CN110013877A - 一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂及其制备方法 - Google Patents

一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂及其制备方法 Download PDF

Info

Publication number
CN110013877A
CN110013877A CN201910156035.7A CN201910156035A CN110013877A CN 110013877 A CN110013877 A CN 110013877A CN 201910156035 A CN201910156035 A CN 201910156035A CN 110013877 A CN110013877 A CN 110013877A
Authority
CN
China
Prior art keywords
transition metal
catalyst
carbon nanotube
schiff base
late transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910156035.7A
Other languages
English (en)
Other versions
CN110013877B (zh
Inventor
李翠勤
李锋
李杨
张志秋
张娜
王俊
王越
陈丽铎
高宇新
王玉如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN201910156035.7A priority Critical patent/CN110013877B/zh
Publication of CN110013877A publication Critical patent/CN110013877A/zh
Application granted granted Critical
Publication of CN110013877B publication Critical patent/CN110013877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J31/1625Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2217At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • B01J35/19
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/0252Salen ligands or analogues, e.g. derived from ethylenediamine and salicylaldehyde
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂及其制备方法。该催化剂的结构式如(I)所示的:其中R1为苯环或C2~C6的烷基链,M为Ni、Co和Pd。催化剂同时具有均相催化剂和非均相催化剂的特点,稳定性高,重复利用性好。所述合成方法通过独特的反应物,提高产物的稳定性以及活性中心的负载量。

Description

一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合 催化剂及其制备方法
技术领域
本发明涉及一种烯烃聚合催化剂及其制备方法,更特别地涉及一种席夫碱配体共价接枝碳纳米管负载过渡金属烯烃聚合催化剂及其制备方法,属于催化剂和有机化学合成技术领域。
背景技术
目前,乙烯齐聚用催化剂的研究主要集中在前过渡金属中的铬、锆、钛和后过渡金属中的铁、钴、镍类催化体系,其中后过渡金属催化剂具高活性、对极性基团高的容忍性等优点,成为乙烯齐聚领域的研究热点之一。
近年来,科研工作者对后过渡金属催化剂进行了大量的研究,开发了许多具有新型配体结构和金属催化活性中心的后过渡金属催化剂,其中烯烃齐聚用的后过渡金属催化剂主要是Shell公司开发SHOP型催化剂(Ⅳ),除此之外,还研发了具有二齿配位结构和三齿配位结构的后过渡金属催化剂。其中,N,O配位的水杨醛亚胺配体由于具有改变配体取代基及骨架实现催化活性调控的优点,成为烯烃聚合用后过渡金属催化剂研究的热点之一。
Kim等人(Ethylene oligomerizations to low-carbon linearα-olefins bystructure modulated phenoxy-imine nickel(II)complexes combined with aluminumsesquichloride[J],Applied Catalysis A General,2005,287(1):98-107)报道了一类二齿水杨醛亚胺镍催化剂,该催化剂在助催化剂乙基倍半氯化铝(EAS)活化下,催化乙烯齐聚,活性高达5×108g oligomer/(mol Ni·h·atm),齐聚产物主要为低碳烯烃,且产物中不仅含有α-烯烃,而且还含有支链烯烃。
Yanke等人((Phenoxyimidazolyl-salicylaldimine)iron complexes:synthesis,properties and iron catalysed ethylene reactions[J],DaltonTransactions,2014,43(37):13913-13923)报道了一类水杨醛亚胺铁催化剂,该催化剂在助催化剂EtAlCl2活化下,催化乙烯聚合,甲苯为溶剂时,乙烯齐/聚合产物中含有1-丁烯、乙基和丁基甲苯及聚乙烯;氯苯为溶剂时,乙烯齐/聚合产物中含有C4-C12的烯烃和C30的高度支化烯烃。
Malgas等人(The application of novel dendritic nickel catalysts in theoligomerization of ethylene[J],Catalysis Communications,2008,9(7):1612-1617)报道了一类树状水杨醛亚胺镍催化剂,该催化剂在助催化剂EtAlCl2的活化下,催化乙烯齐聚的活性为1.40×106g/(mol·Ni·h),齐聚产物主要为C10和C12的长链烯烃。
李翠勤等人(“扫帚型”镍系催化剂的合成及催化乙烯齐聚的性能[J],高分子材料科学与工程,2016,32(5):44-48.)报道了一种“扫帚型”分子桥联水杨醛亚胺Ni催化剂,该催化剂在助催化剂MAO活化下,催化乙烯齐聚活性高达2.33×106g/(mol·Ni·h),聚合产物主要是C8以下烯烃。
虽然上述这些以水杨醛为配体的后过渡金属催化剂虽然通过调节其配体骨架,实现了对催化活性和产物的调控,然而,这类均相催化剂制备得到的α-烯烃分布较宽,且重复利用性较差。为了降低产物分布以及提高催化剂的重复利用性,负载型非均相催化剂成为该领域的一个研究热点。
Kurokawa等人(Oligomerization of ethylene to produce linearα-olefinsusing heterogeneous catalyst prepared by immobilization ofα-diimine nickel(II)complex into fluorotetrasilicic mica interlayer[J],Catalysts,2013,3(1):125-136)报道了一种云母为载体的负载型催化剂,该催化剂以二亚胺苯配体镍为催化活性中心;该催化剂催化乙烯齐聚产物主要为C10~C18,且该催化剂具有良好的重复利用性。
Pergher等人(Heterogeneous complexes of nickel MCM-41withβ-diimineligands:Applications in olefin oligomerization[J],Journal ofCatalysis,2015,323:45-54.)报道了一种以MCM-41分子筛为载体的负载镍系催化剂;该催化剂催化乙烯齐聚具有较高的催化活性和选择性,且该催化剂4次重复利用后,仍具有较高的催化活性和选择性。
如上所述,虽然负载型后过渡金属催化剂克服了均相后过渡金属催化剂重复利用性差的缺点,但是目前烯烃聚合所用的负载型催化剂均是通过物理负载的方式,活性中心与载体之间通过分子间作用力或氢键作用,在应用过程中,稳定性较差,重复利用次数越多,有效活性中心降低就越多,共价负载型后过渡金属催化剂不仅可以克服均相催化剂重复利用性差和易污染的缺点,而且还可以克服传统负载型催化剂活性组分易流失的缺点,成为目前烯烃聚合用过渡金属催化剂领域中的研究热点和重点,更是本发明得以完成的动力所在和基础所倚。
发明内容
本发明提供了一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂及其制备方法,所述催化剂同时具有均相催化剂和非均相催化剂的特点,稳定性高,重复利用性好。所述合成方法通过独特的反应物,提高产物的稳定性以及活性中心的负载量,具有良好的应用前景。
本发明所解决的技术问题采用以下技术方案来实现:
一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂,该催化剂的结构式如(I)所示的:
其中R1为苯环或C2~C6的烷基链,M为Ni、Co和Pd。
上述的席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂的制备方法,其包括以下步骤:
步骤一,在氮气氛围下,将脂肪二胺或芳二胺、4-羟基水杨醛和无水硫酸钠加入有机溶剂A中,然后缓慢升温至回流温度,并在回流下进行反应,反应结束后冷却至室温,过滤得到固体,采用有机溶剂A洗涤固体多次,真空干燥,得到羟基水杨醛席夫碱配体化合物(II);
步骤二,在氮气氛围下,将后过渡金属化合物的有机溶剂A溶液缓慢滴入到步骤一中的羟基水杨醛席夫碱混合物(II)中,回流条件下反应,反应结束后,室温静止一定时间,过滤得到固体,采用有机溶剂A洗涤固体3-5次;然后将洗涤后的固体在真空条件下干燥,得到羟基席夫碱络合后过渡金属化合物(III);
步骤三,氮气氛围下,将经酸化和活化处理后的多壁碳纳米管、化合物(III)加入到有机溶剂B中,在回流条件下反应,反应结束后冷却至室温,过滤所得固体,采用有机溶剂B洗涤该固体多次,然后与真空条件下干燥,得到所述的席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂(I)。
上述的席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂的制备方法,其特征在于:在所述步骤一和步骤二中,有机溶剂A为甲醇或乙醇,4-羟基水杨醛与脂肪二胺或芳二胺的摩尔比为2:1~4:1,无水硫酸钠与脂肪二胺或芳二胺的摩尔比为1:1。
上述步骤一中回流反应时间为12-24小时,所述步骤二中恒温反应时间为12-24小时,静止时间为24-36小时。
上述步骤二中,后过渡金属化合物为乙酰丙酮镍、乙酰丙酮钴或乙酰丙酮钯,后过渡金属化合物与化合物(II)的摩尔比为1.1:1~2:1。
上述步骤三中,有机溶剂B为四氢呋喃,反应时间为24-48小时,活化多壁碳纳米管中活性基团与化合物(III)的摩尔比为1:2。
上催化剂在助催化剂甲基铝氧烷(MAO)活化下,催化乙烯聚合产物主要为C4~C16的线性烯烃。
本发明的有益效果为:本发明提供了一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂及其制备方法,催化活性主要是由水杨醛席夫碱配合物中配体与金属中性共同决定的,其中席夫碱配体起主要作用;催化剂的稳定性主要是载体碳纳米管决定的,二者互相结合才使得这种催化剂不仅具有传统均相催化剂的特点,而且还具有传统非均相催化剂的特性。所述催化剂具有优异的稳定性、重复利用性和催化活性,以及所述制备方法通过独特反应物、特定有机反应等,从而可以得到性能优异的目的产物,具有良好的应用前景、推广价值和实际生产潜力。
附图说明
图1是实施例1羟基席夫碱配体的红外光谱。
图2是实施例1羟基席夫碱镍络合物的红外光谱。
图3是实施例1羟基席夫碱共价接枝碳纳米管负载镍催化剂的红外光谱。
图4是助催化剂用量对羟基席夫碱共价接枝碳纳米管负载镍催化剂催化乙烯齐聚性能的影响曲线图。
图5乙烯压力对羟基席夫碱共价接枝碳纳米管负载镍催化剂催化乙烯齐聚性能的影响。
图6羟基席夫碱共价接枝碳纳米管负载镍催化剂催化乙烯齐聚的重复利用结果曲线图。
具体实施方式
下面结合实验对本发明进一步描述:
实施例1席夫碱配体共价接枝碳纳米管负载镍催化剂的制备:
步骤一:在氮气氛围下,将0.60克(0.01mol)乙二胺、2.44克(0.02mol)4-羟基水杨醛和0.90克无水硫酸钠加入15mL无水乙醇中,回流条件下反应12小时,反应结束后,室温静置24小时,过滤得到固体,采用无水乙醇洗涤固体3-5次;然后将洗涤后的固体在真空条件下干燥,得到羟基水杨醛席夫碱配体(III),收率为95.73%,其红外谱图见图1,从图1可以看出,3420cm-1左右处为酚羟基(ph-OH)的特征吸收峰,2950cm-1处为-CH2-的特征吸收峰,1630和1550cm-1左右处出现了席夫碱C=N的特征吸收峰,1455cm-1左右处出现了苯环骨架的特征吸收峰,1110cm-1左右处出现了在C-N的特征吸收峰,这些特征峰的出现证实了乙二胺与4-羟基水杨醛发生了席夫碱反应,合成了羟基水杨醛席夫碱配体。
步骤二:在氮气氛围下,将上述步骤一所得的羟基水杨醛席夫碱配体溶于无水乙醇中,然后将2.83克(0.011mol)乙酰丙酮镍溶于无水乙醇中,将所得的乙酰丙酮镍的乙醇溶液滴加到配体的乙醇溶液中,回流条件下反应24小时;反应结束后,室温下静置24小时,过滤得到固体产物,采用无水乙醇洗涤固体3-5次,然后在真空条件下干燥12小时,得到羟基水杨醛席夫碱络合镍化合物,收率为81.62%;羟基水杨醛席夫碱络合镍化合物红外谱图见图2,从图2可以看出,3420cm-1左右处酚羟基(ph-OH)的特征吸收峰减弱,1630和1550cm-1左右处席夫碱C=N的特征吸收峰向低频移动,580cm-1左右处出现了在N-Ni的特征吸收峰,这些特征峰的出现证实了镍化合物与席夫碱发生了络合反应,生成了羟基席夫碱镍络合物。
步骤三:在氮气氛围下,将经酸化和活化处理后的多臂碳纳米管0.100g(0.0003mol羟基)和步骤二制得的羟基席夫碱络合镍催化剂0.325克(0.001mol)加入到20mL四氢呋喃中,然后缓慢升温并在回流下进行反应24小时,反应结束后冷却至室温,过滤所得固体,将该固体采用四氢呋喃洗涤3次,并于真空条件下室温干燥,得到所述的席夫碱配体共价接枝碳纳米管负载镍烯烃聚合催化剂,其红外谱图见图3,从图3可以看出,3420cm-1左右处为羟基的特征吸收峰,与羟基席夫碱镍络合物的红外谱图相比,该峰强度增强,主要是由于该羟基峰主要是羟基席夫碱配体中ph-OH和碳纳米管中的羟基峰重合的结果。1630和1550cm-1左右处为席夫碱C=N的特征吸收峰,1455cm-1左右处出现了苯环骨架的特征吸收峰,580cm-1左右处出现了在N-Ni的特征吸收峰。与羟基席夫碱镍络合物的红外谱图相比,1400-1000范围的吸收峰变弱,这主要是由于羟基席夫碱镍络合物在碳纳米管上的负载量较低。但是关键的特征峰的出现也证实了羟基席夫碱镍络合物负载到了碳纳米管,生成了羟基席夫碱共价接枝碳纳米管负载镍催化剂。
实施例2席夫碱配体共价接枝碳纳米管负载镍烯烃聚合催化剂的制备:
步骤一:在氮气氛围下,将1.18克(0.01mol)己二胺、6.10克(0.05mol)4-羟基水杨醛和1.8克无水硫酸钠加入30mL无水甲醇中,回流条件下反应12小时,反应结束后,室温静置36小时,过滤得到固体,采用无水甲醇洗涤固体3-5次;然后将洗涤后的固体在真空条件下干燥,得到羟基席夫碱络合后过渡金属化合物(III),收率为94.5%。
步骤二:在氮气氛围下,将上述步骤一所得的羟基水杨醛席夫碱配体溶于无水甲醇中,然后将2.83克(0.011mol)乙酰丙酮镍溶于无水甲醇中,将所得的乙酰丙酮镍的甲醇溶液滴加到配体的甲醇醇溶液中,回流条件下反应24小时;反应结束后,室温下静置24小时,过滤得到固体产物,采用无水甲醇洗涤固体3-5次,然后在真空条件下干燥24小时,得到羟基席夫碱络合镍化合物,收率为85.6%。
步骤三:在氮气氛围下,将经酸化和活化处理后的多壁碳纳米管0.100g(0.0003mol羟基)和步骤二制得的羟基席夫碱络合镍催化剂0.325克(0.001mol)加入到20mL四氢呋喃中,然后缓慢升温并在回流下进行反应36小时,反应结束后冷却至室温,过滤所得固体,将该固体采用四氢呋喃洗涤3次,并于真空条件下室温干燥,得到所述的席夫碱配体共价接枝碳纳米管负载镍烯烃聚合催化剂。
实施例3席夫碱配体共价接枝碳纳米管负载钴烯烃聚合催化剂的制备:
步骤一:在氮气氛围下,将1.76克(0.02mol)丁二胺、4.88克(0.04mol)4-羟基水杨醛和1.8克无水硫酸钠加入30mL无水乙醇中,然后缓慢升温并在回流下反应12小时,反应结束后冷却至室温,过滤得到羟基水杨醛席夫碱配体混合物;
步骤二:在氮气氛围下,将7.83克(0.022mol)乙酰丙酮钴溶于乙醇中,然后缓慢滴加到步骤一所得的羟基水杨醛席夫碱配体混合物中,室温下反应24小时,反应结束后,加入无水乙醚,在0℃下静止36小时,过滤得到固体产物,将该固体产物采用0℃无水乙醚洗涤3次,于真空条件下干燥12小时,得到羟基席夫碱络合钴化合物,收率为81.6%;
步骤三:在氮气氛围下,将经酸化和活化处理后的多臂碳纳米管0.100g(0.0003mol羟基)和步骤二制得的羟基席夫碱络合物后过渡金属催化剂0.329克(0.001mol)加入到20mL二氯甲烷中,然后缓慢升温并在回流下进行反应24小时,反应结束后冷却至室温,过滤所得固体,将该固体采用二氯甲烷洗涤3次,并于真空条件下室温干燥,得到所述的席夫碱配体共价接枝碳纳米管负载钴过渡金属烯烃聚合催化剂。
实施例4席夫碱配体共价接枝碳纳米管负载钯催化剂的制备:
步骤一:在氮气氛围下,将1.2克(0.02mol)丁二胺二胺、4.88克(0.04mol)4-羟基水杨醛和1.8克无水硫酸钠加入30mL乙醇中,然后缓慢升温并在回流下反应12小时,反应结束后冷却至室温,过滤得到羟基水杨醛席夫碱配体混合物,收率为90.12%;
步骤二:在氮气氛围下,将6.71克(0.022mol)乙酰丙酮钯溶于乙醇中,然后缓慢滴加到步骤一所得的羟基水杨醛席夫碱配体混合物中,室温下反应24小时,反应结束后,加入无水乙醚,在0℃下静止36小时,过滤得到固体产物,将该固体产物采用0℃无水乙醚洗涤3次,于真空条件下干燥12小时,得到羟基席夫碱络合后过渡钯化合物,收率为83.76%;
步骤三:在氮气氛围下,将经酸化和活化处理后的多臂碳纳米管0.100g(0.0003mol羟基)和步骤二制得的羟基席夫碱络合后过渡钯化合物0.329克(0.001mol)加入到20mL二氯甲烷中,然后缓慢升温并在回流下进行反应24小时,反应结束后冷却至室温,过滤所得固体,将该固体采用二氯甲烷洗涤3次,并于真空条件下室温干燥,得到所述的席夫碱配体共价接枝碳纳米管负载钯烯烃聚合催化剂。
实施例5席夫碱配体共价接枝纳米管负载镍催化剂催化乙烯聚合性能:
采用实施例1中合成的席夫碱配体共价接枝纳米管负载镍催化剂为主催化剂,首先将50ml反应釜抽真空并用乙烯置换三次后,在乙烯气体保护下加入15mL环己烷溶剂;在25℃下,以Al/Ni比为500加入助催化剂MAO;将1mL浓度为5mg/mL主催化剂的环己烷5mL溶液加到反应釜中,通入乙烯至0.5MPa并维持该压力,恒压反应30min后,放空至常压;用气相色谱对齐聚产物进行分析,同时也做了负载前的均相催化剂-羟基席夫碱镍络合物羟基席夫碱镍络合物催化乙烯聚合性能的实验,结果见表1。助催化剂用量对羟基席夫碱共价接枝碳纳米管负载镍催化剂催化乙烯齐聚性能的影响见图4,由图4可见,采用本发明制备的羟基席夫碱共价接枝碳纳米管负载镍催化剂羟基席夫碱共价接枝碳纳米管负载镍催化剂在本发明的乙烯聚合方法中,Al/Ni摩尔比为700时催化活性最大,达到7.45×106g/(mol Ni·h)。而随着Al/Ni摩尔比的增大,催化剂活性呈现减小的趋势。当Al/Ni摩尔比较小时,助催化剂MAO仅用来消除反应体系中残存的水和氧,用于活化主催化剂使其形成活性物种的MAO量很少;随着Al/Ni摩尔比的增大,用于活化主催化剂羟基席夫碱共价接枝碳纳米管负载镍催化剂的MAO量增加,因此,催化活性也随之增加;当Al/Ni摩尔比大于700时,过量的MAO堆积会在羟基席夫碱共价接枝碳纳米管负载镍催化剂中心处,阻碍乙烯分子的插入,催化活性降低。当摩尔比为700时,C8+烯烃选择性为31.76%,达到最佳。综合考虑,最优Al/Ni摩尔比为700。乙烯压力对羟基席夫碱共价接枝碳纳米管负载镍催化剂催化乙烯齐聚性能的影响见图5,图5可知,随着反应压力从0.1MPa增加到2.0MPa时,羟基席夫碱共价接枝碳纳米管负载镍催化剂的催化活性先增大后变化幅度较小,当反应压力为0.5MPa时,催化活性为7.45×106g/(mol Ni·h),C8+的选择性最高,为31.76%;当反应压力2.0MPa时,催化活性为10.29×106g/(mol Ni·h),C8+的选择性降低,为17.71%;这是由于在高压条件下有利于乙烯齐聚催化体系中乙烯的消除而促进链终止速率,高压有利于低碳烯烃的产生。
表1催化剂催化乙烯齐聚性能对比
由表1可知,本发明所述负载型催化剂是利用具有催化活性的均相催化剂活性基团与活化碳纳米管的活性基团发生化学反应,以共价键的形式将无机载体与有机化合物结合,所得的负载型催化剂具有很好的稳定性、活性中心分布均匀等优点,且羟基席夫碱共价接枝碳纳米管负载镍催化剂催化乙烯齐聚的活性高于负载前的均相催化剂-羟基席夫碱镍络合物,且活性相差一个数量级,这进一步表明采用碳纳米管共价负载后,催化活性中心分散均匀,增加了原料分子乙烯与活性中心的接触,增加了催化活性,且负载后的催化剂具有良好的循环稳定性。
催化剂的循环稳定性测试:
采用本发明所述的羟基席夫碱共价接枝碳纳米管负载镍催化剂,考察了其用于乙烯齐聚的循环稳定性,即重复进行上述的测试例5的乙烯齐聚方法,而当反应结束后,可对所得液相体系进行过滤,得到催化剂,用环己烷充分洗涤多次后,干燥,从而可用于下一次的反应,借此考察催化剂的循环稳定性和循环催化性能。
分别在循环使用1次、2次、4次、6次、8次和10次后,测量其各个性能数据,结果见下表2,为了更直接地进行对比,将第1次的性能数据(即测试例5的数据)也一同列出。
表2催化剂的循环稳定性和循环催化性能
由上表2可见,本发明的乙烯齐聚化剂具有优异的循环稳定性,在循环使用10次后,仍具有高的催化活性,尤其是仍具有非常优异的高碳(C6+)烯烃选择性,表现出了优异的高碳(C6+)烯烃选择性的循环稳定性。这进一步说明了本发明所述的催化剂由于催化活性中心与无机载体碳纳米管之间是以共价键的形式结合,相比于传统负载型催化剂物理吸附负载,循环稳定性好,可多次重复利用。
实施例6席夫碱配体共价接枝纳米管负载钴和钯催化乙烯聚合性能:
分别采用实施例3和实施例4中合成的席夫碱配体共价接枝纳米管负载钴和席夫碱配体共价接枝纳米管负载钯为主催化剂,首先将50ml反应釜抽真空并用乙烯置换三次后,在乙烯气体保护下加入15mL环己烷溶剂;在25℃下,以Al/Ni比为500加入助催化剂MAO;将1mL浓度为5mg/mL主催化剂的环己烷5mL溶液加到反应釜中,通入乙烯至0.5MPa并维持该压力,恒压反应30min后,放空至常压;用气相色谱对齐聚产物进行分析,席夫碱配体共价接枝纳米管负载钴和席夫碱配体共价接枝纳米管负载钯催化乙烯聚合性能的实验,结果见表3。
表3席夫碱配体共价接枝纳米管负载钴和钯催化剂催化乙烯齐聚性能对比
由表3可知,羟基席夫碱共价接枝碳纳米管负载钯催化剂催化乙烯齐聚的活性高于羟基席夫碱共价接枝碳纳米管负载钴催化剂,且C8+烯烃。
综上所述,本发明提供了一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂及其制备方法,所述催化剂具有优异的稳定性和重复利用性能,所述合成制备方法通过独特反应物,从而可以得到稳定性很高的共价键负载型后过渡金属催化剂,为该化合物提供了全新的合成方法,具有良好的应用前景、推广价值和实际生产潜力。

Claims (7)

1.一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂,其特征在于,该催化剂的结构式如(I)所示的:
其中R1为苯环或C2~C6的烷基链,M为Ni、Co和Pd。
2.如权利要求1所述的席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂的制备方法,其包括以下步骤:
步骤一,在氮气氛围下,将脂肪二胺或芳二胺、4-羟基水杨醛和无水硫酸钠加入有机溶剂A中,然后缓慢升温至回流温度,并在回流下进行反应,反应结束后冷却至室温,过滤得到固体,采用有机溶剂A洗涤固体多次,真空干燥,得到羟基水杨醛席夫碱配体化合物(II);
步骤二,在氮气氛围下,将后过渡金属化合物的有机溶剂A溶液缓慢滴入到步骤一中的羟基水杨醛席夫碱混合物(II)中,回流条件下反应,反应结束后,室温静止一定时间,过滤得到固体,采用有机溶剂A洗涤固体3-5次;然后将洗涤后的固体在真空条件下干燥,得到羟基席夫碱络合后过渡金属化合物(III);
步骤三,氮气氛围下,将经酸化和活化处理后的多壁碳纳米管、化合物(III)加入到有机溶剂B中,在回流条件下反应,反应结束后冷却至室温,过滤所得固体,采用有机溶剂B洗涤该固体多次,然后与真空条件下干燥,得到所述的席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂(I)。
3.根据权利要求2所述的席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂的制备方法,其特征在于:在所述步骤一和步骤二中,有机溶剂A为甲醇或乙醇,4-羟基水杨醛与脂肪二胺或芳二胺的摩尔比为2:1~4:1,无水硫酸钠与脂肪二胺或芳二胺的摩尔比为1:1。
4.根据权利要求2所述的席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂的制备方法,其特征在于:所述步骤一中回流反应时间为12-24小时,所述步骤二中恒温反应时间为12-24小时,静止时间为24-36小时。
5.根据权利要求2所述的席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂的制备方法,其特征在于,所述步骤二中,后过渡金属化合物为乙酰丙酮镍、乙酰丙酮钴或乙酰丙酮钯,后过渡金属化合物与化合物(II)的摩尔比为1.1:1~2:1。
6.根据权利要求2所述的席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂的制备方法,其特征在于:所述步骤三中,有机溶剂B为四氢呋喃,反应时间为24-48小时,活化多壁碳纳米管中活性基团与化合物(III)的摩尔比为1:2。
7.根据权利要求1所述一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂,其特征在于,该催化剂在助催化剂甲基铝氧烷(MAO)活化下,催化乙烯聚合产物主要为C4~C16的线性烯烃。
CN201910156035.7A 2019-03-01 2019-03-01 一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂及其制备方法 Active CN110013877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910156035.7A CN110013877B (zh) 2019-03-01 2019-03-01 一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910156035.7A CN110013877B (zh) 2019-03-01 2019-03-01 一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110013877A true CN110013877A (zh) 2019-07-16
CN110013877B CN110013877B (zh) 2020-03-10

Family

ID=67189140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910156035.7A Active CN110013877B (zh) 2019-03-01 2019-03-01 一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110013877B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776533A (zh) * 2019-11-01 2020-02-11 东北石油大学 乙烯齐聚催化剂及其制备方法、乙烯齐聚方法
CN113145166A (zh) * 2020-01-22 2021-07-23 中国石油化工股份有限公司 环氧烷烃水合制二醇的复合催化剂
CN113416147A (zh) * 2021-06-28 2021-09-21 上海应用技术大学 一种席夫碱-金属有机配合物及其制备方法与应用
CN113634283A (zh) * 2021-08-02 2021-11-12 西安凯立新材料股份有限公司 一种乙炔氢氯化反应的铜基复合催化剂及方法
CN116212963A (zh) * 2023-02-27 2023-06-06 安徽泽升科技有限公司 一种氘代碘甲烷的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3455832A (en) * 1963-09-09 1969-07-15 Monsanto Co Schiff bases
US20060040822A1 (en) * 2004-08-23 2006-02-23 Shveima Joseph S Catalyst compositions, processes, and products utilizing pillared clays
CN103418435A (zh) * 2013-08-22 2013-12-04 东北石油大学 一种超支化镍系烯烃聚合催化剂及其制备方法
CN105229018A (zh) * 2013-04-17 2016-01-06 瑞来斯实业公司 一种新型过渡金属主催化剂及其制备工艺
CN106188153A (zh) * 2016-07-05 2016-12-07 中国石油天然气股份有限公司 一种乙烯齐聚用后过渡金属催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3455832A (en) * 1963-09-09 1969-07-15 Monsanto Co Schiff bases
US20060040822A1 (en) * 2004-08-23 2006-02-23 Shveima Joseph S Catalyst compositions, processes, and products utilizing pillared clays
CN105229018A (zh) * 2013-04-17 2016-01-06 瑞来斯实业公司 一种新型过渡金属主催化剂及其制备工艺
CN103418435A (zh) * 2013-08-22 2013-12-04 东北石油大学 一种超支化镍系烯烃聚合催化剂及其制备方法
CN106188153A (zh) * 2016-07-05 2016-12-07 中国石油天然气股份有限公司 一种乙烯齐聚用后过渡金属催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASOUD SALAVATI-NIASARI ET AL.: "Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex", 《APPLIED SURFACE SCIENCE》 *
李翠勤等: "水杨醛缩胺类双席夫碱过渡金属配合物的合成与表征", 《化学与生物工程》 *
王俊等: "树枝状钴催化剂的合成及催化乙烯齐聚性能", 《化学通报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776533A (zh) * 2019-11-01 2020-02-11 东北石油大学 乙烯齐聚催化剂及其制备方法、乙烯齐聚方法
CN113145166A (zh) * 2020-01-22 2021-07-23 中国石油化工股份有限公司 环氧烷烃水合制二醇的复合催化剂
CN113145166B (zh) * 2020-01-22 2023-08-29 中国石油化工股份有限公司 环氧烷烃水合制二醇的复合催化剂
CN113416147A (zh) * 2021-06-28 2021-09-21 上海应用技术大学 一种席夫碱-金属有机配合物及其制备方法与应用
CN113634283A (zh) * 2021-08-02 2021-11-12 西安凯立新材料股份有限公司 一种乙炔氢氯化反应的铜基复合催化剂及方法
CN113634283B (zh) * 2021-08-02 2023-06-30 西安凯立新材料股份有限公司 一种乙炔氢氯化反应的铜基复合催化剂及方法
CN116212963A (zh) * 2023-02-27 2023-06-06 安徽泽升科技有限公司 一种氘代碘甲烷的制备方法
CN116212963B (zh) * 2023-02-27 2024-01-09 安徽泽升科技股份有限公司 一种氘代碘甲烷的制备方法

Also Published As

Publication number Publication date
CN110013877B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
CN110013877A (zh) 一种席夫碱配体共价接枝碳纳米管负载后过渡金属烯烃聚合催化剂及其制备方法
CN102827312B (zh) 亚乙基苊(α-二亚胺)镍烯烃催化剂及其制备方法与应用
Shao et al. Ethylene oligomerization promoted by group 8 metal complexes containing 2-(2-pyridyl) quinoxaline ligands
Alzamly et al. Linear α-olefin oligomerization and polymerization catalyzed by metal-organic frameworks
CN107641138A (zh) 用于乙烯和1‑己烯聚合的含有邻位二苯甲基取代的不对称α‑二亚胺镍(Ⅱ)配合物
CN108484549A (zh) 一种化合物、配合物及制备方法和用途
CN109174191B (zh) 一种乙烯选择性齐聚反应的催化剂
Belov et al. Olefin Metathesis by First‐Row Transition Metals
CN109894151A (zh) 一种负载型茂金属催化剂及其制备方法和用途
CN112570031A (zh) 适用于二氧化碳加氢制高碳烃的催化剂及其制备和应用
CN109438153B (zh) 一种香茅醛选择脱羰基化反应制备2,6-二甲基-2-庚烯的方法
CN110746468B (zh) 星型吡啶亚胺镍系催化剂及其制备方法、应用
CN102050840B (zh) 含萘环的α-二亚胺镍(Ⅱ)配合物及其制备和应用
CN107233921B (zh) 用改性纤维素负载SalenMX制备催化剂的方法和应用
CN103374084A (zh) 一种氯化镁/二氧化硅/四氢呋喃负载后过渡金属催化剂及其制备和应用
CN114939438B (zh) 一种烯属不饱和羰基化合物选择性加氢的方法及其催化剂
CN102358759B (zh) 具有氢键结合位点的镍金属催化剂前体及其合成方法和应用
CN110776533B (zh) 乙烯齐聚催化剂及其制备方法、乙烯齐聚方法
CN106925353B (zh) 催化剂及其应用
CN114988980A (zh) 一种乙烯高活性齐聚生产1-辛烯的方法
CN109939736B (zh) 碳纳米管负载金属乙烯齐聚催化剂及制备方法和用途
CN109957050B (zh) 不对称(α-二亚胺)镍烯烃催化剂及其制备方法和应用
CN105669883B (zh) 一种原位共聚制备宽/双峰聚乙烯的方法
CN111253230A (zh) 一种水相催化5-羟甲基糠醛加氢制备3-羟甲基环戊酮的方法
CN109535396B (zh) 多孔有机聚合物配体第四副族金属配合物及用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant