KR101937367B1 - 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 hmf로부터 fdmc의 제조방법 - Google Patents

음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 hmf로부터 fdmc의 제조방법 Download PDF

Info

Publication number
KR101937367B1
KR101937367B1 KR1020170043104A KR20170043104A KR101937367B1 KR 101937367 B1 KR101937367 B1 KR 101937367B1 KR 1020170043104 A KR1020170043104 A KR 1020170043104A KR 20170043104 A KR20170043104 A KR 20170043104A KR 101937367 B1 KR101937367 B1 KR 101937367B1
Authority
KR
South Korea
Prior art keywords
gold
palladium
exchange resin
anion exchange
fdmc
Prior art date
Application number
KR1020170043104A
Other languages
English (en)
Other versions
KR20180112894A (ko
Inventor
조진구
앤젤 안토니 라제가나탄 처칠
박석규
티엔냔 흐위탄
김용진
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020170043104A priority Critical patent/KR101937367B1/ko
Publication of KR20180112894A publication Critical patent/KR20180112894A/ko
Application granted granted Critical
Publication of KR101937367B1 publication Critical patent/KR101937367B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • B01J35/0006
    • B01J35/023
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 하기 화학식 1로 표시되는 HMF(Hydroxy Methyl Furfural)를 용매 하에서 촉매를 사용하여 산화 메틸화반응시켜 하기 화학식 2로 표시되는 FDMC(2,5-furandimethylcarboxylate)를 제조하는 단계를 포함하고, 상기 촉매는 음이온 교환수지와, 상기 음이온 교환수지 상에 담지된 골드팔라듐 바이메탈릭(AuPd Bimetallic) 나노입자를 포함하는 것인 FDMC의 제조방법에 관한 것으로, 골드(Au)-팔라듐(Pd) 비율을 조절하여 90% 이상의 고수율의 FDMC를 얻을 수 있는 효과가 있으며, 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자 촉매는 재사용하여도 높은 활성이 유지되는 특성이 있다.
[화학식 1]
Figure 112018099194320-pat00018

[화학식 2]
Figure 112018099194320-pat00019

Description

음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 HMF로부터 FDMC의 제조방법{METHOD FOR PREPARING FDMC FROM HMF USING GOLD-PALLADIUM BIMETALLIC NANOPARTICLES SUPPORTED ON AN ANION EXCHANGE RESIN}
본 발명은 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 나노입자를 이용한 HMF로부터 FDMC의 제조방법에 관한 것으로, 보다 상세하게는 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 나노입자를 촉매로 사용하여, 보다 간단한 공정으로 HMF로부터 FDMC를 높은 수율로 얻는 제조방법에 관한 것이다.
한정된 매장량의 석유자원의 지속적인 감소와 신흥 개발도상국의 성장에 따른 석유수요 급증은 시장 수급의 불균형을 유발하며 고유가 시대를 초래하고 있다. 더욱이 석유의 무분별한 사용으로 인해 발생하는 비가역적 온실가스는 지구온난화와 같은 심각한 환경문제를 일으키고 있다.
이미 세계 각국은 재생 및 지속사용이 가능한 바이오매스를 통해 석유자원을 대체하기 위한 많은 노력을 기울이고 있으며, 바이오에탄올, 바이오디젤과 같은 바이오연료와 락틱산, 프로판다이올과 같은 바이오플라스틱 단량체 등을 산업적으로 생산하여 수송용 연료 또는 석유화학물질을 대체하고 있다.
이와 같은 노력의 일환으로, 최근 각광받고 있는 물질이 바이오매스 유래 퓨란계 화합물인 하기 반응식으로 표시되는 5-히드록시메틸-2-푸르푸랄 (5-hydroxymethyl-2-furfural, HMF)과 그의 유도체인 2,5-퓨란다이카르복실산(2,5-furandimethylcarboxylate, FDMC)이 있다.
[반응식]
Figure 112017032547878-pat00001
FDMC는 HMF의 알데하이드기와 알코올기가 산화 메틸화되어 두 개의 에스테르기를 포함하는 퓨란계 유도체 화합물로, 폴리에스테르 중합체를 제조하는데 이용될 수 있고, FDMC 에스테르는 PVC를 프탈레이트 가소제에 대한 대체제로 이용될 수 있는 특성이 있다.
HMF는 염기로서 소듐 메톡사이드(NaOCH3), 용매로서 메탄올(CH3OH), 그리고 금속촉매와 산소를 사용하여 FDMC로 산화 메틸화 할 수 있다. 이 때 금속촉매로 사용하는 것이 무기산화물에 지지된 골드 금속촉매이다. Christensen et al.은 TiO2에 지지된 골드 촉매를 사용하여 FDMC를 제조하였으며, 세리아(CeO2) 또는 지그코니아(ZrO2)와 같은 염기성 지지체에 흡착된 골드 촉매를 사용하여 염기성 물질 없이 FDMC를 제조하였다. 반면에 CoxOy-N@C와 같은 비전이금속에서는 낮은 FDMC 선택성을 보였다.
따라서, 재활용도가 높은 촉매의 개발과 이를 이용하여 HMF로부터 FDMC를 제조하는 데에 있어서, 공정의 간소화, 높은 생산성으로 산업에 이용 가능성을 향상시킬 수 있는 FDMC제조방법을 개발이 요구되고 있다.
본 발명의 목적은 상기 문제점을 해결하기 위한 것으로, 음이온 교환수지에서 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자를 촉매로 이용함으로써, HMF로부터 FDMC를 제조하는 공정을 단순화하고, 골드(Au)-팔라듐(Pd) 몰 비율을 조절하여 70% 이상의 고수율의 FDMC를 얻으며, 우수한 선택성을 가지는 HMF로부터 FDMC의 제조방법을 제공한다.
또한, 약염기성을 갖는 음이온 교환수지를 사용함으로써, 적은 양의 염기를 사용하여 HMF로부터 FDMC를 제조하는 방법을 제공한다.
또한, 재사용하여도 높은 활성이 유지되며, 상업적 연속 공정에 사용될 수 있는 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자 촉매를 제공한다.
본 발명의 일 측면에 따르면, 하기 화학식 1로 표시되는 HMF(5-Hydroxymethylfurfural)를 용매 하에서 촉매를 사용하여 산화 메틸화(oxidative methylation) 반응시켜 하기 화학식 2로 표시되는 FDMC(2,5-furandimethylcarboxylate)를 제조하는 단계를 포함하고, 상기 촉매는 음이온 교환수지와, 상기 음이온 교환수지 상에 담지된 골드팔라듐 바이메탈릭(AuPd Bimetallic) 나노입자를 포함하는 것인 FDMC의 제조방법을 제공한다.
[화학식 1]
Figure 112017032547878-pat00002
[화학식 2]
Figure 112017032547878-pat00003
상기 골드팔라듐 바이메탈릭 나노입자의 골드(Au): 팔라듐(Pd)의 몰비가 0.5:1.0 내지 6.0:1.0일 수 있다.
상기 음이온 교환수지가 지지체와, 상기 지지체 상에 공유결합된 아민기를 포함할 수 있다.
상기 음이온 교환수지가 하기 구조식 1로 표시되는 것 또는 그의 염일 수 있다.
[구조식 1]
Figure 112017032547878-pat00004
구조식 1에서,
X가 원자가결합, C1 내지 C10의 알킬렌기, 또는 C6 내지 C10의 아릴렌기이고,
R1 및 R2가 서로 같거나 다르고, 각각 독립적으로 수소원자, 히드록시기가 치환 또는 비치환된 C1 내지 C15 직쇄상 알킬기, 또는 히드록시기가 치환 또는 비치환된 C3 내지 C15 분지상 알킬기이다.
상기 음이온 교환수지가 하기 구조식 2로 표시되는 것 또는 그의 염일 수 있다.
[구조식 2]
Figure 112017032547878-pat00005
구조식 2에서,
R1 및 R2가 서로 같거나 다르고, 각각 독립적으로 수소원자, 히드록시기가 치환 또는 비치환된 C1 내지 C15 직쇄상 알킬기, 또는 히드록시기가 치환 또는 비치환된 C3 내지 C15 분지상 알킬기이고,
m은 1 내지 3의 정수 중 어느 하나이다.
상기 음이온 교환수지가 하기 구조식 3으로 표시되는 것 또는 그의 염일 수 있다.
[구조식 3]
Figure 112017032547878-pat00006
구조식 3에서,
R3은 수소원자, C1 내지 C10 직쇄상 알킬기, 또는 C3 내지 C10 분지상 알킬기이다.
m 및 n은 서로 같거나 다르고, 각각 독립적으로 1 내지 3의 정수 중 어느 하나이고,
q는 1 내지 10의 정수 중 어느 하나이다.
상기 음이온 교환수지는 상기 지지체 상에 글루카아민기(glucamine group) 또는 그의 염이 공유결합된 것일 수 있다.
상기 지지체가 다공성 또는 젤형이고, 용매 하에서 스웰링(swelling)될 수 있다.
상기 지지체가 폴리스티렌, 스티렌-디비닐벤젠, 가교된 폴리스티렌, 공중합된 폴리스티렌 및 그래프트된 폴리스티렌 중에서 선택된 1종 이상의 고분자를 포함할 수 있다.
상기 음이온 교환수지가 염기성일 수 있다.
상기 산화 메틸화반응 시 용매에 소듐 메톡사이드(sodium methoxide), 및 포타슘 메톡사이드(potassium methoxide) 중에서 선택된 1종 이상의 염기를 추가로 투입하여 산화 메틸화(oxidative methylation) 반응을 수행할 수 있다.
상기 용매가 극성용매일 수 있다.
상기 촉매가 재사용될 수 있다.
상기 FDMC(Dimethyl 2,5-furandicarboxylate)를 제조하는 퓨란계 화합물의 제조가 상온에서 수행될 수 있다.
상기 촉매를 환원제, 음이온 교환수지, 골드(Au) 전구체 및 팔라듐(Pd) 전구체를 용매 하에서 제조할 수 있다.
상기 골드(Au) 전구체가 골드 클로라이드(AuCl3) 및 골드 브로마이드(AuBr3) 중에서 선택된 1종 이상을 포함할 수 있다.
상기 팔라듐(Pd) 전구체가 팔라듐 클로라이드(PdCl2), 팔라듐 브로마이드(PdBr2) 및 팔라듐 아세테이트(Pd(OAc)2) 중에서 선택된 1종 이상을 포함할 수 있다.
상기 환원제가 수소화붕소 나트륨(Sodium borohydride, NaBH4), 소듐 시아노보로하이드라이드(Sodium cyanoborohydride, NaBH3CN), 리튬 알루미늄 하이드라이드(Lithium aluminium hydride, LiAlH4) 및 하이드라진(N2H4) 중에서 선택된 1종 이상일 수 있다.
본 발명의 퓨란계 화합물의 제조방법은 음이온 교환수지에서 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자를 촉매로 이용함으로써, HMF로부터 FDMC를 제조하는 공정을 단순화하고, 골드(Au)-팔라듐(Pd) 몰비를 조절하여 70% 이상의 고수율의 FDMC를 얻으며, 우수한 선택성을 가지는 효과가 있다.
또한, 약염기성을 갖는 음이온 교환수지를 사용함으로써, 적은 양의 염기를 사용하여 HMF로부터 FDMC를 제조할 수 있는 효과가 있다.
또한, 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자 촉매는 재사용하여도 높은 활성이 유지되며, 상업적 연속 공정에 적용이 가능한 효과가 있다.
도 1은 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 나노입자 촉매의 XPS 이미지를 나타낸 것이다.
도 2는 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 나노입자 촉매의 TEM 이미지를 나타낸 것이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명의 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자를 이용한 2,5-Furandicarboxylicacid(FDMC)의 제조하는 방법에 대하여 설명하도록 한다.
본 발명은 하기 화학식 1로 표시되는 HMF(Hydroxy Methyl Furfural)를 용매 하에서 촉매를 사용하여 산화 메틸화반응시켜 하기 화학식 2로 표시되는 FDMC(2,5-furandimethylcarboxylate)를 제조하는 단계를 포함하고, 상기 촉매는 음이온 교환수지와, 상기 음이온 교환수지 상에 담지된 골드팔라듐 바이메탈릭(AuPd Bimetallic) 나노입자를 포함하는 것인 FDMC의 제조방법을 제공한다.
[화학식 1]
Figure 112017032547878-pat00007
[화학식 2]
Figure 112017032547878-pat00008
상기 골드팔라듐 바이메탈릭 나노입자의 골드(Au): 팔라듐(Pd)의 몰비는 0.5:1.0 내지 6.0:1.0일 수 있다.
상기 음이온 교환수지가 지지체와, 상기 지지체 상에 공유결합된 아민기를 포함할 수 있다.
상기 음이온 교환수지가 하기 구조식 1로 표시되는 것 또는 그의 염일 수 있다.
[구조식 1]
Figure 112017032547878-pat00009
구조식 1에서,
X가 원자가결합, C1 내지 C10의 알킬렌기, 또는 C6 내지 C10의 아릴렌기이고,
R1 및 R2가 서로 같거나 다르고, 각각 독립적으로 수소원자, 히드록시기가 치환 또는 비치환된 C1 내지 C15 직쇄상 알킬기, 또는 히드록시기가 치환 또는 비치환된 C3 내지 C15 분지상 알킬기이다.
상기 음이온 교환수지가 하기 구조식 2로 표시되는 것 또는 그의 염일 수 있다.
[구조식 2]
Figure 112017032547878-pat00010
구조식 2에서,
R1 및 R2가 서로 같거나 다르고, 각각 독립적으로 수소원자, 히드록시기가 치환 또는 비치환된 C1 내지 C15 직쇄상 알킬기, 또는 히드록시기가 치환 또는 비치환된 C3 내지 C15 분지상 알킬기이고,
m은 1 내지 3의 정수 중 어느 하나이다.
상기 음이온 교환수지가 하기 구조식 3으로 표시되는 것 또는 그의 염일 수 있다.
[구조식 3]
Figure 112017032547878-pat00011
구조식 3에서,
R3은 수소원자, C1 내지 C10 직쇄상 알킬기, 또는 C3 내지 C10 분지상 알킬기이다.
m 및 n은 서로 같거나 다르고, 각각 독립적으로 1 내지 3의 정수 중 어느 하나이고,
q는 1 내지 10의 정수 중 어느 하나이다.
상기 음이온 교환수지는 상기 지지체 상에 글루카아민기(glucamine group) 또는 그의 염이 공유결합된 것일 수 있다.
상기 지지체는 다공성 또는 젤형이고, 용매 하에서 스웰링(swelling)될 수 있다.
상기 지지체는 폴리스티렌, 가교된 폴리스티렌, 공중합된 폴리스티렌, 그래프트된 폴리스티렌 등의 고분자를 포함할 수 있다.
상기 음이온 교환수지는 염기성일 수 있다.
상기 산화 메틸화반응 시 용매에 소듐 메톡사이드(sodium methoxide), 및 포타슘 메톡사이드(potassium methoxide) 등의 염기를 추가로 투입하여 산화 메틸화 반응을 수행할 수 있다. 그러나 본 발명의 염기의 범위가 여기에 한정되는 것은 아니며 산화 메틸화에 사용될 수 있는 염기는 사용 가능하다.
상기 용매는 극성용매이고, 바람직하게는 메탄올을 사용할 수 있으며, 메탄올과 섞일 수 있는 비알코올성 유기용매를 함께 사용할 수 있다.
상기 촉매가 재사용될 수 있다.
상기 FDMC(Dimethyl 2,5-furan dicarboxylate)를 제조하는 퓨란계 화합물의 제조는 상온에서 수행될 수 있다.
상기 촉매를 환원제, 음이온 교환수지, 골드(Au) 전구체 및 팔라듐(Pd) 전구체를 용매 하에서 제조할 수 있다.
상기 골드(Au) 전구체는 골드 클로라이드(AuCl3), 골드 브로마이드(AuBr3) 등을 사용할 수 있다.
상기 팔라듐(Pd) 전구체는 팔라듐 클로라이드(PdCl2), 팔라듐 브로마이드(PdBr2), 팔라듐 아세테이트(Pd(OAc)2) 등을 사용할 수 있다.
그러나, 본 발명의 골드(Au) 전구체 및 팔라듐(Pd) 전구체의 범위가 여기에만 한정되는 것은 아니다.
상기 환원제가 수소화붕소 나트륨(Sodium borohydride, NaBH4), 소듐 시아노보로하이드라이드(Sodium cyanoborohydride, NaBH3CN), 리튬 알루미늄 하이드라이드(Lithium aluminium hydride, LiAlH4), 하이드라진(N2H4) 등일 수 있으며, 바람직하게는 수소화붕소 나트륨을 사용할 수 있다. 상기 환원제는 혼합물에 포함된 금속이온을 금속으로 환원시키는 역할을 하는 것이다.
본 발명의 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자를 촉매로 하여 HMF에 포함된 알코올기와 알데하이드기가 각각 산화 메틸화 반응을 통해 2개의 에스테르기(-COOR)를 포함하는 퓨란계 화합물을 간단한 공정으로 제조할 수 있다.
이하 본 발명의 구성을 하기의 실시예를 통해 보다 구체적으로 설명하지만, 본 발명에 이에 제한되는 것은 아니다.
[실시예]
제조예 1: HMF 제조
튜블러 타입 반응기 안에 고과당 옥수수시럽(HFCS)을 430mg(함유된 탄수화물 300mg, 탄수화물 내 프록토오스 270mg, 1.5mmol) 넣는다. 다음으로, 폴리스티렌 지지체에 설폰산기가 연결된 앰버리스트 (Amberlyst) 15 레진 (Aldrich, 4.7 meq of H+/g resin)을 반응기 안에 300mg (고체산 촉매 내 브뢴스테드 산성기 1.4mmol)넣는다. 그 다음으로, 반응기에 3mL의 1,4-다이옥산(1,4-Dioxane)을 넣고, 온도를 서서히 100까지 가열하면서, 4시간동안 교반하여 반응을 시켜 5-히드록시메틸-2-푸르푸랄(HMF)(수율 81% 이상)을 제조하였다.
제조예 2: 음이온 교환수지에 담지된 골드(Au)팔라듐(Pd)( 0.5:1 ) 바이메탈릭 나노입자 촉매(2% AuPd(0.5:1)-IRA743)제조
먼저, 골드(Au)와 팔라듐(Pd)의 몰비가 0.5:1이 되도록 골드(Au) 전구체 Gold (III) chloride trihydrate (AuCl3.3H2O 99.9%)와 팔라듐(Pd) 전구체 Palladium (II) chloride (PdCl2, 99.9+%)을 칭량하여 에탄올 200ml에 첨가하여 혼합용액을 제조하였다. 상기 혼합용액에서 골드(Au)와 팔라듐(Pd)은 2wt%를 차지한다. 상기 혼합용액에 하기 구조식 4로 표시되는 음이온 교환수지 (IRA743 수지, 상업용 수지를 진공에서 313K로 밤새 건조) 5g을 첨가하고 수지 비즈를 24 시간 동안 교반하여 혼합물을 제조하였다. 음이온 교환수지는 여과하고, 골드(Au) 및 팔라듐(Pd)은 수소화붕소나트륨을 사용하여 환원시키고, 여과하고, 에탄올 400ml로 세척하고 진공 건조시켜 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자 촉매를 제조하였다.
[구조식 4]
Figure 112017032547878-pat00012
제조예 3: 2% AuPd(1:1)-IRA743 촉매 제조
골드(Au)와 팔라듐(Pd)의 몰비가 0.5:1이 되도록 칭량하여 에탄올에 첨가하는 대신에 1:1이 되도록 칭량하여 에탄올에 첨가하는 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.
제조예 4: 2% AuPd(2:1)-IRA743 촉매 제조
골드(Au)와 팔라듐(Pd)의 몰비가 0.5:1 되도록 칭량하여 에탄올에 첨가하는 대신에 2:1이 되도록 칭량하여 에탄올에 첨가하는 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.
제조예 5: 2% AuPd(3:1)-IRA743 촉매 제조
골드(Au)와 팔라듐(Pd)의 몰비가 0.5:1이 되도록 칭량하여 에탄올에 첨가하는 대신에 3:1이 되도록 칭량하여 에탄올에 첨가하는 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.
제조예 6: 2% AuPd(6:1)-IRA743 촉매 제조
골드(Au)와 팔라듐(Pd)의 몰비가 0.5:1이 되도록 칭량하여 에탄올에 첨가하는 대신에 6:1이 되도록 칭량하여 에탄올에 첨가하는 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.
실시예 1: 2% AuPd ( 0.5:1 )- IRA743 촉매를 이용한 2,5- furan dimethylcarboxylate(FDMC) 제조
8% sodium methoxide를 염기로서 사용하고, 알드리치사(Sigma-Aldrich) HMF 2mM, 제조예 2에 따라 제조된 바이메탈릭 나노입자(2% AuPd(0.5:1)-IRA743)를 촉매로서 400mg를 에탄올 25ml에 넣어 혼합용액을 제조하여, 산화제로서 10bar 압력의 산소기체를 주입하고, 403K(129.85℃)의 온도하에서 4시간 동안 반응시켜 HMF를 산화 메틸화하여 2,5-furan dimethylcarboxylate(FDMC)를 제조하였다.
실시예 2: 2% AuPd (1:1)- IRA743 촉매를 이용한 2,5- Furan dimethylcarboxylate (FDMC) 제조
제조예 2의 촉매 대신에 제조예 3의 촉매를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 FDMC를 제조하였다.
실시예 3: 2% AuPd (2:1)- IRA743 촉매를 이용한 2,5- Furan dimethylcarboxylate (FDMC) 제조
제조예 2의 촉매 대신에 제조예 4의 촉매를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 FDMC를 제조하였다.
실시예 4: 2% AuPd (3:1)- IRA743 촉매를 이용한 2,5- Furan dimethylcarboxylate (FDMC) 제조
제조예 2의 촉매 대신에 제조예 5의 촉매를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 FDMC를 제조하였다.
실시예 5: 2% AuPd (6:1)- IRA743 촉매를 이용한 2,5- Furan dimethylcarboxylate (FDMC) 제조
제조예 2의 촉매 대신에 제조예 6의 촉매를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 FDMC를 제조하였다.
비교예 1: IRA743를 이용한 2,5-furan dimethylcarboxylate(FDMC) 제조
실시예 1의 2% AuPd-IRA74 대신에 IRA743를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2,5-furandimethylcarboxylate(FDMC) 제조하였다.
비교예 2: 1% Au- IRA743 촉매를 이용한 2,5- furan dimethylcarboxylate(FDMC)제조
(단계 1: 1% Au-IRA743 촉매 제조방법)
제조예 2에서 혼합용액에서 골드(Au)와 팔라듐(Pd) 2wt% 대신에 골드(Au) 1wt%가 되도록 혼합용액을 제조한 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.
(단계 2: 1% Au-IRA743 촉매를 이용한 HMF 산화 메틸화)
2% AuPd-IRA743 대신에 1% Au-IRA743를 촉매로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2,5-furan dimethylcarboxylate(FDMC)를 제조하였다.
비교예 3: 2% Au- IRA743 촉매 이용한 2,5- Furan dimethylcarboxylate ( FDMC )제조
(2% Au-IRA743 촉매 제조방법)
제조예 2에서 혼합용액에서 골드(Au)와 팔라듐(Pd) 2wt% 대신에 골드(Au)가 2wt%가 되도록 혼합용액을 제조한 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.
(2% Au-IRA743를 이용한 HMF 산화 메틸화)
2% AuPd-IRA743 대신에 2% Au-IRA743 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2,5-Furan dimethylcarboxylate (FDMC)를 제조하였다.
비교예 4: 1% Pd-IRA743 이용한 2,5-Furan dimethylcarboxylate (FDMC)제조
(1% Pd-IRA743 제조)
제조예 2에서 혼합용액에서 골드(Au)와 팔라듐(Pd) 2wt% 대신에 팔라듐(Pd)이 1wt%가 되도록 혼합용액을 제조한 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.
(1% Pd-IRA743를 이용한 HMF 산화 메틸화)
2% AuPd-IRA743 대신에 1% Pd-IRA743 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2,5-Furan dicarboxylicacid(FDMC)를 제조하였다.
비교예 5: 염기가 없는 조건 하에서 2% AuPd (1:1)- IRA743 촉매를 이용한 2,5-Furan dimethylcarboxylate (FDMC) 제조
8% sodium methoxide를 염기를 사용하지 않은 것을 제외하고는 제조예 3의 촉매를 사용하여 실시예 1과 동일한 방법으로 FDMC를 제조하였다.
[시험예]
시험예 1: 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자의 XPS 분석
도 1은 제조예 3의 바이메탈릭 나노입자 촉매(2% Au:Pd(1:1)-IRA743) 및 비교예 2에 포함된 음이온 교환수지에 담지된 골드(Au) 나노입자의 XPS 분석 결과를 나타낸 것이다.
도 1을 참조하면, 2% Au-IRA743의 XPS는 Au 4f7 /2 binding 에너지가 84.0eV이고 2% Au:Pd(1:1)-IRA743은 Au 4f7 /2 binding 에너지가 83.8eV인 것을 확인할 수 있었고, 2% Pd-IRA743의 XPS는 Pd 3d5 /2 binding 에너지가 335.1eV이고 2% Au:Pd(1:1)-IRA743은 Pd 3d5/2 binding 에너지가 336.6eV인 것을 확인할 수 있었다.
이러한 결과는 합금(alloy) 형성에 의하여 Pd로부터 Au로의 에너지 이동 및 촉매로서의 Au-Pd 합금 절단(alloy severs) 때문인 것으로 판단된다.
따라서, 제조예 3에 따라 제조된 골드팔라듐 바이메탈릭 나노입자는 합금을 형성하여 Pd와 Au가 서로 영향을 미치는 것을 확인할 수 있었다.
시험예 2: 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자의 TEM 이미지 분석
도 2는 비교예 1의 교환수지, 제조예 3 및 제조예 6에 따라 제조된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자의 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 나노입자의 TEM 이미지를 나타낸 것이다.
도 2를 참조하면, 5-20nm 크기의 골드(Au)-팔라듐(Pd) 나노입자가 음이온 교환수지 전체에 분산되어 있는 것을 확인할 수 있었다.
시험예 3: 음이온 교환수지에 담지된 금속 나노입자의 촉매 반응성 분석
하기 표 1은 실시예 1 내지 5 및 비교예 1 내지 5의 산화 메틸화 반응성을 분석하여 HMF의 전환(conversion)과 FDMC의 선택성(selectivity)을 나타낸 결과이다.
구분 촉매(금속-이온교환수지) 산화 메틸화, %*
HMF conversion
(전환율)
FDMC selectivity
(선택성)
Methyl fumarate
(선택성)
실시예 1 2% AuPd(0.5:1)-IRA743 100 37.5 8
실시예 2 2% AuPd(1:1)-IRA743 100 74.3 9.4
실시예 3 2% AuPd(2:1)-IRA743 100 62.9 5.8
실시예 4 2% AuPd(3:1)-IRA743 100 60.6 4.8
실시예 5 2% AuPd(6:1)-IRA743 100 85.3 1.5
비교예 1 IRA743 10.3 0 -
비교예 2 1% Au-IRA743 11.1 13.1 -
비교예 3 2% Au-IRA743 100 68.1 -
비교예 4 1% Pd-IRA743 77.2 2.5 -
비교예 5 2% AuPd(1:1)-IRA743
No base
100 25.9 -
표 1을 참조하면, 비교예 2의 산화 메틸화 반응은 HMF의 11% 전환율과 13.1% FDMC로 전환율과 선택성이 매우 낮은 것으로 확인되었다. 비교예 2보다 골드(Au)의 함량이 높은 비교예 3은 100%의 HMF 전환율과 68.1%의 FDMC 선택성이 나타났다.
활성 금속이 없는 촉매를 이용한 비교예 1은 10%의 전환율로 FDMC 선택성이 나타나지 않았으며, 염기가 없는 경우 활성 촉매를 이용한 비교예 5도 HMF의 전환율이 100%로 나타났으나, FDMC의 선택성이 26% 정도에 불과한 것으로 나타났다.
실시예 2와 실시예 5의 산화 메틸화 반응은 100% 전환율과 각각 74% 및 85%의 선택성을 보여, 골드(Au)와 팔라듐(Pd)을 모두 포함하는 촉매가 HMF 전환율뿐만 아니라, FDMC 선택성도 높은 것을 확인할 수 있었다.
시험예 4: 골드(Au) 및 팔라듐(Pd) 몰비에 따른 촉매 반응성 분석
골드(Au)에 대한 팔라듐(Pd)의 영향을 분석하기 위해 실시예 1 내지 실시예 5의 산화 메틸화 반응성을 분석하였다. 하기 표 2는 Au-Pd의 몰비를 0.5:1에서 6:1로 변화시켜 금속의 몰비에 따른 HMF의 전환(conversion)과 FDMC의 선택성(selectivity)을 분석한 결과를 나타낸 것이다.
구분 촉매
(금속-이온교환수지)
산화 메틸화, %*
HMF conversion
(전환율)
FDMC selectivity(선택성) Methyl fumarate
(선택성)
실시예 1 2% AuPd(0.5:1)-IRA743 100 37.5 8
실시예 2 2% AuPd(1:1)-IRA743 100 74.3 9.4
실시예 3 2% AuPd(2:1)-IRA743 100 62.9 5.8
실시예 4 2% AuPd(3:1)-IRA743 100 60.6 4.8
실시예 5 2% AuPd(6:1)-IRA743 100 85.3 1.5
표 2에 따르면, 실시예 5는 FDMC 선택성이 가장 높은 것을 확인할 수 있었다. 골드(Au)와 팔라듐(Pd)의 몰비가 동일한 실시예 2의 FDMC 선택성이 75%로 나타났다.
따라서, 음이온 교환수지에 담지된 골드(Au)와 팔라듐(Pd) 나노입자는 6:1 및 1:1의 몰비로 조성된 것이 HMF를 FDMC로 산화 메틸화시키기 위한 촉매로 적절한 것으로 판단된다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (18)

  1. 하기 화학식 1로 표시되는 HMF(Hydroxy Methyl Furfural)를 용매 하에서 촉매를 사용하여 산화 메틸화(oxidative methylation)반응시켜 하기 화학식 2로 표시되는 FDMC(2,5-furandimethylcarboxylate)를 제조하는 단계를 포함하고,
    상기 촉매는 음이온 교환수지와, 상기 음이온 교환수지 상에 담지된 골드팔라듐 바이메탈릭(AuPd Bimetallic) 나노입자를 포함하고
    상기 음이온 교환수지가 하기 구조식 3으로 표시되는 것 또는 그의 염인 것인 FDMC의 제조방법.
    [화학식 1]
    Figure 112018099194320-pat00013

    [화학식 2]
    Figure 112018099194320-pat00014

    [구조식 3]
    Figure 112018099194320-pat00022

    구조식 3에서,
    R3은 수소원자, C1 내지 C10 직쇄상 알킬기, 또는 C3 내지 C10 분지상 알킬기이다.
    m 및 n은 서로 같거나 다르고, 각각 독립적으로 1 내지 3의 정수 중 어느 하나이고,
    q는 1 내지 10의 정수 중 어느 하나이다.
  2. 제1항에 있어서,
    상기 골드팔라듐 바이메탈릭 나노입자의 골드(Au): 팔라듐(Pd)의 몰비가 0.5:1.0 내지 6.0:1.0인 것을 특징으로 하는 FDMC의 제조방법.
  3. 제1항에 있어서,
    상기 음이온 교환수지가 지지체와, 상기 지지체 상에 공유결합된 아민기를 포함하는 것을 특징으로 하는 FDMC의 제조방법.
  4. 삭제
  5. 삭제
  6. 삭제
  7. 제3항에 있어서,
    상기 음이온 교환수지는 상기 지지체 상에 글루카아민기(glucamine group) 또는 그의 염이 공유결합된 것을 특징으로 하는 FDMC의 제조방법.
  8. 제3항에 있어서,
    상기 지지체가 다공성 또는 젤형이고, 용매 하에서 스웰링(swelling)되는 것을 특징으로 하는 FDMC의 제조방법.
  9. 제3항에 있어서,
    상기 지지체가 폴리스티렌, 가교된 폴리스티렌, 공중합된 폴리스티렌 및 그래프트된 폴리스티렌 중에서 선택된 1종 이상의 고분자를 포함하는 것을 특징으로 하는 FDMC의 제조방법.
  10. 제1항에 있어서,
    상기 음이온 교환수지가 염기성인 것을 특징으로 하는 FDMC의 제조방법.
  11. 제1항에 있어서,
    상기 산화 메틸화반응 시 용매에 소듐 메톡사이드(sodium methoxide) 및 포타슘 메톡사이드(potassium methoxide) 중에서 선택된 1종 이상의 염기를 추가로 투입하여 산화 메틸화(oxidative methylation)반응을 수행하는 것을 특징으로 하는 FDMC의 제조방법.
  12. 제1항에 있어서,
    상기 용매가 극성용매인 것을 특징으로 하는 FDMC의 제조방법.
  13. 제1항에 있어서,
    상기 촉매가 재사용될 수 있는 것을 특징으로 하는 FDMC의 제조방법.
  14. 제1항에 있어서,
    상기 FDMC(Dimethyl 2,5-furandicarboxylate)를 제조하는 퓨란계 화합물의 제조가 상온에서 수행되는 것을 특징으로 하는 FDMC의 제조방법.
  15. 제1항에 있어서,
    상기 촉매를 환원제, 음이온 교환수지, 골드(Au) 전구체 및 팔라듐(Pd) 전구체를 용매 하에서 제조한 것을 특징으로 하는 FDMC의 제조방법.
  16. 제15항에 있어서,
    상기 골드(Au) 전구체가 골드 클로라이드(AuCl3), 골드 브로마이드(AuBr3)중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 FDMC의 제조방법.
  17. 제15항에 있어서,
    상기 팔라듐(Pd) 전구체가 팔라듐 클로라이드(PdCl2), 팔라듐 브로마이드(PdBr2) 및 팔라듐 아세테이트(Pd(OAc)2) 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 FDMC의 제조방법.
  18. 제15항에 있어서,
    상기 환원제가 수소화붕소 나트륨(Sodium borohydride, NaBH4), 소듐 시아노보로하이드라이드(Sodium cyanoborohydride, NaBH3CN), 리튬 알루미늄 하이드라이드(Lithium aluminium hydride, LiAlH4) 및 하이드라진(N2H4) 중에서 선택된 1종 이상인 것을 특징으로 하는 FDMC의 제조방법.


KR1020170043104A 2017-04-03 2017-04-03 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 hmf로부터 fdmc의 제조방법 KR101937367B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170043104A KR101937367B1 (ko) 2017-04-03 2017-04-03 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 hmf로부터 fdmc의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170043104A KR101937367B1 (ko) 2017-04-03 2017-04-03 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 hmf로부터 fdmc의 제조방법

Publications (2)

Publication Number Publication Date
KR20180112894A KR20180112894A (ko) 2018-10-15
KR101937367B1 true KR101937367B1 (ko) 2019-01-14

Family

ID=63865793

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170043104A KR101937367B1 (ko) 2017-04-03 2017-04-03 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 hmf로부터 fdmc의 제조방법

Country Status (1)

Country Link
KR (1) KR101937367B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180541B (zh) * 2019-06-28 2021-04-02 中国科学院大连化学物理研究所 一种金基催化剂催化氧化醛生成酯的应用
CN110172049B (zh) * 2019-06-28 2021-01-05 中国科学院大连化学物理研究所 5-羟甲基糠醛氧化酯化制备呋喃-2,5-二甲酸二甲酯的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239801A (ja) * 2007-03-27 2008-10-09 Tokyo Metropolitan Univ 貴金属微粒子担持固体高分子材料、その調製方法および触媒

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239801A (ja) * 2007-03-27 2008-10-09 Tokyo Metropolitan Univ 貴金属微粒子担持固体高分子材料、その調製方法および触媒

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACS Catalysis, Vol.4, pp.2175~2185(2014.05.26.)
Chem. Sus. Chem., Vol.1, pp.75~78(2007.12.04.)
Chem. Sus. Chem., Vol.2, pp.1138~1144(2009.09.16.)

Also Published As

Publication number Publication date
KR20180112894A (ko) 2018-10-15

Similar Documents

Publication Publication Date Title
Nie et al. Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts
Fang et al. Metal organic frameworks for biomass conversion
US11000831B2 (en) Transition metal(s) catalyst supported on nitrogen-doped mesoporous carbon and its use in catalytic transfer hydrogenation reactions
CN108712931B (zh) 用于制备2,5-呋喃二甲酸的催化剂和使用催化剂制备2,5-呋喃二甲酸的方法
Wei et al. A flexible Cu-based catalyst system for the transformation of fructose to furanyl ethers as potential bio-fuels
Vikanova et al. Advanced room-temperature synthesis of 2, 5-bis (hydroxymethyl) furan—a monomer for biopolymers—from 5-hydroxymethylfurfural
KR102456622B1 (ko) 개질된 유기금속골격체 및 이를 포함하여 이루어진 수소화 반응용 촉매
Zhao et al. Recent advances in the oxidative esterification of 5-hydroxymethylfurfural to furan-2, 5-dimethylcarboxylate
KR101937367B1 (ko) 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 hmf로부터 fdmc의 제조방법
He et al. A Review on the Critical Role of H2 Donor in the Selective Hydrogenation of 5‐Hydroxymethylfurfural
Gao et al. Selective hydrogenation of the carbonyls in furfural and 5-hydroxymethylfurfural catalyzed by PtNi alloy supported on SBA-15 in aqueous solution under mild conditions
Zhang et al. Hydrogenolysis of Glycerol to 1, 3‐Propanediol: Are Spatial and Electronic Configuration of “Metal‐Solid Acid” Interface Key for Active and Durable Catalysts?
Cao et al. An investigation into bimetallic catalysts for base free oxidation of cellobiose and glucose
CN114950555B (zh) 锆基单原子催化剂、制备方法及其在2,5-呋喃二甲醇选择性合成中的应用
CN109734687B (zh) 5-羟甲基糠醛还原醚化制备2,5-二烷氧基甲基呋喃的方法
CN114029081B (zh) 一种双金属铜钴氮杂碳材料催化剂及其制备方法与应用
Zhang et al. Selective hydrogenation of furfural: Pure silica supported metal catalysts
CN113877583B (zh) 一种生物糠醇临氢开环生产1,5-戊二醇工艺中的催化剂及制备和应用
KR20180035718A (ko) 포름산염의 탈수소화반응 및 중탄산염의 수소화반응용 촉매 및 이의 제조 방법
Lestari et al. A zirconium (IV)-based metal–organic framework modified with ruthenium and palladium nanoparticles: Synthesis and catalytic performance for selective hydrogenation of furfural to furfuryl alcohol
Du et al. Recent advances in catalytic synthesis of 2, 5-furandimethanol from 5-hydroxymethylfurfural and carbohydrates
Mani et al. Ru-supported mesoporous melamine polymers as efficient catalysts for selective hydrogenation of aqueous 5-hydroxymethylfurfural to 2, 5-bis-(hydroxymethyl) furan
CN111167515B (zh) 单分子杂多酸镶嵌的蜂窝状炭材料负载的纳米金属催化剂及其制备方法和应用
KR101937362B1 (ko) 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 hmf로부터 fdca의 제조방법
CN113559864B (zh) 一种CuCoCe复合催化剂的制备方法与应用

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right