轨道上拱的方法,其特征在于,对于钢梁桥因温度变化造成轨道上拱,在不同温度条件下测定轨道上拱的温度修正模型,即不同温度条件下静态上拱模型和动态预拱模型。
7.如权利要求1所述的一种减弱铁路桥梁轨道上拱的方法,其特征在于,根据步骤S7中得到的垂向偏差指导有砟轨道精捣或无砟轨道精调作业,钢梁桥轨道精捣或精调依据作业温度选取相应温度修正模型指导作业,消除铁路桥梁轨道系统性上拱误差,并保留列车动荷载所需的轨道预拱量,以提高列车在桥梁上行驶时的轨道高低中长波平顺性。
CN201910189583.XA 2019-03-13 2019-03-13 一种减弱铁路桥梁轨道上拱的方法 Active CN110020464B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910189583.XA CN110020464B (zh) 2019-03-13 2019-03-13 一种减弱铁路桥梁轨道上拱的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910189583.XA CN110020464B (zh) 2019-03-13 2019-03-13 一种减弱铁路桥梁轨道上拱的方法

Publications (2)

Publication Number Publication Date
CN110020464A CN110020464A (zh) 2019-07-16
CN110020464B true CN110020464B (zh) 2022-11-22

Family

ID=67189494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910189583.XA Active CN110020464B (zh) 2019-03-13 2019-03-13 一种减弱铁路桥梁轨道上拱的方法

Country Status (1)

Country Link
CN (1) CN110020464B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109811602A (zh) * 2019-03-13 2019-05-28 四川睿铁科技有限责任公司 一种高速铁路的精细化调轨方法及系统
CN111832618B (zh) * 2020-06-08 2024-03-22 江西日月明测控科技股份有限公司 轨道动、静态检查数据的匹配方法
CN112376429B (zh) * 2020-10-21 2022-09-13 中铁二十局集团有限公司 连续梁拱组合桥梁无砟轨道施工方法及装置
CN113073569B (zh) * 2021-04-11 2022-09-02 四川一宇钢结构工程有限公司 一种钢箱梁桥梁段整体扭转变形校正方法
CN114459505B (zh) * 2022-02-22 2023-12-26 北京交通大学 一种基于台账曲线特征点的动检数据绝对里程校准方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097608A (ja) * 2000-09-26 2002-04-02 Shimizu Corp 鉄道橋の架替方法
CN103132411A (zh) * 2011-11-23 2013-06-05 刘彬 一种高速铁路轨道静态平顺性分析调整方法
CN103835230A (zh) * 2012-11-21 2014-06-04 中铁第四勘察设计院集团有限公司 一种解决有砟轨道大跨桥梁端道砟窜动的装置
CN204676421U (zh) * 2015-05-18 2015-09-30 武汉二航路桥特种工程有限责任公司 拱轨式拱桥检修装置
CN106570299A (zh) * 2016-11-14 2017-04-19 东南大学 高速铁路钢桁拱桥车‑桥共振性能曲线测定方法
CN107895060A (zh) * 2017-09-25 2018-04-10 中铁二院工程集团有限责任公司 一种高速铁路大跨度拱桥的竖向位移控制方法
CN107988864A (zh) * 2017-12-12 2018-05-04 西南交通大学 桥梁变形与轨道随机不平顺检测装置与方法
CN109101734A (zh) * 2018-08-16 2018-12-28 交通运输部公路科学研究所 一种连续刚构桥梁下挠风险的预测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7827919B2 (en) * 2006-06-02 2010-11-09 Sells Gary L Multiple track railroad system
US8215869B2 (en) * 2009-07-27 2012-07-10 Terratech Consulting Ltd. Reinforced soil arch
CN105857340A (zh) * 2016-04-01 2016-08-17 郑君伟 基于组合导航的轨道检测系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097608A (ja) * 2000-09-26 2002-04-02 Shimizu Corp 鉄道橋の架替方法
CN103132411A (zh) * 2011-11-23 2013-06-05 刘彬 一种高速铁路轨道静态平顺性分析调整方法
CN103835230A (zh) * 2012-11-21 2014-06-04 中铁第四勘察设计院集团有限公司 一种解决有砟轨道大跨桥梁端道砟窜动的装置
CN204676421U (zh) * 2015-05-18 2015-09-30 武汉二航路桥特种工程有限责任公司 拱轨式拱桥检修装置
CN106570299A (zh) * 2016-11-14 2017-04-19 东南大学 高速铁路钢桁拱桥车‑桥共振性能曲线测定方法
CN107895060A (zh) * 2017-09-25 2018-04-10 中铁二院工程集团有限责任公司 一种高速铁路大跨度拱桥的竖向位移控制方法
CN107988864A (zh) * 2017-12-12 2018-05-04 西南交通大学 桥梁变形与轨道随机不平顺检测装置与方法
CN109101734A (zh) * 2018-08-16 2018-12-28 交通运输部公路科学研究所 一种连续刚构桥梁下挠风险的预测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Running Safety Analysis of High-Speed Railway Arch Bridge Under Seismic Excitations;B.Huang;《2018 3rd International Conference on Smart City and Systems Engineering (ICSCSE)》;20181230;第86-91页 *
杭长客专浙江段线下工程沉降评估技术研究;周俊;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;20141215(第12(2014)期);第C033-6页 *
武广铁路客运专线变截面道岔连续箱梁施工技术;张麒;《铁道建筑》;20100115(第431期);第86-88页 *

Also Published As

Publication number Publication date
CN110020464A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
CN110020464B (zh) 一种减弱铁路桥梁轨道上拱的方法
JP7037948B2 (ja) 最適な軌道を算出するための方法
CN1780752A (zh) 用来测量火车车轮圆度的测量装置
CN103132411A (zh) 一种高速铁路轨道静态平顺性分析调整方法
CN108413946B (zh) 一种车载全站仪位置参数的测量方法
CN112229587A (zh) 一种基于倾角仪间接测量高铁桥梁动挠度的方法
US20140180609A1 (en) Method of establishing the deflection and/or the stiffness of a supporting structure
CN111324925B (zh) 一种铁路桥梁整体刚度的评判方法
CN112118994A (zh) 确定轨道的铁轨的实际位置的方法
CN108920766B (zh) 一种基于基函数表示和稀疏正则化的桥梁影响线识别方法
JP2015145577A (ja) 鉄道橋梁における静的たわみの換算方法、及び衝撃係数の算出方法
CN201746752U (zh) 轨道检测装置
JP2023548734A (ja) 姿勢補正のために目標軌道延在形状を特定するための方法およびシステム
CN109614674A (zh) 一种高速铁路无砟轨道层间离缝脱空动态检测方法
US20230406377A1 (en) Method and system for determining correction values for correcting the position of a track
Kurhan et al. The Mathematical Support of Machine Surfacing for the Railway Track
CN109855771B (zh) 一种基于钢轨竖向加速度功率谱密度检测温度力的方法
JP5064773B2 (ja) 鉄道建築限界測定方法およびその測定装置
CN111832618B (zh) 轨道动、静态检查数据的匹配方法
JPH08261742A (ja) 鉄道用レ−ルの形状測定方法
CN103063172A (zh) 一种连续量测结构构件局部几何初始缺陷的装置及方法
CN115730476A (zh) 一种基于长波不平顺的轨道安全性评估方法
CN203037233U (zh) 一种连续量测结构构件局部几何初始缺陷的装置
CN201837345U (zh) 一种用于生产双块式轨枕的量具
CN113525429B (zh) 轨距检测装置及检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant