CN110018634A - 一种提升控制力矩陀螺带宽的自适应框架控制系统及方法 - Google Patents

一种提升控制力矩陀螺带宽的自适应框架控制系统及方法 Download PDF

Info

Publication number
CN110018634A
CN110018634A CN201910351813.8A CN201910351813A CN110018634A CN 110018634 A CN110018634 A CN 110018634A CN 201910351813 A CN201910351813 A CN 201910351813A CN 110018634 A CN110018634 A CN 110018634A
Authority
CN
China
Prior art keywords
speed
adaptive
controller
stage
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910351813.8A
Other languages
English (en)
Other versions
CN110018634B (zh
Inventor
魏文杉
史永丽
来林
李刚
赵雷
王裙
翟百臣
武登云
张激扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN201910351813.8A priority Critical patent/CN110018634B/zh
Publication of CN110018634A publication Critical patent/CN110018634A/zh
Application granted granted Critical
Publication of CN110018634B publication Critical patent/CN110018634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P.I., P.I.D.

Abstract

一种提升控制力矩陀螺带宽的自适应框架控制系统及方法,系统包括自适应双环PI控制器、转速观测器与轴承老化程度判断模块;自适应双环PI控制器用于控制力矩陀螺的低速框架电机控制,该自适应双环PI控制器建立在传统电流环与转速环双环PI控制器基础之上,其中电流环与转速环PI控制器中的增益参数均具备自适应调整功能;转速观测器用于观测控制力矩陀螺低速框架电机的转速的相对实际转速相较于相对指令转速的差距,并将此差距转换为自适应控制的判据;轴承老化程度判断模块用于判断轴承在长时间运行后,摩擦阻力矩与轴承初始状况下摩擦阻力矩的变化情况,自适应双环PI控制器的增益参数将根据上述摩擦阻力矩变化情况进行增益参数自适应调整。

Description

一种提升控制力矩陀螺带宽的自适应框架控制系统及方法
技术领域
本发明涉及一种提升控制力矩陀螺响应带宽的框架控制系统及方法,适用于控制力矩陀螺产品的框架控制。
背景技术
控制力矩陀螺是航天器姿态快速机动和稳定的核心执行部件,是由高速组件与低速框架两部分组成,相较于传统的航天器姿态执行机构而言,其具有的优势为输出力矩大,能效比高,响应速度快,输出力矩精度高。
由于控制力矩陀螺的低速框架轴系采用的是固体润滑的四点轴承,随着控制力矩陀螺的长期在轨运行,其低速框架轴系的摩擦阻力矩会逐渐增大。这是由于钢球循环滚动所造成的固体润滑膜的疲劳磨损以及伴随钢球滑动所造成的磨粒磨损所导致的固体润滑膜不断损耗,轴承的摩擦阻力矩也会持续增加。当循环次数超过一定极限时,润滑膜将出现明显疲劳磨损,轴承摩擦力矩将迅速增大。经仿真和实验验证,随着摩擦阻力矩的增加,控制力矩陀螺的响应带宽会随之下降,响应延时变大,当其响应时延超过整星控制系统的裕度时,会引起姿态控制回路的不稳定,卫星姿态开始逐渐震荡发散。
单框架控制力矩陀螺低速框架电机一般使用永磁同步电机并利用双环PI控制,文章“The Design,Ground Test and Flight Validation of a High Accuracy ServoScheme for Control Moment Gyroscope Application,”19th IFAC Symposium onAutomatic Control in Aerospace,2013.09,pp.466~471中,提出了利用双环PI控制器的方法来实现控制力矩陀螺框架电机的控制,且该方法已经成功地实现了在轨应用。对于已使用的角速度与电流双环PI控制器来说,若只选择提升响应带宽,就会牺牲控制稳定度,反之只追求控制稳定度,就会相应的牺牲一定的响应带宽。目前国内针对控制力矩陀螺的控制器参数设计通常需要在响应带宽与控制稳定度两个指标中做出折衷选择。因而对于已经长期在轨运行后的控制力矩陀螺产品而言,其摩擦阻力矩增大以后就会直接降低控制力矩陀螺的响应带宽,从而引发控制回路不稳定。专利CN 105786036 B提出利用加入前馈控制的方案来实现力矩控制精度提升的效果,但是并未给出在保证控制精度的条件下实现响应带宽提升的方案。
发明内容
本发明解决的技术问题是:克服现有技术和系统方案的不足,提供一种提升控制力矩陀螺响应带宽的框架控制系统及方法,解决当前控制力矩陀螺控制方法中存在的在高动态响应与高控制稳定度之间的矛盾,尤其还可以解决在长时间在轨运行后,由于框架摩擦阻力矩变大所造成的动态响应降低的问题。
本发明的技术方案:一种提升控制力矩陀螺带宽的自适应框架控制系统,包括自适应双环PI控制器、转速观测器与轴承老化程度判断模块;
自适应双环PI控制器用于控制力矩陀螺的低速框架电机控制,该自适应双环PI控制器建立在传统电流环与转速环双环PI控制器基础之上,其中电流环与转速环PI控制器中的增益参数均具备自适应调整功能;
转速观测器用于观测控制力矩陀螺低速框架电机的转速的相对实际转速相较于相对指令转速的差距,并将此差距转换为自适应控制的判据;
轴承老化程度判断模块用于判断轴承在长时间运行后,摩擦阻力矩与轴承初始状况下摩擦阻力矩的变化情况,自适应双环PI控制器的增益参数将根据上述摩擦阻力矩变化情况进行增益参数自适应调整。
转速观测器的具体工作过程为:
转速观测器用于观测框架的相对实际转速Vxr与相对指令转速Vxc之差,并根据Vxr与Vxc的差值作为判据实现分阶段自适应控制器参数的选取。
所述相对实际转速Vxr指:当前实际转速Vr与当前指令转速发出之时的实际转速Vr0之差,即Vxr=Vr-Vr0;所述相对指令转速Vxc指:当前指令转速Vc与当前指令转速发出之时的实际转速Vr0之差,即Vxc=Vc-Vr0
转速观测器将Vxc与Vxr之差分为三个阶段,其中第一个阶段为上升阶段,第二个阶段为过渡阶段,第三个阶段为平稳阶段;其中上升阶段与过渡阶段之间的转折转速Vz由转折系数λ与相对指令转速Vxc相乘得到。
当转速满足下述条件时,为第一个阶段:
当转速满足下述条件时,为第二个阶段:
当转速满足下述条件时,为第三个阶段:
所述转折系数λ选择范围为0.5-0.9。
所述轴承老化程度判断模块的具体工作过程为:
同个产品选定产品框架角度上四个固定的常用的位置,分别在每个固定角度实施0°/s-1°/s的阶跃指令,并记录相应的阶跃上升时间为T0,T1,T2,T3,并通过上述四个阶跃上升时间得到平均上升时间Ta;每个产品在初始状态下测得的平均上升时间定义为典型时间阈值Tw,在产品运行阶段,摩擦阻力矩与轴承初始状况下摩擦阻力矩的变化情况,即轴承的老化程度α跟据选定时刻的平均上升时间与典型时间阈值相比得到,即α=Ta/Tw
所述四个固定的常用的位置采用0°、90°、180°和270°。
一种提升控制力矩陀螺带宽的自适应框架控制方法,步骤如下:
(1)当转速观测器处于第一阶段即上升阶段时,计算得到自适应双环PI控制器中的增益系数;用转速观测器进行转速判断,当转速满足下述条件时,
则自适应双环PI控制器中的增益系数分别为:
K1=α·β·K10K3=α·β·K30
其中,自适应双环PI控制器中的增益系数Ki分别定义为:K1为转速环比例增益,K2为转速环积分增益,K3为电流环比例增益,K4为电流环积分增益;
将初始状态下,通过调试得到既满足控制力矩陀螺转速稳定度又能抗住外界耦合力矩的优化控制器增益系数称为初始设计恒增益系数Ki0:K10为初始转速环比例增益,K20为初始转速环积分增益,K30为初始电流环比例增益,K40为初始电流环积分增益;β为带宽倍增系数,且该倍增系数β大于1;α为轴承老化系数。
(2)当转速观测器处于第二阶段即过渡阶段时,计算得到自适应双环PI控制器中的增益系数;利用转速观测器进行转速判断,当转速满足下述条件时,
令当前周期的控制器增益系数取值为Ki_new,上一周期的控制器增益系数取值为Ki_old,则Ki_new=(Ki_old+Ki0)/2;
则自适应双环PI控制器中的增益系数分别为:
K1_new=(K1_old+K10)/2,K2_new=(K2_old+K20)/2,
K3_new=(K3_old+K30)/2,K4_new=(K4_old+K40)/2
其中,K1_new为本周期转速环比例增益,K2_new为本周期转速环积分增益,K3_new为本周期电流环比例增益,K4_new为本周期电流环积分增益;K1_old为上一周期转速环比例增益,K2_old为上一周期转速环积分增益,K3_old为上一周期电流环比例增益,K4_old为上一周期电流环积分增益;
(3)当转速观测器处于第三阶段即平稳阶段时,计算得到自适应双环PI控制器中的增益系数;利用转速观测器进行转速判断,当转速满足下述条件时,
则自适应双环PI控制器中的增益系数分别为Ki=Ki0
K1=K10,K2=K20,K3=K30,K4=K40
(4)将上述三步中求得的自适应双环PI控制器中的增益系数K1,K2,K3,K4,根据转速观测器所检测到所处控制阶段的不同进行相应控制器增益系数的赋值,完成控制力矩陀螺框架的响应带宽的自适应控制。
在转速指令变化之前,只接受从第一阶段到第二阶段到第三阶段顺序变化,而不接受逆变化;一旦转速指令发生变化则恢复至第一阶段。
本发明的有益效果:本发明采用了一种具有转速观测器的自适应控制系统,将整个控制过程分为三个阶段:上升阶段,过渡阶段和平稳阶段。通过使得双PI控制器均具备自适应控制能力,实现框架控制力矩陀螺同时得到高响应带宽与高控制稳定度,而不像之前方法中需要在两个指标中折衷选取控制器增益系数。另外本发明采用了一种具有轴承老化程度判断模块的自适应控制系统,得以实现随着轴承老化,系统可自适应调整控制器的响应带宽,使得控制力矩陀螺的框架响应带宽可以不随之降低。另外由于本发明中的过渡阶段采用了半步长插值迭代法实现双PI控制器增益系数的自适应调节,减少转速控制过程中的超调量,从而实现框架转速从上升到稳定过程的平稳过渡。
利用上述方法,使得控制力矩陀螺的框架控制具备自适应调节能力,无需在高响应带宽与高控制稳定度之间做出折衷选择,该控制器使得产品在保证高控制稳定度的同时,还增加了产品的响应带宽。使得产品可同时具备高响应带宽与高控制稳定度。同时,其所具备的自适应调节能力可解决由于产品长期在轨应用造成的轴承摩擦阻力矩增大所导致的响应带宽下降的问题。
附图说明
图1为本方法的在控制程序中实现的流程图。
图2为控制力矩陀螺使用原控制方法,即恒定增益的双环PI控制器所得到的转速响应曲线。
图3为控制力矩陀螺使用本专利中所述自适应控制方法所得到的转速响应曲线。
图4为控制力矩陀螺利用原控制方法所得到的图2中虚线框的放大图,为当前指令发出后15ms内的响应数据。
图5为控制力矩陀螺利用本专利中所述方法得到的图3中虚线框的放大图,为当前指令发出后15ms内的相应数据。
具体实施方式
本专利提出了一种提升控制力矩陀螺带宽的自适应框架控制系统及方法,与传统控制系统及方法不同的地方在于在系统中加入了转速观测器模块、轴承老化程度判断模块,同时双环PI控制器均为变增益控制器,通过转速观测器观测结果与轴承老化程度判断结果实现自适应PI控制。自适应控制体现在三个方面:(1)依据转速观测器监测结果实现三个阶段的自适应控制;(2)在上升阶段中依据轴承老化程度与增益倍增系数实现自适应调节;(3)在过渡阶段采用半步长插值迭代法进行增益系数自适应调节以减少转速控制过程中的超调量,从而实现从上升阶段到稳定阶段的平稳过渡。
转速观测器是通过比较相对实际转速与相对指令转速之间的关系得到其所在的不同控制阶段所决定的,所谓“相对”的概念是指相对于在指令发出之时,产品的实际转速值Vr0;此处提到的是相对实际转速Vxr即实际转速Vr与当前指令发出之时的实际转速Vr0之差即Vxr=Vr-Vr0;相对指令转速Vxc即指令转速Vc与当前指令发出之时实际转速Vr0之差即Vxc=Vc-Vr0。此处之所以利用相对转速的概念,是因为本方法是依据实际转速与指令转速之间的差值来进行自适应控制,得到转速指令发出时相对实际转速与相对的指令转速之间的关系,共分为三个控制阶段,当相对实际转速未达到转折转速之前,控制处于第一阶段,即上升阶段(A=1);当相对实际转速处于转折转速与相对指令转速之间,控制器设置处于第二阶段,即过渡阶段(A=2);当相对实际转速超过相对指令转速之后,控制器设置处于第三个阶段,即稳定阶段(A=3)。
在第一个阶段即上升阶段中,转速观测器需要满足的条件是,相对实际转速在未达到转折转速之前,转折转速为转折系数λ与相对指令转速相乘,其中依据惯量大小不同,λ取值范围为50%~90%。控制器增益系数的设置需要满足的条件是,最大程度保证框架控制系统稳定情况下能得到的更高带宽响应的增益系数。自适应控制器将引入两个参数分别为带宽倍增系数β和轴承老化系数α。其中,带宽倍增系数β(β>1)的设置意义在于其设置使得带宽能达到稳定阶段带宽的β倍,但是随着β的增大,产品的响应带宽不会无限制随之增大,会在βH处所对应的带宽下趋于平稳,从而达到产品的能力上限。因而在本方法中,β的取值可根据需求,选取(1~βH)。同时,由于轴承摩擦阻力矩在产品运行中会逐渐增加,因而需要定期标定轴承的老化系数,并将此老化系数纳入至上升阶段中的增益系数自适应调整中,目的是在产品长期运转后,利用增益参数的变化可以弥补轴承老化,实现产品在转速上升阶段,响应带宽不下降的目的。因而此处还引入了轴承老化系数α,该系数是通过判断框架在0°/s到1°/s阶跃指令下,框架转速的阶跃上升时间随着老化程度推移的降低程度。具体计算方式如下:同个产品选定产品框架角度上四个固定的常用的位置,例如(0°,90°,180°,270°)。分别在每个固定角度实施从0°/s到1°/s的阶跃指令,并记录相应的上升时间记录为T0,T1,T2,T3,并通过求上述四个阶跃上升时间得到平均上升时间Ta。每个产品在初始状态下测得的平均上升时间定义为典型时间阈值Tw,在产品运行阶段,轴承的老化程度α就跟据选定时刻的平均上升时间与典型时间阈值相比从而得到,即α=Ta/Tw
当转速观测器处于第一阶段即上升阶段时,利用转速观测器进行转速判断,当转速满足下述条件时,
则双环PI控制器中的增益系数分别为:
K1=α·β·K10K3=α·β·K30
其中,双环PI控制器中的增益系数Ki分别定义为:K1为转速环比例增益,K2为转速环积分增益,K3为电流环比例增益,K4为电流环积分增益;将初始状态下,通过调试得到既满足控制力矩陀螺转速稳定度又能抗住外界耦合力矩的优化控制器增益系数称为初始设计恒增益系数Ki0:K10为初始转速环比例增益,K20为初始转速环积分增益,K30为初始电流环比例增益,K40为初始电流环积分增益。
第二个阶段为过渡阶段,由于已经接近目标转速,为保证减少转速的超调,此时控制器增益系数的设定思路就是需要将上升阶段与稳定阶段实现转速的平滑过渡,因而在上升阶段应采用采用半步长插值迭代法实现控制器中的比例增益与积分增益平滑过渡。
当转速观测器处于第二阶段即过渡阶段时,利用转速观测器进行转速判断,当转速满足下述条件时,
将采用半步长插值迭代法实现控制器中的转速调节器的比例积分系数的平滑过渡。令本周期的控制器增益系数取值为Ki_new,上一周期的控制器增益系数取值为Ki_old,则Ki_new=(Ki_old+Ki0)/2。
则双环PI控制器中的增益系数分别为:
K1_new=(K1_old+K10)/2,K2_new=(K2_old+K20)/2,
K3_new=(K3_old+K30)/2,K4_new=(K4_old+K40)/2
其中,K1_new为本周期转速环比例增益,K2_new为本周期转速环积分增益,K3_new为本周期电流环比例增益,K4_new为本周期电流环积分增益;K1_old为上一周期转速环比例增益,K2_old为上一周期转速环积分增益,K3_old为上一周期电流环比例增益,K4_old为上一周期电流环积分增益。
第三个阶段为稳定阶段,由于已经达到目标转速,因而此时控制器增益系数的设定思路就是需要实现转速高稳定与高精度控制,同时该阶段的控制器增益系数还需要满足卫星技术指标所计算出的耦合力矩。因而该阶段的控制器增益系数的设定原则是在满足卫星耦合力矩需求下的实现最高的控制稳定度与精度。当转速观测器处于第三阶段即平稳阶段时,利用转速观测器进行转速判断,当转速满足下述条件时,
则双环PI控制器中的增益系数分别为Ki=Ki0
K1=K10,K2=K20,K3=K30,K4=K40
通过上述三个阶段中分别求得的控制器中的增益系数K1,K2,K3,K4,将根据转速观测器所测到所处控制阶段的不同进行相应控制器增益系数的赋值。由于在调速过程中转速会出现波动,为防止在调速过程中所处控制阶段出现反复跳变,因而在一条转速指令变化之前,控制流程只允许从第一阶段到第二阶段到第叁阶段顺序变化,而不接受逆变化。一旦转速指令发生变化,立即恢复至第一阶段。具体流程如图1所示,其含义如下段所述:
(1)每个控制周期中判断是否有更新的相对转速指令;如果存在更新的相对转速指令,则置位阶段标志位A=1;同时计算相对实际转速与相对指令转速;如果不存在更新的相对转速指令,则先对阶段标志位进行查询。(2)首先判断是否处于第一阶段,即阶段标志位是否满足A=1;如果标志位A=1时,则利用转速观测器判断当前相对转速是否已经达到第二阶段;当相对转速没有到达第二阶段时,则仍按照第一阶段的控制器增益系数进行赋值;一旦相对转速达到了第二阶段时,则置位阶段标志位A=2,同时该周期按照第二阶段的控制器增益系数进行赋值。(3)当阶段标志位不满足A=1时,再来判断是否处于第二阶段,即阶段标志位是否满足A=2,如果标志位A=2时,则利用转速观测器判断当前相对转速是否已经达到第三阶段;当相对转速没有达到第三阶段时,则仍按照第二阶段的控制器增益系数进行赋值;一旦相对转速已经达到了第三阶段时,则置位阶段标志位A=3,同时该周期按照第三阶段的控制器增益系数进行赋值。(4)当阶段标志位也不满足A=2时,说明此时已经处于第三阶段,则需按照第三阶段的控制器增益系数进行赋值。
通过对比原控制方法与本专利所提出的自适应控制方案从而证明本专利提出方法的有效性。
图2和图4给出了控制力矩陀螺使用原控制方法,即恒定增益的双环PI控制器所得到的转速响应曲线与响应带宽。该方法中K1=10,K2=1.2,K3=3.0,K4=0.1。
图3和图5给出了控制力矩陀螺使用本专利所提出的自适应控制方法,所得到的转速响应曲线与响应带宽。将上述提到的参数进行赋值。通过实验确定既满足控制力矩陀螺转速稳定度又能抗住外界耦合力矩的控制器恒增益系数:K10=10,K20=1.2,K30=3.0,K40=0.1。希望通过上述方法将现有带宽提升两倍,因而控制器第一阶段的控制器增益系数设定为K1h=20,K2h=0.6,K3h=6,K4h=0.05(即α=1,β=2),同时λ=0.9。
通过上述实验证明在保证同样稳态转速稳定度的同时,转速的响应时间由10.25ms缩短至5.4ms,响应带宽提升近2倍,与设计预期符合。同时还可以一定程度地降低转速超调。
本发明未公开技术属本领域技术人员公知常识。

Claims (8)

1.一种提升控制力矩陀螺带宽的自适应框架控制系统,其特征在于:包括自适应双环PI控制器、转速观测器与轴承老化程度判断模块;
自适应双环PI控制器用于控制力矩陀螺的低速框架电机控制,该自适应双环PI控制器建立在传统电流环与转速环双环PI控制器基础之上,其中电流环与转速环PI控制器中的增益参数均具备自适应调整功能;
转速观测器用于观测控制力矩陀螺低速框架电机的转速的相对实际转速相较于相对指令转速的差距,并将此差距转换为自适应控制的判据;
轴承老化程度判断模块用于判断轴承在长时间运行后,摩擦阻力矩与轴承初始状况下摩擦阻力矩的变化情况,自适应双环PI控制器的增益参数将根据上述摩擦阻力矩变化情况进行增益参数自适应调整。
2.根据权利要求1所述的一种提升控制力矩陀螺带宽的自适应框架控制系统,其特征在于:转速观测器的具体工作过程为:
转速观测器用于观测框架的相对实际转速Vxr与相对指令转速Vxc之差,并根据Vxr与Vxc的差值作为判据实现分阶段自适应控制器参数的选取。
所述相对实际转速Vxr指:当前实际转速Vr与当前指令转速发出之时的实际转速Vr0之差,即Vxr=Vr-Vr0;所述相对指令转速Vxc指:当前指令转速Vc与当前指令转速发出之时的实际转速Vr0之差,即Vxc=Vc-Vr0
转速观测器将Vxc与Vxr之差分为三个阶段,其中第一个阶段为上升阶段,第二个阶段为过渡阶段,第三个阶段为平稳阶段;其中上升阶段与过渡阶段之间的转折转速Vz由转折系数λ与相对指令转速Vxc相乘得到。
3.根据权利要求2所述的一种提升控制力矩陀螺带宽的自适应框架控制系统,其特征在于:当转速满足下述条件时,为第一个阶段:
当转速满足下述条件时,为第二个阶段:
当转速满足下述条件时,为第三个阶段:
4.根据权利要求2所述的一种提升控制力矩陀螺带宽的自适应框架控制系统,其特征在于:所述转折系数λ选择范围为0.5-0.9。
5.根据权利要求1所述的一种提升控制力矩陀螺带宽的自适应框架控制系统,其特征在于:所述轴承老化程度判断模块的具体工作过程为:
同个产品选定产品框架角度上四个固定的常用的位置,分别在每个固定角度实施0°/s-1°/s的阶跃指令,并记录相应的阶跃上升时间为T0,T1,T2,T3,并通过上述四个阶跃上升时间得到平均上升时间Ta;每个产品在初始状态下测得的平均上升时间定义为典型时间阈值Tw,在产品运行阶段,摩擦阻力矩与轴承初始状况下摩擦阻力矩的变化情况,即轴承的老化程度α跟据选定时刻的平均上升时间与典型时间阈值相比得到,即α=Ta/Tw
6.根据权利要求5所述的一种提升控制力矩陀螺带宽的自适应框架控制系统,其特征在于:所述四个固定的常用的位置采用0°、90°、180°和270°。
7.一种提升控制力矩陀螺带宽的自适应框架控制方法,其特征在于步骤如下:
(1)当转速观测器处于第一阶段即上升阶段时,计算得到自适应双环PI控制器中的增益系数;用转速观测器进行转速判断,当转速满足下述条件时,
则自适应双环PI控制器中的增益系数分别为:
K1=α·β·K10K3=α·β·K30
其中,自适应双环PI控制器中的增益系数Ki分别定义为:K1为转速环比例增益,K2为转速环积分增益,K3为电流环比例增益,K4为电流环积分增益;
将初始状态下,通过调试得到既满足控制力矩陀螺转速稳定度又能抗住外界耦合力矩的优化控制器增益系数称为初始设计恒增益系数Ki0:K10为初始转速环比例增益,K20为初始转速环积分增益,K30为初始电流环比例增益,K40为初始电流环积分增益;β为带宽倍增系数,且该倍增系数β大于1;α为轴承老化系数。
(2)当转速观测器处于第二阶段即过渡阶段时,计算得到自适应双环PI控制器中的增益系数;利用转速观测器进行转速判断,当转速满足下述条件时,
令当前周期的控制器增益系数取值为Ki_new,上一周期的控制器增益系数取值为Ki_old,则Ki_new=(Ki_old+Ki0)/2;
则自适应双环PI控制器中的增益系数分别为:
K1_new=(K1_old+K10)/2,K2_new=(K2_old+K20)/2,
K3_new=(K3_old+K30)/2,K4_new=(K4_old+K40)/2
其中,K1_new为本周期转速环比例增益,K2_new为本周期转速环积分增益,K3_new为本周期电流环比例增益,K4_new为本周期电流环积分增益;K1_old为上一周期转速环比例增益,K2_old为上一周期转速环积分增益,K3_old为上一周期电流环比例增益,K4_old为上一周期电流环积分增益;
(3)当转速观测器处于第三阶段即平稳阶段时,计算得到自适应双环PI控制器中的增益系数;利用转速观测器进行转速判断,当转速满足下述条件时,
则自适应双环PI控制器中的增益系数分别为Ki=Ki0
K1=K10,K2=K20,K3=K30,K4=K40
(4)将上述三步中求得的自适应双环PI控制器中的增益系数K1,K2,K3,K4,根据转速观测器所检测到所处控制阶段的不同进行相应控制器增益系数的赋值,完成控制力矩陀螺带宽的自适应控制。
8.根据权利要求1所述的一种提升控制力矩陀螺带宽的自适应框架控制方法,其特征在于:在转速指令变化之前,只接受从第一阶段到第二阶段到第三阶段顺序变化,而不接受逆变化;一旦转速指令发生变化则恢复至第一阶段。
CN201910351813.8A 2019-04-28 2019-04-28 一种提升控制力矩陀螺带宽的自适应框架控制系统及方法 Active CN110018634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910351813.8A CN110018634B (zh) 2019-04-28 2019-04-28 一种提升控制力矩陀螺带宽的自适应框架控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910351813.8A CN110018634B (zh) 2019-04-28 2019-04-28 一种提升控制力矩陀螺带宽的自适应框架控制系统及方法

Publications (2)

Publication Number Publication Date
CN110018634A true CN110018634A (zh) 2019-07-16
CN110018634B CN110018634B (zh) 2021-11-16

Family

ID=67192778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910351813.8A Active CN110018634B (zh) 2019-04-28 2019-04-28 一种提升控制力矩陀螺带宽的自适应框架控制系统及方法

Country Status (1)

Country Link
CN (1) CN110018634B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113467494A (zh) * 2021-06-29 2021-10-01 北京控制工程研究所 一种控制力矩陀螺框架转速控制参数整定方法

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851428A (zh) * 2006-04-30 2006-10-25 北京航空航天大学 控制力矩陀螺用力矩测试气浮转台
JP2008059362A (ja) * 2006-08-31 2008-03-13 Toshiba Corp サーボ制御装置
CN101145027A (zh) * 2007-10-17 2008-03-19 北京航空航天大学 一种高精度磁悬浮控制力矩陀螺框架伺服控制系统
CN101763038A (zh) * 2009-12-22 2010-06-30 北京航空航天大学 一种双框架磁悬浮控制力矩陀螺结构模态振动控制方法
CN101895252A (zh) * 2010-07-09 2010-11-24 上海新时达电气股份有限公司 电机伺服驱动器控制器参数自动调整装置及其方法
US20110011982A1 (en) * 2009-07-20 2011-01-20 Jason Herman Modular control moment gyroscope (cmg) system for spacecraft attitude control
US20110153123A1 (en) * 2009-12-22 2011-06-23 The Boeing Company Algorithm for simultaneous attitude maneuver and momentum dumping
CN102819219A (zh) * 2012-06-13 2012-12-12 南京工业大学 一种延长回转支承使用寿命的智能运动控制方法
CN103092208A (zh) * 2013-01-09 2013-05-08 哈尔滨工业大学 基于sgcmg和rw的航天器高精度快速姿态机动方法
US20130125667A1 (en) * 2010-07-14 2013-05-23 University Of Florida Research Foundation, Inc. System and method for assessing the performance of an attitude control system for small satellites
CN103412484A (zh) * 2013-07-18 2013-11-27 北京控制工程研究所 一种控制力矩陀螺框架扰动力矩抑制方法
CN103592848A (zh) * 2013-11-06 2014-02-19 北京控制工程研究所 一种变速控制力矩陀螺群的精准敏捷操纵方法
US20140055074A1 (en) * 2012-08-24 2014-02-27 Kabushiki Kaisha Yaskawa Denki Motor control device
JP2014044625A (ja) * 2012-08-28 2014-03-13 Nagoya Institute Of Technology 移動体制御装置、その制御方法、及び制御プログラム
CN104062935A (zh) * 2014-06-24 2014-09-24 北京航空航天大学 一种双框架磁悬浮变速控制力矩陀螺集成数字控制系统
WO2015003044A1 (en) * 2013-07-02 2015-01-08 University Of Florida Research Foundation, Inc. Triple flywheel assembly with attitude jitter minimization
CN104391444A (zh) * 2014-12-10 2015-03-04 福州大学 一种基于离散系统改进单神经元的pid整定方法
CN105141201A (zh) * 2015-10-09 2015-12-09 北京航空航天大学 一种磁悬浮控制力矩陀螺高速电机无位置换相误差校正控制系统及方法
CN105739301A (zh) * 2016-02-18 2016-07-06 江西洪都航空工业集团有限责任公司 一种参数可自整定的电机控制器的控制方法
CN105763119A (zh) * 2016-04-20 2016-07-13 北京控制工程研究所 一种cmg框架永磁同步电机的控制系统及控制方法
CN105786036A (zh) * 2016-04-05 2016-07-20 北京控制工程研究所 一种抑制转子动不平衡扰动的控制力矩陀螺框架控制系统及方法
CN205584053U (zh) * 2016-03-30 2016-09-14 西华大学 一种水泵用六相无刷直流电机及其分数阶pi转速控制器
CN106338911A (zh) * 2016-08-23 2017-01-18 北京精密机电控制设备研究所 一种应用于回转式机电作动器伺服系统的专家pid控制方法
CN107544466A (zh) * 2017-09-15 2018-01-05 北京控制工程研究所 一种单框架控制力矩陀螺低速框架故障诊断方法
CN108319148A (zh) * 2018-03-22 2018-07-24 北京航空航天大学 一种控制力矩陀螺框架伺服系统低转速高精度控制方法
CN109270946A (zh) * 2018-11-13 2019-01-25 北京航空航天大学 挠性航天器的姿态控制方法

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851428A (zh) * 2006-04-30 2006-10-25 北京航空航天大学 控制力矩陀螺用力矩测试气浮转台
JP2008059362A (ja) * 2006-08-31 2008-03-13 Toshiba Corp サーボ制御装置
CN101145027A (zh) * 2007-10-17 2008-03-19 北京航空航天大学 一种高精度磁悬浮控制力矩陀螺框架伺服控制系统
US20110011982A1 (en) * 2009-07-20 2011-01-20 Jason Herman Modular control moment gyroscope (cmg) system for spacecraft attitude control
CN101763038A (zh) * 2009-12-22 2010-06-30 北京航空航天大学 一种双框架磁悬浮控制力矩陀螺结构模态振动控制方法
US20110153123A1 (en) * 2009-12-22 2011-06-23 The Boeing Company Algorithm for simultaneous attitude maneuver and momentum dumping
CN101895252A (zh) * 2010-07-09 2010-11-24 上海新时达电气股份有限公司 电机伺服驱动器控制器参数自动调整装置及其方法
US20130125667A1 (en) * 2010-07-14 2013-05-23 University Of Florida Research Foundation, Inc. System and method for assessing the performance of an attitude control system for small satellites
CN102819219A (zh) * 2012-06-13 2012-12-12 南京工业大学 一种延长回转支承使用寿命的智能运动控制方法
US20140055074A1 (en) * 2012-08-24 2014-02-27 Kabushiki Kaisha Yaskawa Denki Motor control device
JP2014044625A (ja) * 2012-08-28 2014-03-13 Nagoya Institute Of Technology 移動体制御装置、その制御方法、及び制御プログラム
CN103092208A (zh) * 2013-01-09 2013-05-08 哈尔滨工业大学 基于sgcmg和rw的航天器高精度快速姿态机动方法
WO2015003044A1 (en) * 2013-07-02 2015-01-08 University Of Florida Research Foundation, Inc. Triple flywheel assembly with attitude jitter minimization
CN103412484A (zh) * 2013-07-18 2013-11-27 北京控制工程研究所 一种控制力矩陀螺框架扰动力矩抑制方法
CN103592848A (zh) * 2013-11-06 2014-02-19 北京控制工程研究所 一种变速控制力矩陀螺群的精准敏捷操纵方法
CN104062935A (zh) * 2014-06-24 2014-09-24 北京航空航天大学 一种双框架磁悬浮变速控制力矩陀螺集成数字控制系统
CN104391444A (zh) * 2014-12-10 2015-03-04 福州大学 一种基于离散系统改进单神经元的pid整定方法
CN105141201A (zh) * 2015-10-09 2015-12-09 北京航空航天大学 一种磁悬浮控制力矩陀螺高速电机无位置换相误差校正控制系统及方法
CN105739301A (zh) * 2016-02-18 2016-07-06 江西洪都航空工业集团有限责任公司 一种参数可自整定的电机控制器的控制方法
CN205584053U (zh) * 2016-03-30 2016-09-14 西华大学 一种水泵用六相无刷直流电机及其分数阶pi转速控制器
CN105786036A (zh) * 2016-04-05 2016-07-20 北京控制工程研究所 一种抑制转子动不平衡扰动的控制力矩陀螺框架控制系统及方法
CN105763119A (zh) * 2016-04-20 2016-07-13 北京控制工程研究所 一种cmg框架永磁同步电机的控制系统及控制方法
CN106338911A (zh) * 2016-08-23 2017-01-18 北京精密机电控制设备研究所 一种应用于回转式机电作动器伺服系统的专家pid控制方法
CN107544466A (zh) * 2017-09-15 2018-01-05 北京控制工程研究所 一种单框架控制力矩陀螺低速框架故障诊断方法
CN108319148A (zh) * 2018-03-22 2018-07-24 北京航空航天大学 一种控制力矩陀螺框架伺服系统低转速高精度控制方法
CN109270946A (zh) * 2018-11-13 2019-01-25 北京航空航天大学 挠性航天器的姿态控制方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DU, ZHICHAO等: "Adaptive Switch Gain Time-Varying Sliding Mode Controller Design for the Low Speed Servo System in aControl Moment Gyroscope", 《IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS & AUTOMATION》 *
LI, HAITAO等: "Precise Control for Gimbal System of Double Gimbal Control Moment Gyro Based on Cascade Extended State Observer", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》 *
ZHAO, L等: "A Low Speed Servo System of CMG Gimbal Based on Adaptive Sliding Mode Control and Iterative Learning Compensation", 《2015 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION》 *
徐衍亮等: "控制力矩陀螺用高性能永磁无刷直流电机研究", 《中国惯性技术学报》 *
李倩: "滑动回转支承摩擦动力学仿真与实验研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
李海涛等: "自适应角速度估计器在磁悬浮控制力矩陀螺框架伺服系统中的应用", 《光学精密工程》 *
杜航等: "控制力矩陀螺框架谐波减速驱动系统建模与仿真", 《空间控制技术与应用》 *
谢冬华等: "回转支承自适应负载的运动控制方法", 《南京工业大学学报》 *
钟臻峰: "永磁同步电动机全转速范围基于模型参考自适应的无传感器控制", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113467494A (zh) * 2021-06-29 2021-10-01 北京控制工程研究所 一种控制力矩陀螺框架转速控制参数整定方法
CN113467494B (zh) * 2021-06-29 2023-11-10 北京控制工程研究所 一种控制力矩陀螺框架转速控制参数整定方法

Also Published As

Publication number Publication date
CN110018634B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN105811840B (zh) 一种永磁同步伺服电机的无差拍电流控制方法
CN110018634A (zh) 一种提升控制力矩陀螺带宽的自适应框架控制系统及方法
CN109940618A (zh) 一种基于正交模糊pid的串联机械手驱动系统运动控制方法
CN115037202A (zh) 基于柔性神经网络pid参数自适应控制方法及系统
CN111614294A (zh) 一种基于终端滑模的永磁同步电机矢量控制方法
CN111509762B (zh) 一种多端柔性直流换流站的pmt控制方法和系统
CN110737197B (zh) 一种基于无模型的柴油机转速自适应自抗扰控制方法
CN116865331A (zh) 一种基于动态矩阵预测控制的虚拟直流电机低电压穿越方法
US10551817B2 (en) Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis
CN104458126A (zh) 磁悬浮轴承的控制方法和装置
CN112821840B (zh) 一种永磁同步电机非光滑自适应直接转矩控制方法和系统
CN115309046A (zh) 一种伺服系统自适应反推非线性非奇异终端滑模控制方法
CN114977928A (zh) 一种永磁同步伺服系统速度环和位置环参数自整定方法
CN106571759B (zh) 一种显著提升定位系统响应的前馈方法
CN109842152B (zh) 风电机组参与惯量响应的控制方法及装置
CN110677079B (zh) 一种永磁同步电机速度控制模式扰动观测器
CN113675886A (zh) 一种虚拟同步机转动惯量和阻尼系数协同自适应控制方法
CN109308008B (zh) 具有异常应对能力的自抗扰控制装置
JP5092597B2 (ja) 駆動制御装置
CN115987156B (zh) 一种推进变频器的滑模控制方法及系统
CN116248003B (zh) 基于滑模控制的开关磁阻电机自抗扰速度控制方法和系统
JP2020510569A (ja) タービンエンジンのプロペラの速度およびパワーを制御するための方法
CN116111653B (zh) Prsv模式下考虑平衡点优化的风电apc系统及方法
CN113315449B (zh) 开关磁阻电机低速变载控制方法、装置及开关磁阻电机
CN113992085A (zh) 速度传感器感应电机变转速变转矩跟随调节系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant