CN110013848B - 一种用于乙酰丙酸加氢制γ-戊内酯的催化剂及其制备方法 - Google Patents

一种用于乙酰丙酸加氢制γ-戊内酯的催化剂及其制备方法 Download PDF

Info

Publication number
CN110013848B
CN110013848B CN201910350205.5A CN201910350205A CN110013848B CN 110013848 B CN110013848 B CN 110013848B CN 201910350205 A CN201910350205 A CN 201910350205A CN 110013848 B CN110013848 B CN 110013848B
Authority
CN
China
Prior art keywords
catalyst
levulinic acid
hydrogenation
gamma
valerolactone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910350205.5A
Other languages
English (en)
Other versions
CN110013848A (zh
Inventor
陈志浩
孙海杰
彭智昆
赵继俊
丁丽
冯茜
陈玲霞
李会吉
李永宇
刘欣改
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Tobacco Research Institute of CNTC
Original Assignee
Zhengzhou Tobacco Research Institute of CNTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Tobacco Research Institute of CNTC filed Critical Zhengzhou Tobacco Research Institute of CNTC
Priority to CN201910350205.5A priority Critical patent/CN110013848B/zh
Publication of CN110013848A publication Critical patent/CN110013848A/zh
Application granted granted Critical
Publication of CN110013848B publication Critical patent/CN110013848B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种用于乙酰丙酸加氢制γ‑戊内酯的催化剂及其制备方法,属于催化剂制备技术领域。本发明的催化剂包括活性组分内核、包裹在活性组分内核外的活性组分层;所述活性组分内核为M‑B非晶态合金,M选自Zn、Cu、Fe、Co、Ni中的至少一种;所述活性组分层为Ru‑B非晶态合金;M‑B非晶态合金中M原子和Ru‑B非晶态合金中Ru原子的物质的量之比为1:0.05~1.5。本发明的用于乙酰丙酸加氢制γ‑戊内酯的催化剂的亲水性好,具有高活性和高γ‑戊内酯选择性。

Description

一种用于乙酰丙酸加氢制γ-戊内酯的催化剂及其制备方法
技术领域
本发明涉及一种用于乙酰丙酸加氢制γ-戊内酯的催化剂及其制备方法,属于催化剂制备技术领域。
背景技术
随着世界范围内现代工业和交通技术发展,能源和燃料的需求量大幅增加。目前为止,80%以上的需求源自于存量减少而价格升高的化石燃料。因此,寻求更清洁、持续性更强的能源原料显得尤为重要,而木质纤维素生物质作为碳储量最大的可再生能源,是化石燃料最有可能的替代品。
在木质纤维素生物质化工中,γ-戊内酯是非常重要的平台化合物,它可以直接用作燃料添加剂、绿色溶剂、香料等,也可以继续反应生成汽油、柴油和航空燃料等。目前,合成γ-戊内酯最佳反应路线为乙酰丙酸加氢,加氢过程可以使用氢气,也可以使用甲酸或多元醇等作为替代氢源。而乙酰丙酸可以通过简单的纤维素和半纤维素水解产生,同时纤维素水解过程中会产生与乙酰丙酸等摩尔比例的甲酸。所以,从碳原子经济性和分离成本上考虑,开发能够在水相中采用甲酸或氢气进行乙酰丙酸加氢的高活性、选择性的催化剂至关重要。
现有技术中,《Co/γ-Al2O3催化乙酰丙酸加氢合成γ-戊内酯的研究》一文中公开了一种用于乙酰丙酸加氢合成γ-戊内酯的催化剂,(张琳,陆晓蕾等.Co/γ-Al2O3催化乙酰丙酸加氢合成γ-戊内酯的研究[J].2013.21(7):68-71.)该文献的催化剂的制备方法是将由等体积浸渍法制备的Co/γ-Al2O3催化剂、1.67g乙酰丙酸和40mL甲醇加入高压釜,通氢气置换高压釜中空气,然后通氢气至反应压力,缓慢升温至反应温度进行反应得到。采用该催化剂催化乙酰丙酸加氢制γ-戊内酯时,γ-戊内酯的选择性最高仅能达到81.4%,其选择性较差。
此外,现有技术中,乙酰丙酸加氢制γ-戊内酯多数是在有机相中进行的,由于原料乙酰丙酸一般利用生物质水解产生,采用有机相时需要对水解产生的乙酰丙酸进行分离,并且产物γ-戊内酯的极性较小,采用有机相也加大了产物从体系中分离的难度。
发明内容
本发明的目的是提供一种用于乙酰丙酸加氢制γ-戊内酯的催化剂。该催化剂的亲水性好、γ-戊内酯的选择性好。
本发明还提供一种用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法,该方法工艺简单,易于实现。
为实现上述目的,本发明的用于乙酰丙酸加氢制γ-戊内酯的催化剂的技术方案是:
一种用于乙酰丙酸加氢制γ-戊内酯的催化剂,包括活性组分内核、包裹在活性组分内核外的活性组分层;所述活性组分内核为M-B非晶态合金,M选自Zn、Cu、Fe、Co、Ni中的至少一种;所述活性组分层为Ru-B非晶态合金;M-B非晶态合金中M原子和Ru-B非晶态合金中Ru原子的物质的量之比为1:(0.05~1.5)。
该催化剂亲水性好,具有高活性和高γ-戊内酯选择性。
所述用于乙酰丙酸加氢制γ-戊内酯的催化剂还包括包裹在活性组分层外的助剂外壳;所述助剂外壳为氧化铝。以氧化铝作为助剂外壳可以进一步提高γ-戊内酯的选择性,使γ-戊内酯的选择性高于97%。
助剂外壳中Al原子与M-B非晶态合金中M原子的物质的量之比为(0.05~1.5):1。该物质的量之比的Al原子和M原子可以增强催化剂的γ-戊内酯选择性。
本发明的用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的技术方案是:
一种上述用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法,包括如下步骤:
1)将M-B非晶态合金加入Ru溶胶中,在保护气氛下进行凝胶化;
2)加入硼氢化物进行反应,反应完全得到沉淀,将沉淀进行洗涤,得Ru-B包裹的M-B催化剂。
该制备方法操作简单,易于实现。
所述M-B非晶态合金的制备方法,包括如下步骤:在金属M的可溶性盐水溶液中加入硼氢化物进行反应得到沉淀,将沉淀洗涤至中性即得。该方法的目的是将金属M元素转化为M-B化合态的形式,得到M-B非晶态合金,为下一步反应做准备。
所述金属M的可溶性盐水溶液中M原子与硼氢化物中B原子的物质的量之比为1:(5~50)。该物质的量的比例可以使反应均匀、稳定地进行。
所述Ru溶胶中Ru原子与硼氢化物中B原子的物质的量之比为1:(5~50)。该物质的量的比例可以使反应均匀、稳定地进行。
步骤2)中,加入硼氢化物进行反应的温度为0~50℃。该反应温度下可以使反应更稳定。
所述Ru溶胶的制备方法为:在Ru的可溶性盐溶液中加入强碱溶液至不再产生沉淀,然后加入柠檬酸溶液至沉淀完全溶解,即得;所述强碱溶液中OH-的浓度为0.1~10mol/L;所述柠檬酸溶液中柠檬酸的浓度为0.01~5mol/L。上述浓度保证Ru溶胶在催化剂表面的高分散性,以确保催化剂的高活性。
上述用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法,还包括步骤:将Ru-B包裹的M-B催化剂加入到Al溶胶中,在保护气氛下进行凝胶化,固液分离得固体,将固体洗涤即得。通过该方法制得的催化剂γ-戊内酯的选择性高达97%以上。
附图说明
图1为本发明用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例1中Zn-B@Ru-B@Al2O3催化剂的TEM测试图;
图2为本发明用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例2中Cu-B@Ru-B@Al2O3催化剂的TEM测试图;
图3为本发明用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例3中Fe-B@Ru-B@Al2O3催化剂的TEM测试图;
图4为本发明用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例4中Co-B@Ru-B@Al2O3催化剂的TEM测试图;
图5为本发明用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例5中Ni-B@Ru-B@Al2O3催化剂的TEM测试图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
下面实施例中,M-B非晶态合金的制备中,可溶性M盐可以为M的盐酸盐、硝酸盐或硫酸盐等,优选为盐酸盐、硝酸盐。从原料的成本方面考虑,优选的,硼氢化物为硼氢化钠或硼氢化钾。
Ru溶胶的制备:
取2.4g RuCl3·3H2O加入到50mL蒸馏水中配成RuCl3溶液,将4mol/L的NaOH溶液滴加到RuCl3溶液中,直至不再有沉淀生成为止;再加入1mol/L的柠檬酸溶液,直至沉淀完全溶解,即得Ru溶胶。
上述Ru溶胶的制备过程中,可溶性Ru盐还可以为Ru的硝酸盐或硫酸盐等,氢氧化钠也可以替换为氢氧化钾,Ru溶胶为水合氢氧化钌胶状溶液。
在Pt溶胶的凝胶化过程中,为形成稳固的凝胶结构,优选的,凝胶化是在温度为50~150℃、保护气体压力为1~5MPa下保持1~5h。保护气体可选择氮气、氩气、氢气等,从抗氧化效果方面考虑,优选的,所述保护气体选择氢气。
Al溶胶的制备:
取0.41g AlCl3溶于50mL蒸馏水中,将4mol/L的NaOH溶液滴加到AlCl3溶液中,直至不再有沉淀生成为止;再加入4mol/L的NaOH溶液直至沉淀完全溶解,即得Al溶胶。
上述Al溶胶的制备过程中,可溶性Al盐溶液还可以为Al的硝酸盐或硫酸盐溶液等。所述氢氧化钠也可以替换为氢氧化钾。Al溶胶为水合氢氧化铝胶状溶液。在Al溶胶的凝胶化过程中,优选的,凝胶化是在温度为50~150℃、保护气体压力为1~5MPa下保持1~5h。保护气体可选择氮气、氩气、氢气等,优选的,所述保护气体选择氢气。
本发明的用于乙酰丙酸加氢制γ-戊内酯的催化剂经BET测得的比表面积为50~70cm2/g。催化剂中,B的质量含量为0.02%~0.05%。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的实施例1
本实施例的用于乙酰丙酸加氢制γ-戊内酯的催化剂,包括活性组分内核Zn-B非晶态合金、包裹在活性组分内核外的活性组分层Ru-B非晶态合金以及包裹在活性组分层外的助剂外壳Al2O3;Zn-B非晶态合金中Zn原子和Ru-B非晶态合金中Ru的物质的量之比为1:0.6;Zn-B非晶态合金中Zn原子和Al2O3中Al原子的物质的量之比为1:0.2。催化剂中B的质量含量为0.03%。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的实施例2
本实施例的用于乙酰丙酸加氢制γ-戊内酯的催化剂,包括活性组分内核Cu-B非晶态合金、包裹在活性组分内核外的活性组分层Ru-B非晶态合金以及包裹在活性组分层外的助剂外壳Al2O3;Cu-B非晶态合金中Cu原子和Ru-B非晶态合金中Ru的物质的量之比为1:0.6;Cu-B非晶态合金中Cu原子和Al2O3中Al原子的物质的量之比为1:0.2。催化剂中B的质量含量为0.03%。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的实施例3
本实施例的用于乙酰丙酸加氢制γ-戊内酯的催化剂,包括活性组分内核Fe-B非晶态合金、包裹在活性组分内核外的活性组分层Ru-B非晶态合金以及包裹在活性组分层外的助剂外壳Al2O3;Fe-B非晶态合金中Fe原子和Ru-B非晶态合金中Ru的物质的量之比为1:0.6;Fe-B非晶态合金中Fe原子和Al2O3中Al原子的物质的量之比为1:0.2。催化剂中B的质量含量为0.02%。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的实施例4
本实施例的用于乙酰丙酸加氢制γ-戊内酯的催化剂,包括活性组分内核Co-B非晶态合金、包裹在活性组分内核外的活性组分层Ru-B非晶态合金以及包裹在活性组分层外的助剂外壳Al2O3;Co-B非晶态合金中Co原子和Ru-B非晶态合金中Ru的物质的量之比为1:0.6;Co-B非晶态合金中Co原子和Al2O3中Al原子的物质的量之比为1:0.2。催化剂中B的质量含量为0.03%。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的实施例5
本实施例的用于乙酰丙酸加氢制γ-戊内酯的催化剂,包括活性组分内核Ni-B非晶态合金、包裹在活性组分内核外的活性组分层Ru-B非晶态合金以及包裹在活性组分层外的助剂外壳Al2O3;Ni-B非晶态合金中Ni原子和Ru-B非晶态合金中Ru的物质的量之比为1:0.6;Ni-B非晶态合金中Ni原子和Al2O3中Al原子的物质的量之比为1:0.2。催化剂中B的质量含量为0.05%。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的实施例6
本实施例的用于乙酰丙酸加氢制γ-戊内酯的催化剂,其结构和催化剂的实施例4相同,区别仅在于,催化剂中Co-B非晶态合金中Co原子和Ru-B非晶态合金中Ru的物质的量之比为1:0.07;Co-B非晶态合金中Co原子和Al2O3中Al原子的物质的量之比为1:1.3。催化剂中B的质量含量为0.02%。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的实施例7
本实施例的用于乙酰丙酸加氢制γ-戊内酯的催化剂,其结构和催化剂的实施例5相同,区别仅在于,催化剂中Ni-B非晶态合金中Ni原子和Ru-B非晶态合金中Ru的物质的量之比为1:1.2;Ni-B非晶态合金中Ni原子和Al2O3中Al原子的物质的量之比为1:0.04。催化剂中B的质量含量为0.04%。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的实施例8
本实施例的用于乙酰丙酸加氢制γ-戊内酯的催化剂,包括活性组分内核Ni-B非晶态催化剂、包裹在活性组分内核外的活性组分层Ru-B非晶态催化剂;Ni-B非晶态催化剂中Ni原子和Ru-B非晶态催化剂中Ru的物质的量之比为1:0.6。催化剂中B的质量含量为0.05%。
以下催化剂的制备方法实施例1-8分别对应合成上述催化剂实施例1-8涉及的催化剂。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例1
本实施例用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法,包括以下步骤:
(1)Zn-B非晶态合金的制备:
取2.1g ZnCl2加入到50mL蒸馏水中配成溶液,取5.8g NaBH4溶于50mL蒸馏水中配成溶液,在30℃下将NaBH4溶液滴加到ZnCl2溶液中反应得黑色固体,滴加过程中同时搅拌,将黑色固体用蒸馏水洗涤至洗涤液为中性,所得黑色固体即为Zn-B非晶态合金;ZnCl2和NaBH4的物质的量之比为1:10。
(2)Ru溶胶的制备:
取2.4g RuCl3·3H2O加入到50mL蒸馏水中配成RuCl3溶液,将4mol/L的NaOH溶液滴加到RuCl3溶液中,直至不再有沉淀生成为止;再加入1mol/L的柠檬酸溶液直至沉淀完全溶解,即得Ru溶胶。
(3)Ru-B包裹的Zn-B催化剂的制备:
将步骤(1)制备好的Zn-B非晶态合金加入到Ru溶胶中,在150℃、氢气压力1MPa下以800r/min的转速搅拌反应3h,得混合液;
取5.8g NaBH4溶于50mL蒸馏水中配成NaBH4溶液,在30℃、搅拌下将该NaBH4溶液滴加到上述混合液中;继续搅拌30min,使Ru完全还原,固液分离,得黑色固体;NaBH4与混合液中Ru的物质的量比为10:1;将所得黑色固体用蒸馏水洗涤至洗涤液为中性,所得黑色固体即为Ru-B包裹的Zn-B催化剂。
(4)Al溶胶的制备:
取0.41g AlCl3溶于50mL蒸馏水中,将4mol/L的NaOH溶液滴加到AlCl3溶液中,直至不再有沉淀生成为止;再加入4mol/L的NaOH溶液直至沉淀完全溶解,即得Al溶胶。
(5)Zn-B@Ru-B@Al2O3催化剂的制备:
将步骤(3)制得的Ru-B包裹的Zn-B催化剂加入到Al溶胶中,Zn-B催化剂中的Zn与Al溶胶中Al的物质的量的比为1:0.2,在150℃、氢气压力5MPa下以800r/min的转速搅拌反应3h,得黑色固体,将黑色固体用蒸馏水洗涤至洗涤液为中性,即得。该催化剂的微晶尺寸在5nm左右,如图1所示。
乙酰丙酸的转化率和γ-戊内酯选择性检测
以氢气为氢源,在间歇反应釜中催化乙酰丙酸加氢制γ-戊内酯反应的步骤如下:取0.5g步骤(5)所得催化剂和12.5g乙酰丙酸加入到反应釜中,再加入250mL蒸馏水,用氮气置换釜内空气,然后维持氢气压力为1MPa,以800r/min的速率进行搅拌,以1℃/min的速率升温至150℃,反应5h后得产物。采用气相色谱仪分析产物的组成,采用FID检测器及面积校正法计算产物浓度,进而计算乙酰丙酸的转化率和γ-戊内酯选择性,结果见表1。
以甲酸为氢源,在间歇反应釜中催化乙酰丙酸加氢制γ-戊内酯反应的步骤如下:取0.5g步骤(5)所得催化剂、10.4g乙酰丙酸和1.4g甲酸加入到反应釜中,再加入250mL蒸馏水,以800r/min的速率进行搅拌,以1℃/min的速率升温至150℃,反应24h后得产物,采用气相色谱仪分析产物的组成,FID检测器及面积校正法计算产物浓度,进而计算乙酰丙酸的转化率和γ-戊内酯选择性,结果见表1。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例2
本实施例与用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例1的区别在于:
1)、将实施例1中步骤(1)的ZnCl2替换为CuCl2,制得本实施例的Al2O3包裹Ru-B包裹的Cu-B催化剂,该催化剂微晶尺寸在5nm左右,如图2所示。乙酰丙酸的转化率和γ-戊内酯选择性测试结果如表1所示。
2)、将实施例1中步骤(2)Ru溶胶的制备过程中NaOH溶液的浓度4mol/L替换为0.1mol/L,柠檬酸溶液的浓度1mol/L替换为0.01mol/L。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例3
本实施例与用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例1的区别仅在于:
1)、将实施例1中步骤(1)的2.1g的ZnCl2替换为2.0g的FeCl2,制得本实施例的Al2O3包裹Ru-B包裹的Fe-B催化剂,该催化剂微晶尺寸在5nm左右,如图3所示。乙酰丙酸的转化率和γ-戊内酯选择性测试结果如表1所示。
2)、将实施例1中步骤(2)Ru溶胶的制备过程中NaOH溶液的浓度4mol/L替换为10mol/L,柠檬酸溶液的浓度1mol/L替换为5mol/L。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例4
本实施例与用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例1的区别仅在于:将实施例1中的2.1g的ZnCl2替换为2.0g的CoCl2,制得本实施例的Al2O3包裹Ru-B包裹的Co-B催化剂,该催化剂微晶尺寸在5nm左右,如图4所示。乙酰丙酸的转化率和γ-戊内酯选择性测试结果如表1所示。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例5
本实施例与用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例1的区别仅在于:将实施例1中的2.1g的ZnCl2替换为2.0g的NiCl2,制得本实施例的Al2O3包裹Ru-B包裹的Ni-B催化剂,该催化剂微晶尺寸在5nm左右,如图5所示。乙酰丙酸的转化率和γ-戊内酯选择性测试结果如表1所示。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例6
本实施例与用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例1的制备步骤基本相同,区别仅在于:
步骤(1)中,CoCl2和NaBH4的物质的量之比为1:6。
步骤(3)中,将步骤(1)制备好的Co-B非晶态合金加入到Ru溶胶中,在100℃、氢气压力3MPa下以400r/min的转速搅拌反应5h得混合液。
取5.8g NaBH4溶于50mL蒸馏水中配成NaBH4溶液,在50℃、搅拌下将该NaBH4溶液滴加到上述混合液中;继续搅拌30min,使Ru完全还原,固液分离,得黑色固体;NaBH4与混合液中Ru的物质的量比为7:1。
步骤(5)中,将Ru-B包裹的Co-B催化剂加入到Al溶胶中,在100℃、氢气压力3MPa下以400r/min的转速搅拌反应5h。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例7
本实施例与用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例1的制备步骤基本相同,区别仅在于:
步骤(1)中,NiCl2和NaBH4的物质的量之比为1:20。
步骤(3)中,将步骤(1)制备好的Ni-B非晶态合金加入到Ru溶胶中,在50℃、氢气压力4MPa下以1000r/min的转速搅拌反应2h得混合液。
取5.8g NaBH4溶于50mL蒸馏水中配成NaBH4溶液,在10℃、搅拌下将该NaBH4溶液滴加到上述混合液中;继续搅拌30min,使Ru完全还原,固液分离,得黑色固体;NaBH4与混合液中Ru的物质的量比为30:1。
步骤(5)中,将Ru-B包裹的Ni-B催化剂加入到Al溶胶中,在60℃、氢气压力4MPa下以1000r/min的转速搅拌反应2h。
用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例8
参考用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法的实施例7的步骤(1)~步骤(3),即得不含助剂外壳的催化剂。
表1催化剂制备方法的实施例1~8的评价结果
Figure BDA0002043682810000091
从表1结果可以看出,利用本发明制备的催化剂,以氢气为氢源,乙酰丙酸的转化率达到了100%,γ-戊内酯的选择性达到了97.8%以上;以甲酸为氢源,实现了γ-戊内酯的水相催化合成,原料的转化率和产物的选择性均处于较高水平,表现出良好的工业应用价值。

Claims (8)

1.一种用于乙酰丙酸加氢制γ-戊内酯的催化剂,其特征在于:包括活性组分内核、包裹在活性组分内核外的活性组分层;所述活性组分内核为M-B非晶态合金,M选自Zn、Cu、Fe、Co、Ni中的至少一种;所述活性组分层为Ru-B非晶态合金;M-B非晶态合金中M原子和Ru-B非晶态合金中Ru原子的物质的量之比为1:(0.05~1.5);
所述用于乙酰丙酸加氢制γ-戊内酯的催化剂还包括包裹在活性组分层外的助剂外壳;所述助剂外壳为氧化铝;
助剂外壳中Al原子与M-B非晶态合金中M原子的物质的量之比为(0.05~1.5):1。
2.一种如权利要求1所述的用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法,其特征在于:包括如下步骤:
1)将M-B非晶态合金加入Ru溶胶中,在保护气氛下进行凝胶化;
2)加入硼氢化物进行反应,反应完全得到沉淀,将沉淀进行洗涤,得Ru-B包裹的M-B催化剂。
3.根据权利要求2所述的用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法,其特征在于:所述M-B非晶态合金的制备方法,包括如下步骤:在金属M的可溶性盐水溶液中加入硼氢化物进行反应得到沉淀,将沉淀洗涤至中性即得。
4.根据权利要求3所述的用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法,其特征在于:所述金属M的可溶性盐水溶液中M原子与硼氢化物中B原子的物质的量之比为1:(5~50)。
5.根据权利要求2所述的用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法,其特征在于:所述Ru溶胶中Ru原子与硼氢化物中B原子的物质的量之比为1:(5~50)。
6.根据权利要求2所述的用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法,其特征在于:步骤2)中,加入硼氢化物进行反应的温度为0~50℃。
7.根据权利要求2所述的用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法,其特征在于:所述Ru溶胶的制备方法包括:在Ru的可溶性盐溶液中加入强碱溶液至不再产生沉淀,然后加入柠檬酸溶液至沉淀完全溶解,即得;所述强碱溶液中OH-的浓度为0.1~10mol/L;所述柠檬酸溶液中柠檬酸的浓度为0.01~5mol/L。
8.根据权利要求2所述的用于乙酰丙酸加氢制γ-戊内酯的催化剂的制备方法,其特征在于:还包括步骤:将Ru-B包裹的M-B催化剂加入到Al溶胶中,在保护气氛下进行凝胶化,固液分离得固体,将固体洗涤即得。
CN201910350205.5A 2019-04-28 2019-04-28 一种用于乙酰丙酸加氢制γ-戊内酯的催化剂及其制备方法 Active CN110013848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910350205.5A CN110013848B (zh) 2019-04-28 2019-04-28 一种用于乙酰丙酸加氢制γ-戊内酯的催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910350205.5A CN110013848B (zh) 2019-04-28 2019-04-28 一种用于乙酰丙酸加氢制γ-戊内酯的催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110013848A CN110013848A (zh) 2019-07-16
CN110013848B true CN110013848B (zh) 2022-02-08

Family

ID=67192729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910350205.5A Active CN110013848B (zh) 2019-04-28 2019-04-28 一种用于乙酰丙酸加氢制γ-戊内酯的催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110013848B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759221A (en) * 1993-07-28 1998-06-02 Matsushita Electric Industrial Co., Ltd. Method of press molding glass optical elements
TW200637653A (en) * 2005-04-26 2006-11-01 Univ Nat Central Method for preparing nano Ni-B catalyst by means of inverse micelle technique and its use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1698957A (zh) * 2004-05-20 2005-11-23 上海师范大学 Co-B/CeO2-SiO2合金催化剂及其制备方法和应用
CN1820850A (zh) * 2006-03-16 2006-08-23 上海师范大学 粒径尺寸均匀的非晶态合金催化剂及其制备方法
CN103435577A (zh) * 2013-06-25 2013-12-11 天津大学 生物质制备乙酰丙酸或同时联产γ-戊内酯的方法
CN107903224B (zh) * 2017-11-14 2019-08-20 陕西师范大学 酸性催化剂和加氢催化剂协同催化碳水化合物一锅法制备γ-戊内酯
CN109569589B (zh) * 2018-12-10 2021-10-26 郑州师范学院 一种乙酰丙酸加氢制γ-戊内酯M-B@Al2O3催化剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759221A (en) * 1993-07-28 1998-06-02 Matsushita Electric Industrial Co., Ltd. Method of press molding glass optical elements
TW200637653A (en) * 2005-04-26 2006-11-01 Univ Nat Central Method for preparing nano Ni-B catalyst by means of inverse micelle technique and its use thereof

Also Published As

Publication number Publication date
CN110013848A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
Shao et al. Selective production of γ-valerolactone or 1, 4-pentanediol from levulinic acid/esters over Co-based catalyst: Importance of the synergy of hydrogenation sites and acidic sites
CN108299358B (zh) 用于呋喃醇或醛类化合物的选择性氧化方法
EP2248793B1 (en) Production method for a monohydric alcohol from a monocarboxylic acid or from a derivative thereof
KR101855876B1 (ko) 에탄올을 생산하고 메탄올을 공동생산하는 방법
CN106279075B (zh) 一种催化5-羟甲基糠醛制备2,5-二甲基呋喃的方法
CN110420669B (zh) 铜原子簇制备方法以及催化co2反应用途
Zhou et al. Scale-up biopolymer-chelated fabrication of cobalt nanoparticles encapsulated in N-enriched graphene shells for biofuel upgrade with formic acid
Tang et al. Bimetallic Ni-Zn@ OMC catalyst for selective hydrogenation of levulinic acid to γ-valerolactone in water
Gao et al. Selective hydrogenation of the carbonyls in furfural and 5-hydroxymethylfurfural catalyzed by PtNi alloy supported on SBA-15 in aqueous solution under mild conditions
Shan et al. Direct production of ethanol with high yield from glycerol via synergistic catalysis by Pd/CoOx and Cu/SBA-15
Wang et al. Bimetallic ordered mesoporous carbon from lignin for catalytic selective hydrogenation of levulinic acid to γ-valerolactone
CN102029166B (zh) 一种合成气制取低碳混合醇的催化剂及其制备方法
Shao et al. Importance of oxyphilic FeNi alloy in NiFeAl catalysts for selective conversion of biomass-derived 5-hydroxymethylfurfural to 2, 5-dimethylfuran
EP3789373A1 (en) Method for producing methylbenzyl alcohol by catalytic conversion of ethanol and catalyst therefor
CN110013848B (zh) 一种用于乙酰丙酸加氢制γ-戊内酯的催化剂及其制备方法
CN109999801B (zh) M-B@Pd-B@Al2O3催化剂及其制备方法、应用
CN105080545B (zh) Co加氢制异丁醇的催化剂及一种co加氢制备异丁醇的方法
CN113559864B (zh) 一种CuCoCe复合催化剂的制备方法与应用
KR101937367B1 (ko) 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 hmf로부터 fdmc의 제조방법
CN108503608A (zh) 一种1,4-二甲基哌嗪的制备方法
CN109985623B (zh) 一种用于乙酰丙酸加氢制γ-戊内酯的催化剂及其制备方法
CN112430472A (zh) 一种co2加氢直接制备低碳醇联产汽油的方法
Huo Diverse Hydrogen Sources for Biomass-derivatives Conversion: Reaction and Mechanism
Huang et al. Efficient hydrogenolysis of lignin over CeO2/AC catalyst prepared by a simple impregnation method
CN111036287A (zh) 负载型催化剂及其制备方法以及甘油加氢方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant